Norwegian Space Activities 1958-2003

Total Page:16

File Type:pdf, Size:1020Kb

Norwegian Space Activities 1958-2003 HSR-35 October 2004 Norwegian Space Activities 1958-2003 A Historical Overview Ole Anders Røberg and John Peter Collett ii Title: HSR-35 Norwegian Space Activities 1958-2003 – A Historical Overview Published by: ESA Publications Division ESTEC, PO Box 299 2200 AG Noordwijk The Netherlands Editor: D. Danesy Price: !20 ISSN: 1683-4704 ISBN: 92-9092-546-9 Copyright: ©2004 The European Space Agency Printed in: The Netherlands iii Contents Introduction ........................................................................................................................................................................... 1 The Early Years of Norwegian Geophysical and Cosmic Science..................................................................................... 3 The First Steps Towards a National Space Research Policy in Norway ............................................................................ 5 Two research councils, and two ways of dealing with science administration and policy...........................................5 European politics and Norwegian priorities – ELDO and ESRO ..................................................................................7 Norway’s preparation for ESRO, and sudden abstinence from membership................................................................9 A National Space Policy Emerging Between Science and Technology ........................................................................... 11 Andøya Rocket Range and the contest to establish an auroral launch site for ESRO.................................................12 The ESRO telemetry station in Svalbard ......................................................................................................................13 Satellite development on a national, Scandinavian or international basis...................................................................15 The real-time telemetry station in Tromsø....................................................................................................................16 The second attempt at making Norway an ESRO member..........................................................................................18 A National Programme for Industrialisation of Space Technology.................................................................................. 19 The first space project for Norwegian industry: The F-9 test satellite.........................................................................20 The search for a space industry programme and new trends in national industrial policy .........................................21 Maritime satellite communication as an answer to the need for a direction in space policy......................................22 Marots, Marisat and Inmarsat........................................................................................................................................24 Norway’s Long Road to ESA Membership ....................................................................................................................... 27 Norwegian space research in the early 1970s ...............................................................................................................27 Norwegian space science in Europe and America........................................................................................................29 ESA membership rejected .............................................................................................................................................31 Remote sensing at the centre of Norway’s space effort ...............................................................................................32 Satellite surveillance for Norway’s new ocean territory ..............................................................................................34 The return to Europe ......................................................................................................................................................35 Telecommunication satellites for Norwegian purposes, and the failure of Tele-X.....................................................36 Norway towards full ESA membership ........................................................................................................................38 Norwegian Space Activities Since Joining ESA ............................................................................................................... 41 Understanding the Norwegian space sector since 1987 ...............................................................................................41 Administrative alterations and policy development within NSC.................................................................................42 The contextual conditions of space policy-making in Norway since 1987 .................................................................43 The Norwegian space sector in economic figures ........................................................................................................45 Institutions and infrastructure – expansions and new establishments..........................................................................47 Developments in space-related industry in Norway since 1987 ..................................................................................49 Norwegian space science and research projects since 1987.........................................................................................52 Education and recruitment in the Norwegian space sector...........................................................................................56 Finally an autonomous Norwegian satellite?................................................................................................................57 Conclusions and Remarks................................................................................................................................................... 59 Appendix I: Reference Literature and Background Reading ............................................................................................ 61 Appendix II: Acronyms ...................................................................................................................................................... 63 Appendix III: Summary of Events ..................................................................................................................................... 65 iv For the period up to 1995, the text is essentially based on John Peter Collett (ed): Making Sense of Space: The history of Norwegian Space Activities, Oslo, Scandinavian University Press, 1995. As for the activities on the European level up to 1987, our main source is J. Krige, A. Russo and L. Sebesta: A History of the European Space Agency 1958-1987, vol. 1-2, Noordwijk, ESA Publications Division, 2000. The authors are indebted to Bo Andersen, Synnøve Irgens-Jensen, John Krige, Per Einar Nilsen and Per Torbo for their comments on earlier versions of the manuscript. Ole Anders Røberg, Research Fellow, and John Peter Collett, Professor, Department of History, University of Oslo 1 Introduction Norway joined the European Space Agency (ESA) as a full member in 1987. The road to Norwegian membership proved to be long and difficult. Norway first abstained from joining the European Space Research Organisation (ESRO) in 1962, and, in a second round, halted a new attempt at applying for membership in 1967. Proposals for Norwegian membership in the reorganised ESRO/ESA were taken up in 1970 and then again in 1973, but were rejected by the government in 1974. Norway remained an observer in ESA, as in ESRO, until 1981 when it became an associate member. Finally, in 1986, the Norwegian parliament – the Storting – approved the government proposal of full Norwegian membership in ESA. During this period, Norway was, however, actively involved in international space cooperation, in both scientific research and in space technology applications. In space-related activities, as in other forms of international cooperation, Norway participated in three arenas – one Scandinavian, one European and one Atlantic (with the United States as the major power). Within Europe, Norway enjoyed privileged relations with ESRO throughout the 1960s and later participated in the Marots programme under ESA. In space research, Norway cooperated with Europe and the United States, and in telecommunication, Norway was a member of Intelsat and Inmarsat which owned and operated worldwide networks for its member countries. Since joining ESA in 1987, Norwegian space activities have mainly been focused on the efforts and payoffs within the European arena for space cooperation. However, it has also had multiple projects on an autonomous, national level and has, at the same time, continued to expand its cooperation in space-related science and industrial development with non-European partners. Since 2003, issues concerning the size and scope of Norway’s involvement in space activities have resurfaced. Norway has made very good use of its ESA membership and has benefited in terms of contracts and challenges for Norwegian technology companies and research groups. But there have also been problems in establishing, administering and maintaining activities in certain areas, particularly in space science. Only a few years into the new millennium finds Norway dealing, yet again, with the classic dilemma of small states in a ‘big science’, ‘big industry’ and ‘big everything’ context. 2 3 The Early Years
Recommended publications
  • The Origin, Development, and History of the Norwegian Seventh-Day Adventist Church from the 1840S to 1889" (2010)
    Andrews University Digital Commons @ Andrews University Dissertations Graduate Research 2010 The Origin, Development, and History of the Norwegian Seventh- day Adventist Church from the 1840s to 1889 Bjorgvin Martin Hjelvik Snorrason Andrews University Follow this and additional works at: https://digitalcommons.andrews.edu/dissertations Part of the Christian Denominations and Sects Commons, Christianity Commons, and the History of Christianity Commons Recommended Citation Snorrason, Bjorgvin Martin Hjelvik, "The Origin, Development, and History of the Norwegian Seventh-day Adventist Church from the 1840s to 1889" (2010). Dissertations. 144. https://digitalcommons.andrews.edu/dissertations/144 This Dissertation is brought to you for free and open access by the Graduate Research at Digital Commons @ Andrews University. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ Andrews University. For more information, please contact [email protected]. Thank you for your interest in the Andrews University Digital Library of Dissertations and Theses. Please honor the copyright of this document by not duplicating or distributing additional copies in any form without the author’s express written permission. Thanks for your cooperation. ABSTRACT THE ORIGIN, DEVELOPMENT, AND HISTORY OF THE NORWEGIAN SEVENTH-DAY ADVENTIST CHURCH FROM THE 1840s TO 1887 by Bjorgvin Martin Hjelvik Snorrason Adviser: Jerry Moon ABSTRACT OF GRADUATE STUDENT RESEARCH Dissertation Andrews University Seventh-day Adventist Theological Seminary Title: THE ORIGIN, DEVELOPMENT, AND HISTORY OF THE NORWEGIAN SEVENTH-DAY ADVENTIST CHURCH FROM THE 1840s TO 1887 Name of researcher: Bjorgvin Martin Hjelvik Snorrason Name and degree of faculty adviser: Jerry Moon, Ph.D. Date completed: July 2010 This dissertation reconstructs chronologically the history of the Seventh-day Adventist Church in Norway from the Haugian Pietist revival in the early 1800s to the establishment of the first Seventh-day Adventist Conference in Norway in 1887.
    [Show full text]
  • ANNUAL REPORT 2017 THERE NOW ARE 4,256 SATELLITES ORBITING the PLANET, “There Was Nowhere to Go but 179 More Than a Year Ago
    ANNUAL REPORT 2017 THERE NOW ARE 4,256 SATELLITES ORBITING THE PLANET, “There was nowhere to go but 179 more than a year ago. Of the current total, 1,419 are operational. everywhere, so just keep on The number of satellites has grown impressively since KSAT had its rolling under the stars.” first satellite contact the night of May 17, 1968. JACK KEROUAC (1922-1969) IN “ON THE ROAD” KSAT has changed over the 15 years success for KSAT depends on its teams, Station in 1967 and the first contact we have been in operation. We’ve and partly because experience suggests in 1968. It’s worth remembering that consistently added to our portfolio of that we should take the best of the past this took place only 10 years after the That first satellite contact from Tromsø, Los Angeles, USA. Lamentably, our activities and sought synergies between with us when we prepare for the future. first satellites were launched. One of Norway triggered an industrial develop- Canadian station in Inuvik, NWT still our business areas. Whenever Satellite Hence, in 2017, we continued to focus the first Norwegian computers was ment that became Kongsberg Satellite awaits Canadian Government licenses Operations supports a new mission, it on customers, unconventional and installed at KSAT and paved the way Services (KSAT), now the world’s largest to attain operational status. The total also creates an opportunity for the flexible solutions, and technological for the digital revolution in Norway. ground station service provider. That number of antennas has grown to 138 Energy, Environment and Security development.
    [Show full text]
  • Ny-Ålesund Research Station
    Ny-Ålesund Research Station Research Strategy Applicable from 2019 DEL XX / SEKSJONSTITTEL Preface Svalbard research is characterised by a high degree of interna- tional collaboration. In Ny-Ålesund more than 20 research About the Research Council of Norway institutes have long-term research and monitoring activities. The station is one of four research localities in Svalbard (Ny-Ålesund, Longyearbyen, Barentsburg and Hornsund). The Research Council of Norway is a national strategic and research community, trade and industry and the public Close cooperation between these communities is essential funding agency for research activities. The Council serves as administration. It is the task of the Research Council to identify for the further development of Ny-Ålesund. the key advisor on research policy issues to the Norwegian Norway’s research needs and recommend national priorities Photo: John-Arne Røttingen Government, the government ministries, and other central and to use different funding schemes to help to translate In 2016, the Norwegian Government announced (Meld.St.32 institutions and groups involved in research and development national research policy goals into action. The Research Council (2015-2016)) the development of a research strategy for the (R&D). The Research Council also works to increase financial provides a central meeting place for those who fund, carry out Ny-Ålesund research station. Guidelines and principles for investment in, and raise the quality of, Norwegian R&D and and utilise research and works actively to promote the research activity were established by the government in 2018 to promote innovation in a collaborative effort between the internationalisation of Norwegian research.
    [Show full text]
  • Limits of Acceptable Change Caused by Local Activities in Ny-Ålesund
    Limits of acceptable change caused by local activities in Ny-Ålesund Report from a pre-project, containing a proposal for a main project Gunnar Sander, Norwegian Polar Institute 1 Preface Ny-Ålesund has been established as a research town on the assumption that this is an ideal area to study an environment shaped only by natural forces. Consequently the need to keep the environ- mental impacts resulting from local human activities at a low level has been emphasized in many policy statements from the Norwegian government and the actors in Ny-Ålesund. Following up on such policy objectives and recommendations from earlier Environmental Impact Assessments (EIAs) prepared for Ny-Ålesund, Kings Bay initiated a project to operationalize the environmental limits of the operations. During the work, it was clear that it would not be possible to do this without better information about environmental conditions in Ny-Ålesund. New fieldwork would be required to collect data and conduct detailed assessment as to which degree observed changes can be attributed to local activities. The steering group therefore decided to prepare a pre- project, planning a main project that will allow for better definitions of environmental limits. It decided to focus on three areas that according to the EIAs are likely to be most negatively affected by station activities: air quality, vegetation and birds. This report consists of a general part containing an update on the EIAs from Ny-Ålesund with recom- mendations on the general environmental work, and a framework for a main project. Detailed project descriptions of sub-projects on air quality, vegetation and birds are found in annexes.
    [Show full text]
  • Journal Vol38 No001 Pp107-116
    Vol. Vol. 38 No. I Journal <J/' the Communications Research Lahoratory March 1991 Printed Printed in Tokyo ‘ Japan pp. 107 116 Review CANADIAN SATELLITE COMMUNICATIONS PROGRAM By M. H. KHAN* (Received (Received on August 27, 1990) ABSTRACT In In 1962, Canada became the third nation in the world, after Soviet Union and the United States, States, to pioneer satellite communication. Sine 巴then it has enjoyed a series of impressive firs: it was the first country to establish a commercial satellite communication system, the first to experiment experiment with direct broadcast satellite systems and the first to conceive a mobile communica- tions tions systems via satellite. In future application of highly sophisticated synthetic aperture radar satellite satellite for remote sensing, surveying etc. are planned. In this paper an overview of Canadian Satellite Satellite Communication Program will be presented. 1. 1. Introduction Canada has a land area of almost 0I million square kilometers and a population of 24 million people. people. Although 75 % of its population live in urban areas that are within 350 kilometers of the Canadian-US border, these communities are spread out on an direction east-west by more than 4000 kilometers. In addition there are many small, relatively isolated communities located in the north. north. Providing a reliable communication and broadcasting services to such a widely dispersed population population using conventional terrestrial systems could be a major technical and financial problem. problem. As a result Canadian Government and industry were quick to appreciate the potential of satellite satellite communication for domestic and international use and capitalize on it.
    [Show full text]
  • Annu Al Repor T and Sus Tainabilit Y
    SUSTAINABILITY REPORT ANNUAL REPORT AND 2014 “Overall, KONGSBERG had a good year in 2014, with good earnings and cash flows, growth in revenues, and record-high orders” 1 Introduction 8 Directors’ Report and Financial Statements 86 Corporate Governance 100 Shareholder’s information 104 Sustainability Report 149 Financial calendar and contact information CONTENT – ANNUAL REPORT AND SUSTAINABILITY REPORT 2014 Cover Key figures 2014 8 Directors’ Report and 86 Corporate Governance 104 Sustainability Report Financial Statements 87 The Board’s Report on 104 Content 1 Introduction 9 Short summary Business Corporate Governance 106 Introduction 2 Extreme Areas 88 Policy – Kongsberg Gruppen 118 Sustainable innovation performance for 10 Directors’ Report 2014 89 Articles of Association 123 What have we achieved? extreme conditions 25 Financial statements, – Kongsberg Gruppen 131 Systems of governance 4 President and CEO contents 90 The Board’s Report on The and key figures Walter Qvam 26 Consolidated financial Norwegian Code of Practice 6 This is KONGSBERG statements 149 Financial calendar and 73 Financial statements 100 Shareholder’s information contact information – Kongsberg Gruppen ASA 101 Shares and shareholders 83 Statement from the Board of Directors 84 Auditor’s Report KONGSBERG • Annual Report and Sustainability Report 2014 1 Introduction 8 Directors’ Report and Financial Statements 86 Corporate Governance 100 Shareholder’s information 104 Sustainability Report 149 Financial calendar and contact information KEY FIGURES 2014 2013 2012 2011
    [Show full text]
  • Status of the Space Shuttle Solid Rocket Booster
    The Space Congress® Proceedings 1980 (17th) A New Era In Technology Apr 1st, 8:00 AM Status of The Space Shuttle Solid Rocket Booster William P. Horton Solid Rocket Booster Engineering Office, George C. Marshall Space Flight Center, Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Horton, William P., "Status of The Space Shuttle Solid Rocket Booster" (1980). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1980-17th/session-1/3 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATUS OF THE SPACE SHUTTLE SOLID ROCKET BOOSTER William P. Horton, Chief Engineer Solid Rocket Booster Engineering Office George C. Marshall Space Flight Center, AL 35812 ABSTRACT discuss retrieval and refurbishment plans for Booster reuse, and will address Booster status Two Solid Rocket Boosters provide the primary for multimission use. first stage thrust for the Space Shuttle. These Boosters, the largest and most powerful solid rocket vehicles to meet established man- BOOSTER CONFIGURATION rated design criteria, are unique in that they are also designed to be recovered, refurbished, It is appropriate to review the Booster config­ and reused. uration before describing the mission profile. The Booster is 150 feet long and is 148 inches The first SRB f s have been stacked on the in diameter (Figure 1), The inert weight Mobile Launch Platform at the Kennedy Space is 186,000 pounds and the propellant weight is Center and are ready to be mated with the approximately 1.1 million pounds for each External Tank and Orbiter in preparation for Booster.
    [Show full text]
  • 2010 Commercial Space Transportation Forecasts
    2010 Commercial Space Transportation Forecasts May 2010 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) HQ-101151.INDD 2010 Commercial Space Transportation Forecasts About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Cover: Art by John Sloan (2010) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration / Commercial Space Transportation Table of Contents Executive Summary . 1 Introduction . 4 About the CoMStAC GSo Forecast . .4 About the FAA NGSo Forecast . .4 ChAracteriStics oF the CommerCiAl Space transportAtioN MArket . .5 Demand ForecastS . .5 COMSTAC 2010 Commercial Geosynchronous Orbit (GSO) Launch Demand Forecast . 7 exeCutive Summary . .7 BackGround . .9 Forecast MethoDoloGy . .9 CoMStAC CommerCiAl GSo Launch Demand Forecast reSultS .
    [Show full text]
  • Towards the Kalmar Union
    S P E C I A L I Z E D A G E N C I E S TOWARDS THE KALMAR UNION Dear Delegates, Welcome to the 31st Annual North American Model United Nations 2016 at the University of Toronto! On behalf of all of the staff at NAMUN, we welcome you to the Specialized Agency branch of the conference. I, and the rest of the committee staff are thrilled to have you be a delegate in Scandinavia during the High Middle Ages, taking on this challenging yet fascinating topic on the futures of the three Scandinavian Kingdoms in a time of despair, poverty, dependence and competitiveness. This will truly be a new committee experience, as you must really delve into the history of these Kingdoms and figure out how to cooperate with each other without sending everyone into their demise. To begin, in the Towards the Kalmar Union Specialized Agency, delegates will represent influential characters from Denmark, Norway and Sweden, which include prominent knights, monarchs, nobles, and important religious figures who dominate the political, military and economic scenes of their respective Kingdoms. The impending issues that will be discussed at the meeting in Kalmar, Sweden include the future of the Danish and Norwegian crowns after the death of the sole heir to the thrones, Olaf II. Here, two distant relatives to Valdemar IV have a claim to the throne and delegates will need to decide who will succeed to the throne. The second order of business is to discuss the growing German presence in Sweden, especially in major economic cities.
    [Show full text]
  • EVOLUTION of Cowtrot SYSTEMS for Aecelsiato&S
    - 271 - EVOLUTION OF COWTROt SYSTEMS FOR AeCELSiAtO&S M.C. Crovley-Milling CRM, Geneva 1, HISTORICAL The ««liest accelerator* wer« quite •»*'. 1, and their controls few, as can be seen from fig. 1 which ahow* the 11-inch eye lot ron built by Lawrence and Livingstone in 1932. Control wm by switches sai variable resistors and indication by a variety of Meters, wired directly iota the appropriate circuit, Where the control eleaemt had to be at high vol• tage, a loop of string vat often uted Co operate it. I1* Figur* t : the 11-inch Cyclotron at Berkeley As the si«* and power of the accelerator* increased, they had to be surrounded by heavier and heavier »hielding, and the controls and indications had to be taken away from the accelerator lt»el£ and transferred to a separate control roo». At first this was done by ju»t extending the cables, keeping each control and indication separate, but the increa• sing number* of value» to be indicated led to some manual switching of instruments between different circuit* to save panel apace. In the 1980's, even though the cyclic, accelerators had grown up to 200 » in diameter, the expense of taking cables for every control element to the control too» was not exce««ive. However, in the i960'», project* of auch larger siae were being considered, where this would no longer be true. The first of theae was the "2-mile" electron lime at SLAC. This is composed of 240 alraott identical taodule*, each aodule having very many controls and indications of interest to the operators, The enormous number of cables which would be required to take all these to the control room was reduced considerably by rentóte awl t i- plexing; that is switching one particular control or indication from each «©«Joie in turn onto the s«se set of cables.
    [Show full text]
  • + Return to Flight Implementation Plan -- 12Th Edition (8.4 Mb PDF)
    NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond A periodically updated document demonstrating our progress toward safe return to flight and implementation of the Columbia Accident Investigation Board recommendations June 20, 2006 Volume 1, Twelfth Edition An electronic version of this implementation plan is available at www.nasa.gov NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond June 20, 2006 Twelfth Edition Change June 20, 2006 This 12th revision to NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond provides updates to three Columbia Accident Investigation Board Recommendations that were not fully closed by the Return to Flight Task Group, R3.2-1 External Tank (ET), R6.4-1 Thermal Protection System (TPS) On-Orbit Inspection and Repair, and R3.3-2 Orbiter Hardening and TPS Impact Tolerance. These updates reflect the latest status of work being done in preparation for the STS-121 mission. Following is a list of sections updated by this revision: Message from Dr. Michael Griffin Message from Mr. William Gerstenmaier Part 1 – NASA’s Response to the Columbia Accident Investigation Board’s Recommendations 3.2-1 External Tank Thermal Protection System Modifications (RTF) 3.3-2 Orbiter Hardening (RTF) 6.4-1 Thermal Protection System On-Orbit Inspect and Repair (RTF) Remove Pages Replace with Pages Cover (Feb 17, 2006) Cover (Jun. 20, 2006 ) Title page (Feb 17, 2006) Title page (Jun. 20, 2006) Message From Michael D. Griffin Message From Michael D. Griffin (Feb 17, 2006)
    [Show full text]
  • SPACE TRANSPORTATION SYSTEM HAER No. TX-116 PART V. SOLID
    SPACE TRANSPORTATION SYSTEM HAER No. TX-116 Page 337 PART V. SOLID ROCKET BOOSTER/REUSABLE SOLID ROCKET MOTOR Introduction The twin solid rocket boosters (SRBs), designed as the primary propulsion element of the STS, provided the Space Shuttle with 80 percent of the liftoff thrust during the first two minutes of launch. They burned more than 2,200,000 pounds of propellant and produced 36 million horsepower.1487 Each SRB booster was comprised of both motor and non-motor segments. The motor segments, referred to as the solid rocket motor (SRM), and later renamed “reusable solid rocket motor” (RSRM), contained the fuel to power the SRBs.1488 The SRMs/RSRMs were the largest and only human-rated solid-propellant rocket motors ever flown, and the first designed for recovery and reuse. The major non-motor segments included the nose cap, frustum, and forward and aft skirts. These structural components contained the electronics to guide the SRBs during liftoff, ascent, and ET/SRB separation, and housed the parachutes, which slowed the descent of the reusable boosters into the Atlantic Ocean after their jettison from the spacecraft. Historically, SRM/RSRM development followed a path separate from the non-motor SRB components. Throughout the SSP, Thiokol, of Promontory, Utah, was the sole fabricator and prime contractor for the SRM/RSRM.1489 Thiokol supplied NASA with the propellant-loaded forward motor case segment, with the igniter/safe and arm (S&A) device installed; the two propellant-loaded center motor case segments; the propellant-loaded aft motor case segment, with the nozzle installed; the case stiffener rings; and the aft exit cone assembly with the severance system installed.
    [Show full text]