Elements by Townrange for Door County
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tofieldia Ulleungensis (Tofieldiaceae): a New Species, Endemic to Ulleungdo Island, Korea
Korean J. Pl. Taxon. 50(3): 343−350 (2020) pISSN 1225-8318 eISSN 2466-1546 https://doi.org/10.11110/kjpt.2020.50.3.343 Korean Journal of RESEARCH ARTICLE Plant Taxonomy Tofieldia ulleungensis (Tofieldiaceae): A new species, endemic to Ulleungdo Island, Korea Hyeryun JO, Balkrishna GHIMIRE, Young-Ho HA, Kang-Hyup LEE and Dong Chan SON* Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon 11186, Korea (Received 19 August 2020; Revised 5 September 2020; Accepted 18 September 2020) ABSTRACT: Tofieldia ulleungensis, a new species of the genus Tofieldia from the Nari Basin on Ulleungdo Island, Korea, is described and illustrated. The new species is similar to T. yoshiiana var. koreana in terms of the plant height and in that it has having a long raceme, whitish tepals, and whitish stigma, but can be readily dis- tinguished from the latter by the presence of 1–2 linear cauline leaves, a slightly bent leaf apex, basal leaves which are twice as wide, a shorter pedicel, a revolute style, and crescent-shaped seeds. Keywords: Tofieldiaceae, Tofieldia ulleungensis, endemic, Ulleungdo Island, Korea The genus Tofieldia Huds. (Tofieldiaceae) comprised about recognized by Nakai (1911), but later he (Nakai, 1914) 12 species distributed in the subarctic, temperate, and transferred T. taquetii to T. fauriei. In 1916, Nakai reported a subtropical regions of the Northern Hemisphere (Chen and new species, T. nutans Willd. ex Schult.f., from Rhobong, Tamura, 2000; Yamazaki, 2002; Tamura et al., 2004, 2010, Pyeonganbuk-do, North Korea, and Chung (1957) recognized 2011). The species are morphologically characterized by 2- two species T. -
A New Carnivorous Plant Lineage (Triantha) with a Unique Sticky-Inflorescence Trap
A new carnivorous plant lineage (Triantha) with a unique sticky-inflorescence trap Qianshi Lina,b,1, Cécile Anéc,d, Thomas J. Givnishc, and Sean W. Grahama,b aDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; bUBC Botanical Garden, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; cDepartment of Botany, University of Wisconsin–Madison, Madison, WI 53706; and dDepartment of Statistics, University of Wisconsin–Madison, Madison WI 53706 Edited by Elizabeth A. Kellogg, Donald Danforth Plant Science Center, St. Louis, MO, and approved June 5, 2021 (received for review October 30, 2020) Carnivorous plants consume animals for mineral nutrients that and in wetlands, including bogs, marly shorelines, and calcareous enhance growth and reproduction in nutrient-poor environments. spring-fed fens. In bogs, T. occidentalis is commonly found with Here, we report that Triantha occidentalis (Tofieldiaceae) represents recognized carnivorous plants such as Drosera rotundifolia a previously overlooked carnivorous lineage that captures insects on (Droseraceae) and Pinguicula vulgaris (Lentibulariaceae). During sticky inflorescences. Field experiments, isotopic data, and mixing the summer flowering season, T. occidentalis produces leafless models demonstrate significant N transfer from prey to Triantha, erect flowering stems up to 80 cm tall (12). These scapes have with an estimated 64% of leaf N obtained from prey capture in sticky glandular hairs, especially on their upper portions, a feature previous years, comparable to levels inferred for the cooccurring distinguishing Triantha from other genera of Tofieldiaceae round-leaved sundew, a recognized carnivore. N obtained via carnivory (Fig. 1). Small insects are often found trapped by these hairs; is exported from the inflorescence and developing fruits and may herbarium specimens are frequently covered in insects (Fig. -
Nabalus Racemosus (Michx.) Hook. Glaucous White Lettuce
New England Plant Conservation Program Nabalus racemosus (Michx.) Hook. Glaucous white lettuce Conservation and Research Plan for New England Prepared by: Lisa St. Hilaire Ecologist 14 Prospect St. Augusta, Maine 04339 USA For: New England Wild Flower Society 180 Hemenway Road Framingham, Massachusetts 01701 USA 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, December 2003 1 SUMMARY Nabalus racemosus (Michx.) Hook., glaucous white lettuce, is a perennial member of the Asteraceae or composite family. It is considered globally secure (G5), but in New England, it is known only from northern Maine, primarily along the St. John River. There are also several occurrences along the Aroostook River. Ice scour and flooding are common annual disturbances on these rivers. Many of the N. racemosus populations were discovered during survey efforts for Pedicularis furbishiae (Furbish’s lousewort), and both species, as well as many other rarities, may be found at some sites. In other parts of the country, N. racemosus grows in prairie communities. There are currently 31 extant occurrences in Maine, 28 of these along the St. John River, and three on the Aroostook River. There are four historic occurrences, all on the Aroostook River, and one extirpated population on the Aroostook River. Nabalus racemosus is a species of Special Concern in Maine, where it is ranked S3. Other nearby areas from which it is recorded include New Brunswick (S3), Nova Scotia (S1), Newfoundland Island (S1S2), Labrador (SR), Quebec (SR), Vermont (SR), New Jersey (SH), New York (SX), and Pennsylvania (SX). Little is known regarding the biology of Nabalus racemosus. -
Spring Overnight
Columbines School of Botanical Studies Spring Apprenticeship Program Trip #11-12 Spring Overnight June 22-23, 24-25, 27-28 2017 Low Elevation Coniferous Woods and Disturbed Areas 1100' Low Elevation Coniferous Woods and Seepy Cliffs 2000' Low Elevation Coniferous Woods, Riparian, and Meadow 2400' Low Elevation Coniferous Woods and Riparian 2500' Middle Elevation Coniferous Woods and Meadow 3728' Middle Elevation Coniferous Woods and Meadows 4800' Middle Elevation Coniferous Woods and Beargrass Meadows 5620' http://www.botanicalstudies.net/botany/plantlists.php Family Name Uses Seen Araceae Lysichiton americanus (L. Skunk Cabbage +/- Edible X americanum) Liliaceae Calochortus subalpinus Alpine Cat's Ears No Pick X Calochortus tolmiei Cat's Ears No Pick X Clintonia uniflora Queen's Cup, Bead Lily Poisonous? X Erythronium grandiflorum Glacier Lily No Pick X Erythronium oregonum Fawn Lily No Pick Lilium columbianum Tiger Lily No Pick X Lilium washingtonianum Cascade Lily No Pick Prosartes hookeri (Disporum Fairy Bells +/- Edible X hookeri) Streptopus amplexifolius Twisted Stalk +/- Edible X Streptopus lanceolatus (S. roseus) Rosy Twisted Stalk +/- Edible Asparagaceae (Liliaceae) Brodiaea elegans Elegant Brodiaea No Pick Dichelostemma congestum Harvest Lily X (Brodiaea congesta) No Pick Maianthemum dilitatum False Wild Lily of the Valley Poisonous, Medicinal Maianthemum racemosum (Smilacina racemosa) Maianthemum stellatum (Smilacina Small False Solomon's Seal +/- Edible, Medicinal X stellata) Melanthiaceae (Liliaceae) Anticlea occidentalis -
Liliaceae Lily Family
Liliaceae lily family While there is much compelling evidence available to divide this polyphyletic family into as many as 25 families, the older classification sensu Cronquist is retained here. Page | 1222 Many are familiar as garden ornamentals and food plants such as onion, garlic, tulip and lily. The flowers are showy and mostly regular, three-merous and with a superior ovary. Key to genera A. Leaves mostly basal. B B. Flowers orange; 8–11cm long. Hemerocallis bb. Flowers not orange, much smaller. C C. Flowers solitary. Erythronium cc. Flowers several to many. D D. Leaves linear, or, absent at flowering time. E E. Flowers in an umbel, terminal, numerous; leaves Allium absent. ee. Flowers in an open cluster, or dense raceme. F F. Leaves with white stripe on midrib; flowers Ornithogalum white, 2–8 on long peduncles. ff. Leaves green; flowers greenish, in dense Triantha racemes on very short peduncles. dd. Leaves oval to elliptic, present at flowering. G G. Flowers in an umbel, 3–6, yellow. Clintonia gg. Flowers in a one-sided raceme, white. Convallaria aa. Leaves mostly cauline. H H. Leaves in one or more whorls. I I. Leaves in numerous whorls; flowers >4cm in diameter. Lilium ii. Leaves in 1–2 whorls; flowers much smaller. J J. Leaves 3 in a single whorl; flowers white or purple. Trillium jj. Leaves in 2 whorls, or 5–9 leaves; flowers yellow, small. Medeola hh. Leaves alternate. K K. Flowers numerous in a terminal inflorescence. L L. Plants delicate, glabrous; leaves 1–2 petiolate. Maianthemum ll. Plant coarse, robust; stems pubescent; leaves many, clasping Veratrum stem. -
Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area
Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons Stanwyn G. Shetler Sylvia Stone Orli Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 MAP OF THE CHECKLIST AREA Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons by Stanwyn G. Shetler and Sylvia Stone Orli Department of Systematic Biology Botany Section National Museum of Natural History 2002 Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 Cover illustration of Canada or nodding wild rye (Elymus canadensis L.) from Manual of the Grasses of the United States by A. S. Hitchcock, revised by Agnes Chase (1951). iii PREFACE The first part of our Annotated Checklist, covering the 2001 species of Ferns, Fern Allies, Gymnosperms, and Dicotyledons native or naturalized in the Washington-Baltimore Area, was published in March 2000. Part II covers the Monocotyledons and completes the preliminary edition of the Checklist, which we hope will prove useful not only in itself but also as a first step toward a new manual for the identification of the Area’s flora. Such a manual is needed to replace the long- outdated and out-of-print Flora of the District of Columbia and Vicinity of Hitchcock and Standley, published in 1919. In the preparation of this part, as with Part I, Shetler has been responsible for the taxonomy and nomenclature and Orli for the database. As with the first part, we are distributing this second part in preliminary form, so that it can be used, criticized, and updated while the two parts are being readied for publication as a single volume. -
Biosystematic Studies on Commelinaceae (Commelinales) I
ISSN 1346-7565 Acta Phytotax. Geobot. 68 (3): 193–198 (2017) doi: 10.18942/apg.201710 Biosystematic Studies on Commelinaceae (Commelinales) I. Phylogenetic Analysis of Commelina in Eastern and Southeastern Asia * CHUNG-KUN LEE , SHIZUKA FUSE AND MINORU N. TAMURA Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. *[email protected] (author for correspondence) Commelina, the pantropical and largest genus in Commelinaceae, consists of ca. 205 species with char- acteristic conduplicate involucral bracts. Previous phylogenetic studies of Commelina, which mainly used African and North American species, suggested that the ancestral character state of the margins of the involucral bracts of Commelina was free and that free to fused occurred only once. To test this evo- lutionary scenario, we performed parsimony and likelihood analyses with partial matK sequences using 25 individuals from 11 species of Commelina, primarily from eastern and southeastern Asia, with An- eilema and Pollia as outgroups. Results showed that Commelina comprises two major clades, one con- sisting of four species, and the other consisting of seven species. Species with free margins of the invo- lucral bracts were in both major clades: C. suffruticosa in the first clade and C. coelestis, C. communis, C. diffusa, C. purpurea and C. sikkimensis in the latter. The phylogenetic trees suggested that the number of shifts is fewer when the ancestral state was fused and that there were two parallel evolutionary trends toward free. Key words: Commelina, Commelina maculata, Commelina paludosa, Commelina suffruticosa, Com- melinaceae, involucral bracts, matK, maximum likelihood, maximum parsimony, phylogeny Commelina L., the largest genus of Com- na to be sister to a clade of Pollia Thunb., Poly- melinaceae Mirb. -
Columbines School of Botanical Studies Second Year Apprenticeship Program Low and Middle Elevation Western Cascades
Columbines School of Botanical Studies Second Year Apprenticeship Program Low and Middle Elevation Western Cascades April 26, 2020 Middle Elevation Coniferous Woods and Lava Beds 2950', 3571' Trip 4 Low Elevation Coniferous Woods and Riparian Zone 2000' http://www.botanicalstudies.net/botany/plantlists.php FamilyFamily # Genus Name Uses Seen Araceae Lysichiton americanus (L. americanum) Skunk Cabbage +/- Edible Tofieldiaceae (Liliaceae) Triantha occidentalis (Tofieldia occidentalis) Melanthiaceae (Liliaceae) Anticlea occidentalis (Stenanthium occidentale) (blank) Trillium ovatum Trillium No Pick - Medicinal x Veratrum sp. False Hellebore Poisonous Xerophyllum tenax Beargrass Edible, Fiber Liliaceae Calochortus tolmiei Cat's Ears No Pick - Edible Clintonia uniflora Queen's Cup Poisonous? Erythronium grandiflorum Glacier Lily No Pick - Edible Erythronium oregonum Fawn Lily No Pick - Edible Lilium sp. Lily No Pick - Edible Prosartes hookeri (Disporum h.) Fairy Bells Cathartic Streptopus amplexifolius Twisted Stalk Cathartic Orchidaceae Calypso bulbosa Calypso Orchid No Pick x Corallorhiza sp. Coral Root No Pick Goodyera oblongifolia Rattlesnake Plantain Mucilaginous Neottia cordata (Listera c.) Twayblade Edible? Platanthera dilatata (Habenaria d.) White Rein Orchid No Pick - Edible Platanthera stricta (Habenaria saccata) Green Rein Orchid No Pick - Edible Iridaceae Iris chrysophylla Iris Medicinal Iris tenax Iris Medicinal Columbines School of Botanical Studies Second Year Apprenticeship Program Low and Middle Elevation Western Cascades -
California Geophytesgeophytes
$12.00 (Free to Members) VOL. 44, NO.3 • DECEMBER 2016 FREMONTIAFREMONTIA JOURNAL OF THE CALIFORNIA NATIVE PLANT SOCIETY SPECIAL ISSUE: VOL. 44, NO. 3, DECEMBER 2016 FREMONTIA CALIFORNIACALIFORNIA GEOPHYTESGEOPHYTES V44_3_cover.pmd 1 2/20/17, 5:26 AM CALIFORNIA NATIVE PLANT SOCIETY CNPS, 2707 K Street, Suite 1; Sacramento, CA 95816-5130 FREMONTIA Phone: (916) 447-2677 Fax: (916) 447-2727 Web site: www.cnps.org Email: [email protected] VOL. 44, NO. 3, DECEMBER 2016 MEMBERSHIP Copyright © 2016 Members receive many benefits, including subscriptions to Fremontia and California Native Plant Society the CNPS Bulletin. Membership form is on inside back cover. Mariposa Lily . $1,500 Family or Group . $75 Benefactor . $600 International or Library . $75 M. Kat Anderson, Guest Editor Patron . $300 Individual . $45 Michael Kauffmann, Editor Plant Lover . $100 Student/Retired/Limited Income . $25 CORPORATE/ORGANIZATIONAL Beth Hansen-Winter, Designer 10+ Employees . $2,500 4-6 Employees . $500 7-10 Employees . $1,000 1-3 Employees . $150 california Native STAFF & CONTRACTORS Plant Society Dan Gluesenkamp: Executive Director Marin: Charlotte Torgovitsky Chris Brown: Admin Assistant Milo Baker: Leia Giambastiani, Sarah Protecting California’s Native Flora Jennifer Buck-Diaz: Vegetation Ecologist Gordon Since 1965 Catherine Curley: Assistant Botanist Mojave Desert: Timothy Thomas Joslyn Curtis, Assistant Veg. Ecologist Monterey Bay: Christopher Hauser The views expressed by authors do not Julie Evens: Vegetation Program Dir. Mount Lassen: Woody Elliot necessarily -
Botany 2013 Final Paper
FLORISTIC INVENTORY AND FLORISTIC QUALITY ASSESSMENT OF THE LSL TRACT, STRAITS OF MACKINAC, EMMET COUNTY, MICHIGAN EEB 556 Field Botany of Northern Michigan Rachael Gingerich, Hannah Heyman, Ryan Kuesel, Katie Pethan, Brian Steel 15 August 2013 ABSTRACT The 55 ha Emmet County LSL tract was obtained in 1990 by Emmet County as an addition to their adjacent Cecil Bay Park. The perimeter of the preserve consists of disturbed roadside and a two-track clearing to the north and a power line in the southwest corner. Though the LSL tract is surrounded by paved road and residential properties, the central core of the site remains fairly untouched. The majority of the site consists of a Thuja forest (37 ha) that surrounds relict beach pools and their surrounding marshes (12 ha). Our objective was to conduct a botanical inventory and floristic quality assessment (FQA) of the LSL Tract to establish a baseline of botanical knowledge that may inform future management of the site. We surveyed the property on four separate occasions in June and July of 2013. We collected every new species we encountered within focal habitats. The inventory consisted of 199 species, 165 of which (83%) were native. Coefficients of conservatism and wetness were calculated for every species identified. The entire tract had an FQA of 66.6, the roadsides 24.0, the power line 14.9, the two-track 34.7, the Thuja forest 37.6, and the beach pool marshes 44.1. The majority of the native plants with high conservation value were located in the beach pool marshes. -
Evaluation of Eucalyptus Triantha Timber for Structural Applications
Silva Lusitana, 28(1): 1 - 13, 2020 1 © INIAV, Oeiras, Portugal Evaluation of Eucalyptus triantha Timber for Structural Applications *Marta C.J.A. Nogueira, Victor A. de Araujo, Juliano S. Vasconcelos, André L. Christoforo, Francisco A.R. Lahr Abstract. Eucalypt wood is an important raw material with multiple uses applied for furniture, pulp and paper, charcoal, biomass, and construction. Sixteen tests were performed to evaluate physical and mechanical properties of Eucalyptus triantha, which could estimate the possibility of utilization of this woody material in construction. In all, about 267 repeats were realized. Two moisture contents were regarded according to the Brazilian and American standard documents: fiber saturation point (30%) and standard dried point (12%). Results were statistically treated with t-test and demonstrated increases in six mechanical properties from Eucalyptus triantha wood species: rupture moduli in perpendicular and parallel compressions and static bending; elasticity moduli in parallel tensile, perpendicular compression, and static bending. Volumetric mass and bulk densities were practically stable. Physical and mechanical properties estimation evinced that Eucalyptus triantha wood can be used in structural elements. Key words: Eucalypt; wood; density; moisture content; strength Avaliação da Madeira de Eucalyptus triantha para Aplicações Estruturais Sumário. A madeira de eucalipto é uma importante matéria-prima de múltiplos usos utilizada em móveis, papel e celulose, carvão vegetal, biomassa e construção. Dezesseis testes foram realizados para avaliar as propriedades físicas e mecânicas do Eucalyptus triantha, os quais puderam estimar a possibilidade de utilização desse material madeirável na construção. Ao todo, aproximadamente 267 repetições foram realizadas. Dois teores de umidade foram considerados segundo os documentos normativos brasileiro e norte-americano: ponto de saturação das fibras (30%) e estado seco padrão * Full Professor Ph.D., Federal University of Mato Grosso, Dept. -
D: Rare Plants Species and Wildlife Habitats
Appendix D – Rare Plant Species and Wildlife Habitats Rare Plant Species and Wildlife Habitats The habitat profiles created for the Wildlife Action Plan have been developed for the purpose of describing the full range of habitats that support New Hampshire’s wildlife species. However, these habitats can also serve as useful units for identifying rare plant habitats. This appendix provides lists of rare plant species known to be associated with each WAP habitat type. In accordance with the Native Plant Protection Act (NH RSA 217-A), the New Hampshire Natural Heritage Bureau (NHB) maintains a list of the state’s rarest and most imperiled plant species. This list has been developed in cooperation with researchers, conservation organizations, and knowledgeable amateur botanists. Plant locations have been obtained from sources including herbarium specimens, personal contacts, the scientific literature, and through extensive field research. The list is updated regularly to reflect changes in information. For each habitat, a list of associated rare plant species is presented. These rare plant – habitat associations are based on known occurrences of each species in New Hampshire. It is possible that an individual species will have different habitat associations elsewhere in its range. For more information on dominant and characteristic plant species for each habitat, refer to the individual habitat profiles. For each species, the following information is provided: Scientific name: The primary reference used is: Haines, Arthur. 2011. Flora Novae Angliae: A Manual for the Identification of Native and Naturalized Higher Vascular Plants of New England. Yale University Press. New Haven and London. Common name: Many plant species have more than one common name, and some common names are applied to multiple species.