Bio: I’M Now a Postdoc in Prof

Total Page:16

File Type:pdf, Size:1020Kb

Bio: I’M Now a Postdoc in Prof Phylogenetics and evolution of a newly demonstrated lineage of carnivorous monocots Carnivorous plants consume animals to obtain mineral nutrients, including nitrogen and phosphorus, to enhance growth, competitive ability and reproduction in nutrient-poor environments. I demonstrate that Triantha occidentalis (Tofieldiaceae, Alismatales) is a previously overlooked carnivorous lineage with a sticky-trap inflorescence. Field experiments, isotopic data and mixing models demonstrate significant N transfer from prey, with an estimated 68% of leaf N obtained from capture, comparable to levels for co-occurring sundew. Glandular hairs on flowering stems secrete phosphatase, a digestive enzyme seen in other carnivorous plants. Triantha is nearly unique among carnivorous plants in capturing prey on its inflorescence axis close to flowers; however, its glandular hairs capture only small insects. I also studied Triantha phylogeography across its mostly North American range, by surveying 11 plastid- encoded ndh genes from 75 populations. All three North American species are likely monophyletic, although T. occidentalis monophyly requires recognizing T. japonica as a synonym, which is consistent with its nested position in T. occidentalis, as the sister group of populations in Haida Gwaii (Canada). Plastid ndh genes have experienced various degrees of loss or reading frame interruption within T. glutinosa and T. occidentalis, and a strong geographic signal is evident in patterns of ndh gene loss/pseudogenization across the range of T. occidentalis. Short Bio: I’m now a postdoc in Prof. Sasa Stefanovic’s lab, University of Toronto Mississauga, and working on the genomic evolution of parasitic and mycoheterotrophic plants. I was born in China, and obtained a double degree for B.Sc. and B.A in Fudan University, Shanghai. I just got my Ph.D. degree in University of British Columbia this August. I’m interested in phylogeny and genomic evolution of land plants, especially heterotrophic and carnivorous plants. Research gate link: https://www.researchgate.net/profile/Qianshi_Lin .
Recommended publications
  • 1Lecture Notes 2013
    5/24/13 Week 8; Monday Lecture: Monocots Part I: Some animal pollinated monocots Monocots are monophyletic! Traditional primary division is between Dicots and Monocots Trait “Dicots” Monocots # cotyledons 2 cotyledons 1 cotyledon stem ring of vascular bundles scattered vascular bundles vascular cambium often present no vascular cambium habit woody or herbaceous primarily herbaceous (no true wood) leaves simple or compound usually simple venation net veined: pinnate, palmate parallel (or striate) leaf narrow usually broad, often sheathing insertion (wrapping around the stem) roots primary --> secondary primary roots abort; adventitious roots, too adventitious roots only taproot or fibrous usually fibrous flower parts parts in 4’s, 5’s, or ∞ (rarely 3) parts in 3’s pollen monosulcate or tricolpate monosulcate Today we will look at some of the more important families of animal pollinated monocots found in the temperate zone Overhead of monocot phylogeny based on rbcL - distribution of monocot groups. Chase et al. 2000, overhead Page 57 5/24/13 Lab only; limited discussion here. Show: “Plants are Cool, Too” video Araceae - Arum family (109 gen/2830 spp) 1) herbs (some epiphytes) 2) lvs simple or compound; broad and having an apparent petiole (‘pseudo-lamina’) development not same as in a dicot leaf blade 3) calcium oxalate crystals usually present – physical deterrent to herbivory 4) Inflorescence consisting of - spathe - bract (often colorful) surrounding the flowers - spadix - axis on which the flowers are borne (male above; female below,
    [Show full text]
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • Elements by Townrange for Door County
    Elements by Townrange for Door County The Natural Heritage Inventory (NHI) database contains recent and historic element (rare species and natural community) observations. A generalized version of the NHI database is provided below as a general reference and should not be used as a substitute for a WI Dept of Natural Resources NHI review of a specific project area. The NHI database is dynamic, records are continually being added and/or updated. The following data are current as of 03/26/2014: Town Range State Federal State Global Group Scientific Name Common Name Status Status Rank Rank Name Carex backii Rocky Mountain Sedge SC S1 G5 Plant Festuca occidentalis Western Fescue THR S1 G5 Plant Leucophysalis grandiflora Large-flowered Ground-cherry SC S1 G4? Plant 025N023E Bartramia longicauda Upland Sandpiper THR S2B G5 Bird Sturnella neglecta Western Meadowlark SC/M S2B G5 Bird 025N024E Northern wet-mesic forest Northern Wet-mesic Forest NA S3S4 G3? Community~ Somatochlora hineana Hine's Emerald END LE S1 G2G3 Dragonfly~ Sturnella neglecta Western Meadowlark SC/M S2B G5 Bird 025N025E Migratory Bird Concentration Migratory Bird Concentration SC SU G3 Other~ Site Site Northern wet-mesic forest Northern Wet-mesic Forest NA S3S4 G3? Community~ 025N026E Migratory Bird Concentration Migratory Bird Concentration SC SU G3 Other~ Site Site 026N023E Adlumia fungosa Climbing Fumitory SC S2S3 G4 Plant Bartramia longicauda Upland Sandpiper THR S2B G5 Bird Hendersonia occulta Cherrystone Drop THR S2S3 G4 Snail Northern mesic forest Northern Mesic Forest
    [Show full text]
  • Tofieldia Ulleungensis (Tofieldiaceae): a New Species, Endemic to Ulleungdo Island, Korea
    Korean J. Pl. Taxon. 50(3): 343−350 (2020) pISSN 1225-8318 eISSN 2466-1546 https://doi.org/10.11110/kjpt.2020.50.3.343 Korean Journal of RESEARCH ARTICLE Plant Taxonomy Tofieldia ulleungensis (Tofieldiaceae): A new species, endemic to Ulleungdo Island, Korea Hyeryun JO, Balkrishna GHIMIRE, Young-Ho HA, Kang-Hyup LEE and Dong Chan SON* Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon 11186, Korea (Received 19 August 2020; Revised 5 September 2020; Accepted 18 September 2020) ABSTRACT: Tofieldia ulleungensis, a new species of the genus Tofieldia from the Nari Basin on Ulleungdo Island, Korea, is described and illustrated. The new species is similar to T. yoshiiana var. koreana in terms of the plant height and in that it has having a long raceme, whitish tepals, and whitish stigma, but can be readily dis- tinguished from the latter by the presence of 1–2 linear cauline leaves, a slightly bent leaf apex, basal leaves which are twice as wide, a shorter pedicel, a revolute style, and crescent-shaped seeds. Keywords: Tofieldiaceae, Tofieldia ulleungensis, endemic, Ulleungdo Island, Korea The genus Tofieldia Huds. (Tofieldiaceae) comprised about recognized by Nakai (1911), but later he (Nakai, 1914) 12 species distributed in the subarctic, temperate, and transferred T. taquetii to T. fauriei. In 1916, Nakai reported a subtropical regions of the Northern Hemisphere (Chen and new species, T. nutans Willd. ex Schult.f., from Rhobong, Tamura, 2000; Yamazaki, 2002; Tamura et al., 2004, 2010, Pyeonganbuk-do, North Korea, and Chung (1957) recognized 2011). The species are morphologically characterized by 2- two species T.
    [Show full text]
  • November 2020
    November 19, 2020 crevice Alaska Rock Garden Society November Meeting: Alpines of the Pinnell Mountain National Recreation Trail By Marilyn Barker Saturday, November 21, 10 AM on Zoom [Zoom details to follow in separate email] Dear Members- I am looking forward to seeing all of you on our Zoom Meeting on Saturday. I think Marilyn’s program will be wonderful and informative. This will be the last meeting until next year! We will get information out to you about that meeting the first part of the month. Have a wonderful Holiday Season. Be safe and healthy, Florene Carney President Alaska Rock Garden Society (Zoom continued on page 2) Crevice is an occasional publication of the Alaska Rock Garden Society for small items. The masthead is an except from Eriophorum scheuchzeri by Rhonda Williams, used with permission. © Alaska Rock Garden Society 2020 PO Box 244136, Anchorage, AK 99524-4136 2 ARGS Crevice November 19, 2020 Alaska Rock Garden Society Membership Meeting November 21, 2020 ZOOM AGENDA Welcome Treasurer’s Report Approval of Minutes Seed Exchange Program – Marilyn Barker “Alpines of the Pinnell Mountain National Recreation Trail” Member Comments Adjourn Alaska Rock Garden Society Membership Meeting October 17, 2020 ZOOM 10:00 A.M. MINUTES Florene Carney called the meeting to order at 10:10 A.M. with a welcome to everyone joining our first ZOOM Membership Meeting. Jamie Smith, Secretary, gave a brief overview of the Oct 9, 2020 Exec Board minutes. Two important points: At that meeting, the current Executive Board UNANIMOUSLY agreed to remain in their current positions thru the 2020-2021 year to maintain continuity thru the COVID-19 Pandemic.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Tracing History
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 911 Tracing History Phylogenetic, Taxonomic, and Biogeographic Research in the Colchicum Family BY ANNIKA VINNERSTEN ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2003 Dissertation presented at Uppsala University to be publicly examined in Lindahlsalen, EBC, Uppsala, Friday, December 12, 2003 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Vinnersten, A. 2003. Tracing History. Phylogenetic, Taxonomic and Biogeographic Research in the Colchicum Family. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 911. 33 pp. Uppsala. ISBN 91-554-5814-9 This thesis concerns the history and the intrafamilial delimitations of the plant family Colchicaceae. A phylogeny of 73 taxa representing all genera of Colchicaceae, except the monotypic Kuntheria, is presented. The molecular analysis based on three plastid regions—the rps16 intron, the atpB- rbcL intergenic spacer, and the trnL-F region—reveal the intrafamilial classification to be in need of revision. The two tribes Iphigenieae and Uvularieae are demonstrated to be paraphyletic. The well-known genus Colchicum is shown to be nested within Androcymbium, Onixotis constitutes a grade between Neodregea and Wurmbea, and Gloriosa is intermixed with species of Littonia. Two new tribes are described, Burchardieae and Tripladenieae, and the two tribes Colchiceae and Uvularieae are emended, leaving four tribes in the family. At generic level new combinations are made in Wurmbea and Gloriosa in order to render them monophyletic. The genus Androcymbium is paraphyletic in relation to Colchicum and the latter genus is therefore expanded.
    [Show full text]
  • A New Carnivorous Plant Lineage (Triantha) with a Unique Sticky-Inflorescence Trap
    A new carnivorous plant lineage (Triantha) with a unique sticky-inflorescence trap Qianshi Lina,b,1, Cécile Anéc,d, Thomas J. Givnishc, and Sean W. Grahama,b aDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; bUBC Botanical Garden, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; cDepartment of Botany, University of Wisconsin–Madison, Madison, WI 53706; and dDepartment of Statistics, University of Wisconsin–Madison, Madison WI 53706 Edited by Elizabeth A. Kellogg, Donald Danforth Plant Science Center, St. Louis, MO, and approved June 5, 2021 (received for review October 30, 2020) Carnivorous plants consume animals for mineral nutrients that and in wetlands, including bogs, marly shorelines, and calcareous enhance growth and reproduction in nutrient-poor environments. spring-fed fens. In bogs, T. occidentalis is commonly found with Here, we report that Triantha occidentalis (Tofieldiaceae) represents recognized carnivorous plants such as Drosera rotundifolia a previously overlooked carnivorous lineage that captures insects on (Droseraceae) and Pinguicula vulgaris (Lentibulariaceae). During sticky inflorescences. Field experiments, isotopic data, and mixing the summer flowering season, T. occidentalis produces leafless models demonstrate significant N transfer from prey to Triantha, erect flowering stems up to 80 cm tall (12). These scapes have with an estimated 64% of leaf N obtained from prey capture in sticky glandular hairs, especially on their upper portions, a feature previous years, comparable to levels inferred for the cooccurring distinguishing Triantha from other genera of Tofieldiaceae round-leaved sundew, a recognized carnivore. N obtained via carnivory (Fig. 1). Small insects are often found trapped by these hairs; is exported from the inflorescence and developing fruits and may herbarium specimens are frequently covered in insects (Fig.
    [Show full text]
  • The Evolution of Pollinator–Plant Interaction Types in the Araceae
    BRIEF COMMUNICATION doi:10.1111/evo.12318 THE EVOLUTION OF POLLINATOR–PLANT INTERACTION TYPES IN THE ARACEAE Marion Chartier,1,2 Marc Gibernau,3 and Susanne S. Renner4 1Department of Structural and Functional Botany, University of Vienna, 1030 Vienna, Austria 2E-mail: [email protected] 3Centre National de Recherche Scientifique, Ecologie des Foretsˆ de Guyane, 97379 Kourou, France 4Department of Biology, University of Munich, 80638 Munich, Germany Received August 6, 2013 Accepted November 17, 2013 Most plant–pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. An- tagonistic plant–pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was recon- structed as probably rewarding albeit with low confidence because information is available for only 56 of the 120–130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precon- dition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences.
    [Show full text]
  • Nabalus Racemosus (Michx.) Hook. Glaucous White Lettuce
    New England Plant Conservation Program Nabalus racemosus (Michx.) Hook. Glaucous white lettuce Conservation and Research Plan for New England Prepared by: Lisa St. Hilaire Ecologist 14 Prospect St. Augusta, Maine 04339 USA For: New England Wild Flower Society 180 Hemenway Road Framingham, Massachusetts 01701 USA 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, December 2003 1 SUMMARY Nabalus racemosus (Michx.) Hook., glaucous white lettuce, is a perennial member of the Asteraceae or composite family. It is considered globally secure (G5), but in New England, it is known only from northern Maine, primarily along the St. John River. There are also several occurrences along the Aroostook River. Ice scour and flooding are common annual disturbances on these rivers. Many of the N. racemosus populations were discovered during survey efforts for Pedicularis furbishiae (Furbish’s lousewort), and both species, as well as many other rarities, may be found at some sites. In other parts of the country, N. racemosus grows in prairie communities. There are currently 31 extant occurrences in Maine, 28 of these along the St. John River, and three on the Aroostook River. There are four historic occurrences, all on the Aroostook River, and one extirpated population on the Aroostook River. Nabalus racemosus is a species of Special Concern in Maine, where it is ranked S3. Other nearby areas from which it is recorded include New Brunswick (S3), Nova Scotia (S1), Newfoundland Island (S1S2), Labrador (SR), Quebec (SR), Vermont (SR), New Jersey (SH), New York (SX), and Pennsylvania (SX). Little is known regarding the biology of Nabalus racemosus.
    [Show full text]
  • Spring Overnight
    Columbines School of Botanical Studies Spring Apprenticeship Program Trip #11-12 Spring Overnight June 22-23, 24-25, 27-28 2017 Low Elevation Coniferous Woods and Disturbed Areas 1100' Low Elevation Coniferous Woods and Seepy Cliffs 2000' Low Elevation Coniferous Woods, Riparian, and Meadow 2400' Low Elevation Coniferous Woods and Riparian 2500' Middle Elevation Coniferous Woods and Meadow 3728' Middle Elevation Coniferous Woods and Meadows 4800' Middle Elevation Coniferous Woods and Beargrass Meadows 5620' http://www.botanicalstudies.net/botany/plantlists.php Family Name Uses Seen Araceae Lysichiton americanus (L. Skunk Cabbage +/- Edible X americanum) Liliaceae Calochortus subalpinus Alpine Cat's Ears No Pick X Calochortus tolmiei Cat's Ears No Pick X Clintonia uniflora Queen's Cup, Bead Lily Poisonous? X Erythronium grandiflorum Glacier Lily No Pick X Erythronium oregonum Fawn Lily No Pick Lilium columbianum Tiger Lily No Pick X Lilium washingtonianum Cascade Lily No Pick Prosartes hookeri (Disporum Fairy Bells +/- Edible X hookeri) Streptopus amplexifolius Twisted Stalk +/- Edible X Streptopus lanceolatus (S. roseus) Rosy Twisted Stalk +/- Edible Asparagaceae (Liliaceae) Brodiaea elegans Elegant Brodiaea No Pick Dichelostemma congestum Harvest Lily X (Brodiaea congesta) No Pick Maianthemum dilitatum False Wild Lily of the Valley Poisonous, Medicinal Maianthemum racemosum (Smilacina racemosa) Maianthemum stellatum (Smilacina Small False Solomon's Seal +/- Edible, Medicinal X stellata) Melanthiaceae (Liliaceae) Anticlea occidentalis
    [Show full text]