CHAPTER 128 Bone and Joint Infections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Immunopathologic Studies in Relapsing Polychondritis
Immunopathologic Studies in Relapsing Polychondritis Jerome H. Herman, Marie V. Dennis J Clin Invest. 1973;52(3):549-558. https://doi.org/10.1172/JCI107215. Research Article Serial studies have been performed on three patients with relapsing polychondritis in an attempt to define a potential immunopathologic role for degradation constituents of cartilage in the causation and/or perpetuation of the inflammation observed. Crude proteoglycan preparations derived by disruptive and differential centrifugation techniques from human costal cartilage, intact chondrocytes grown as monolayers, their homogenates and products of synthesis provided antigenic material for investigation. Circulating antibody to such antigens could not be detected by immunodiffusion, hemagglutination, immunofluorescence or complement mediated chondrocyte cytotoxicity as assessed by 51Cr release. Similarly, radiolabeled incorporation studies attempting to detect de novo synthesis of such antibody by circulating peripheral blood lymphocytes as assessed by radioimmunodiffusion, immune absorption to neuraminidase treated and untreated chondrocytes and immune coprecipitation were negative. Delayed hypersensitivity to cartilage constituents was studied by peripheral lymphocyte transformation employing [3H]thymidine incorporation and the release of macrophage aggregation factor. Positive results were obtained which correlated with periods of overt disease activity. Similar results were observed in patients with classical rheumatoid arthritis manifesting destructive articular changes. This study suggests that cartilage antigenic components may facilitate perpetuation of cartilage inflammation by cellular immune mechanisms. Find the latest version: https://jci.me/107215/pdf Immunopathologic Studies in Relapsing Polychondritis JERoME H. HERmAN and MARIE V. DENNIS From the Division of Immunology, Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio 45229 A B S T R A C T Serial studies have been performed on as hematologic and serologic disturbances. -
Paleopathological Analysis of a Sub-Adult Allosaurus Fragilis (MOR
Paleopathological analysis of a sub-adult Allosaurus fragilis (MOR 693) from the Upper Jurassic Morrison Formation with multiple injuries and infections by Rebecca Rochelle Laws A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Montana State University © Copyright by Rebecca Rochelle Laws (1996) Abstract: A sub-adult Allosaurus fragilis (Museum of the Rockies specimen number 693 or MOR 693; "Big Al") with nineteen abnormal skeletal elements was discovered in 1991 in the Upper Jurassic Morrison Formation in Big Horn County, Wyoming at what became known as the "Big Al" site. This site is 300 meters northeast of the Howe Quarry, excavated in 1934 by Barnum Brown. The opisthotonic position of the allosaur indicated that rigor mortis occurred before burial. Although the skeleton was found within a fluvially-deposited sandstone, the presence of mud chips in the sandstone matrix and virtual completeness of the skeleton showed that the skeleton was not transported very far, if at all. The specific goals of this study are to: 1) provide a complete description and analysis of the abnormal bones of the sub-adult, male, A. fragilis, 2) develop a better understanding of how the bones of this allosaur reacted to infection and trauma, and 3) contribute to the pathological bone database so that future comparative studies are possible, and the hypothesis that certain abnormalities characterize taxa may be evaluated. The morphology of each of the 19 abnormal bones is described and each disfigurement is classified as to its cause: 5 trauma-induced; 2 infection-induced; 1 trauma- and infection-induced; 4 trauma-induced or aberrant, specific origin unknown; 4 aberrant; and 3 aberrant, specific origin unknown. -
Musculoskeletal Radiology.Pdf
MS 1 Acute osteomyelitis Acute osteomyelitis Plain radiographs reviewed Spine Other bones MRI Acute osteomyelitis Acute osteomyelitis diagnosed not diagnosed CT, MRI or Nuclear medicine Diagnosis Normal established scan Osteomyelitis Treatment excluded 144 MS 1 Acute osteomyelitis REMARKS 1 Plain radiograph 1.1 Regional radiographs should be the initial examination to determine whether there is any underlying pathological condition. 1.2 Typical findings of bone destruction and periosteal reaction may not appear until 10- 21 days after the onset of infection because 30-50% of bone density loss must occur before radiographs become abnormal. 1.3 Plain radiographs are unreliable to establish the diagnosis of osteomyelitis in patients with violated bone. 1.4 Plain radiographs of spine are not sensitive to detect vertebral osteomyelitis but findings of endplate destruction and progressive narrowing of adjacent disc space are highly suggestive of infection. 2 Nuclear medicine 2.1 Scans should be interpreted with contemporary radiographs. 2.2 Three-phase Technetium-99m methylene diphosphonate (Tc-99m-MDP) bone scan 2.2.1 Bone scan is more sensitive than plain radiography (up to 90% sensitivity). 2.2.2 Bone scan can be positive as early as 3 days after onset of disease (10-14 days earlier than plain radiograph). 2.3 Gallium scan 2.3.1 Gallium scan is helpful as conjunction with a bone scan. Combined gallium and bone scan studies has sensitivity of 81-90% and specificity of 69-100% 2.4 White blood cells (WBC) scan 2.4.1 This is sensitive and specific for bone infection and particularly useful in violated bone. -
WHO Manual of Diagnostic Imaging Radiographic Anatomy and Interpretation of the Musculoskeletal System
The WHO manual of diagnostic imaging Radiographic Anatomy and Interpretation of the Musculoskeletal System Editors Harald Ostensen M.D. Holger Pettersson M.D. Authors A. Mark Davies M.D. Holger Pettersson M.D. In collaboration with F. Arredondo M.D., M.R. El Meligi M.D., R. Guenther M.D., G.K. Ikundu M.D., L. Leong M.D., P. Palmer M.D., P. Scally M.D. Published by the World Health Organization in collaboration with the International Society of Radiology WHO Library Cataloguing-in-Publication Data Davies, A. Mark Radiography of the musculoskeletal system / authors : A. Mark Davies, Holger Pettersson; in collaboration with F. Arredondo . [et al.] WHO manuals of diagnostic imaging / editors : Harald Ostensen, Holger Pettersson; vol. 2 Published by the World Health Organization in collaboration with the International Society of Radiology 1.Musculoskeletal system – radiography 2.Musculoskeletal diseases – radiography 3.Musculoskeletal abnormalities – radiography 4.Manuals I.Pettersson, Holger II.Arredondo, F. III.Series editor: Ostensen, Harald ISBN 92 4 154555 0 (NLM Classification: WE 141) The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. Applications and enquiries should be addressed to the Office of Publications, World Health Organization, CH-1211 Geneva 27, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. © World Health Organization 2002 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. -
An Unusual Cause of Back Pain in Osteoporosis: Lessons from a Spinal Lesion
Ann Rheum Dis 1999;58:327–331 327 MASTERCLASS Series editor: John Axford Ann Rheum Dis: first published as 10.1136/ard.58.6.327 on 1 June 1999. Downloaded from An unusual cause of back pain in osteoporosis: lessons from a spinal lesion S Venkatachalam, Elaine Dennison, Madeleine Sampson, Peter Hockey, MIDCawley, Cyrus Cooper Case report A 77 year old woman was admitted with a three month history of worsening back pain, malaise, and anorexia. On direct questioning, she reported that she had suVered from back pain for four years. The thoracolumbar radiograph four years earlier showed T6/7 vertebral collapse, mild scoliosis, and degenerative change of the lumbar spine (fig 1); but other investigations at that time including the eryth- rocyte sedimentation rate (ESR) and protein electophoresis were normal. Bone mineral density then was 0.914 g/cm2 (T score = −2.4) at the lumbar spine, 0.776 g/cm2 (T score = −1.8) at the right femoral neck and 0.738 g/cm2 (T score = −1.7) at the left femoral neck. She was given cyclical etidronate after this vertebral collapse as she had suVered a previous fragility fracture of the left wrist. On admission, she was afebrile, but general examination was remarkable for pallor, dental http://ard.bmj.com/ caries, and cellulitis of the left leg. A pansysto- lic murmur was heard at the cardiac apex on auscultation; there were no other signs of bac- terial endocarditis. She had kyphoscoliosis and there was diVuse tenderness of the thoraco- lumbar spine. Her neurological examination was unremarkable. on September 29, 2021 by guest. -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, i ^ e others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Compaiy 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 PHYSIOLOGIC RESPONSES TO INFLAMMATION IN ISOLATED EQUINE JOINTS DISSERTATION Presented in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University B y Joanne Hardy, D.V.M., M.S. -
Disorders of the Thoracic Spine: Pathology and Treatment
Disorders of the thoracic spine: pathology and treatment CHAPTER CONTENTS • Extraspinal tumours involve the bony parts of the Disorders and their treatment e169 vertebrae. Benign tumours are usually located in the posterior parts (spinous and transverse processes), Tumours of the thoracic spine . e169 malignant tumours in the vertebral body. Extradural haematoma . e171 Spinal cord herniation . e173 Thoracic spinal canal stenosis . e173 Chest deformities . e173 Intraspinal tumours Fracture of a transverse process . e179 Spinal infections . e179 Thoracic neurofibroma Lateral recess stenosis . e180 Pathology Arthritis of the costovertebral and This benign tumour usually originates from the dorsal root and costotransverse joints . e180 arises from proliferating nerve fibres, fibroblasts and Schwann Arthritis of the thoracic facet joints . e181 cells. Sensory or motor fibres may be involved.1 Some confu- Paget’s disease . e181 sion exists about the terminology: various names, such as neu- rofibroma, neurinoma, neurilemmoma or schwannoma have been used. Some believe that all these terms cover the same type of tumour; others distinguish some slight histological dif- Disorders and their treatment ferences between them. Multiple tumours in nerve fibres and the subcutaneous tissues, often accompanied by patchy café Tumours of the thoracic spine au lait pigmentation, constitute the syndrome known as von Recklinghausen’s disease. Neuromas are the most common primary tumours of the Spinal neoplasms, both primary and secondary, are unusual spine accounting for approximately one-third of the cases. causes of thoracolumbar pain. However, because these lesions They are most often seen at the lower thoracic region and the are associated with high mortality, examiners must always be thoracolumbar junction.2 More than half of all these lesions are aware of the possibility of neoplastic diseases and must include intradural extramedullary (Fig 1), 25% are purely extradural, them in their differential diagnosis. -
2012 Meeting Program
Western Orthopaedic Association 76th Annual Meeting June 13–16, 2012 The Hilton Portland Portland, Oregon 2012 Meeting Program Chuck Freitag Executive Director, Data Trace Management Services, a Data Trace Company Cynthia Lichtefeld Director of Operations, Data Trace Management Services, a Data Trace Company WOA Central Office, Data Trace Management Services 110 West Road, Suite 227 Towson, MD 21204 Phone: 866-962-1388 Fax: 410-494-0515 Email: [email protected] Visit us on the World Wide Web @ www.woa-assn.org Please notify the WOA Central Office of any changes in your home or office address. This activity has been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Ortho- paedic Surgeons and the Western Orthopaedic Association. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians. The American Academy of Orthopaedic Surgeons designates this live activity for a maximum of 28.75 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Cover Design by Lauren Murphy. Copyright © 2012 by Data Trace Publishing Company, Towson, MD. All rights reserved. Western Orthopaedic Association 76th Annual Meeting Portland, Oregon 2012 President’s Message Dear Colleagues, elcome to Portland for the 76th Annual Meeting of the Western Orthopaedic Association. Jeanne and I are honored to welcome you to The City of Roses. We hope Wyou enjoy the diverse and educational academic program in combination with unique social activities planned for you and your family. -
Osteochondrosis – Primary Epiphyseal (Articular/Subchondral) Lesion Can Heal Or Can Progress
60 120 180 1 distal humeral condyles 2 medial epicondyle 3 proximal radial epiphysis 4 anconeal process Lab Ret study N=1018 . Normal . Affected . Total 688 (67.6%) . Total 330 (32.4%) . Male 230 (62.2%) . Male 140 (37.8%) . Female 458 (70.7%) . Female 190 (29.3%) Affected dogs N=330 1affected site - 250 (75.7%) 2 affected sites - 68 (20.6%) 3 affected sites - 12 (3.6%) immature skeletal diseases denis novak technique for skeletal radiography tissue < 12 cm “non-grid” (“table-top”) technique “high detail” system radiation safety diagnosis X – rays examination Ultrasound CT bilateral lesions - clinical signs ? unilateral present > one type of lesion 2ry arthrosis Common Osteochondrosis – primary epiphyseal (articular/subchondral) lesion can heal or can progress Osteochondritis dissecans – free articular fragment will progress Arthrosis Osteochondrosis talus / tarsus Lumbosacral OCD Lumbosacral OCD Inflammatory diseases Panosteitis – non infectious Hypertrophic osteodystrophy (HOD) – perhaps infectious Osteomyelitis - infectious Panosteitis New medullary bone Polyostotic Multiple lesions in one bone Symmetrical or nonsymmetrical Sclerotic pattern B I L A T E R A L periosteal new bone forms with chronicity Cross sections of a tibia different locations Hypertrophic osteodystrophy (HOD) Dogs are systemically ill, febrile, anorectic, reluctant to walk most will recover Radiographic changes of HOD . Polyostotic . Metaphyseal . Symmetrical . Changes of lesion Early Mid Late lytic “plates” in acute case HOD - 4 m ret – lesions are present -
CT Guided Core Needle Bone Biopsy for Non-Vertebral Osteomyelitis: Is It Necessary?
CT Guided Core Needle Bone Biopsy for Non-Vertebral Osteomyelitis: is it Necessary? Cameron Smith DO, Gregory Bradley DO, Donald von Borstel DO Oklahoma State University Medical Center, Department of Radiology Disclosure statement . None of the authors have conflicts of interest or relevant financial relationships to disclose. Target audience . Seasoned and training musculoskeletal radiologists. Physicians involved in the care of osteomyelitis patients. Introduction . Osteomyelitis is inflammation of the bone marrow which results from infection. It can progress to osteonecrosis, bone destruction, and septic arthritis. Osteomyelitis is an important cause of permanent disability worldwide. Bimodal age distribution with incidence peaking in children under 5-years-old and adults over 50-years-old. Introduction . Etiology: . Hematogenous spread . Predominant etiology of infection in children. Less common in adults, however usually leads to vertebral osteomyelitis when it occurs. Contiguous spread . Infection originating from soft tissues and joints. Usually coincides with vascular insufficiency, such as patients with diabetes mellitus or peripheral vascular disease. Most commonly the lower extremities. Direct inoculation . Direct seeding of organism into the bone usually from open fractures, surgery, or puncture wounds. Introduction . Imaging diagnosis . Radiography . Low sensitivity and specificity for detecting acute osteomyelitis. Approximately 80% of patients within 1-2 weeks of infection have normal radiograph. Bone marrow edema is the earliest pathological feature and NOT well visualized on radiography. Useful as first-line imaging to exclude other differentials (i.e. fracture) and to assess progression from priors. Nuclear Medicine . Sensitivity of a 3-phase bisphosphonate-linked technetium bone scan is greater than that of radiography for early osteomyelitis. Diagnostic sensitivity of approximately 50-85%. -
Musculoskeletal Radiology
MUSCULOSKELETAL RADIOLOGY Developed by The Education Committee of the American Society of Musculoskeletal Radiology 1997-1998 Charles S. Resnik, M.D. (Co-chair) Arthur A. De Smet, M.D. (Co-chair) Felix S. Chew, M.D., Ed.M. Mary Kathol, M.D. Mark Kransdorf, M.D., Lynne S. Steinbach, M.D. INTRODUCTION The following curriculum guide comprises a list of subjects which are important to a thorough understanding of disorders that affect the musculoskeletal system. It does not include every musculoskeletal condition, yet it is comprehensive enough to fulfill three basic requirements: 1.to provide practicing radiologists with the fundamentals needed to be valuable consultants to orthopedic surgeons, rheumatologists, and other referring physicians, 2.to provide radiology residency program directors with a guide to subjects that should be covered in a four year teaching curriculum, and 3.to serve as a “study guide” for diagnostic radiology residents. To that end, much of the material has been divided into “basic” and “advanced” categories. Basic material includes fundamental information that radiology residents should be able to learn, while advanced material includes information that musculoskeletal radiologists might expect to master. It is acknowledged that this division is somewhat arbitrary. It is the authors’ hope that each user of this guide will gain an appreciation for the information that is needed for the successful practice of musculoskeletal radiology. I. Aspects of Basic Science Related to Bone A. Histogenesis of developing bone 1. Intramembranous ossification 2. Endochondral ossification 3. Remodeling B. Bone anatomy 1. Cellular constituents a. Osteoblasts b. Osteoclasts 2. Non cellular constituents a. -
Supermicar Data Entry Instructions, 2007 363 Pp. Pdf Icon[PDF
SUPERMICAR TABLE OF CONTENTS Chapter I - Introduction to SuperMICAR ........................................... 1 A. History and Background .............................................. 1 Chapter II – The Death Certificate ..................................................... 3 Exercise 1 – Reading Death Certificate ........................... 7 Chapter III Basic Data Entry Instructions ....................................... 12 A. Creating a SuperMICAR File ....................................... 14 B. Entering and Saving Certificate Data........................... 18 C. Adding Certificates using SuperMICAR....................... 19 1. Opening a file........................................................ 19 2. Certificate.............................................................. 19 3. Sex........................................................................ 20 4. Date of Death........................................................ 20 5. Age: Number of Units ........................................... 20 6. Age: Unit............................................................... 20 7. Part I, Cause of Death .......................................... 21 8. Duration ................................................................ 22 9. Part II, Cause of Death ......................................... 22 10. Was Autopsy Performed....................................... 23 11. Were Autopsy Findings Available ......................... 23 12. Tobacco................................................................ 24 13. Pregnancy............................................................