Dispensary Guide Our Mission

Total Page:16

File Type:pdf, Size:1020Kb

Dispensary Guide Our Mission DISPENSARY GUIDE www.greenstarherb.com OUR MISSION Welcome to GreenStar Herbals - Massachusetts’ premier cannabis provider. We are committed to provided the highest quality craft cannabis in an environment that is safe for our customers, employees, and the general public. Curating the largest selection of organic can- nabis in Massachusetts, we have tailored an experience for all our guests. Whether you are a newcomer or an experienced connoisseur, we want you to feel at home. Our Customer Experience Team is here for you. To listen, guide, but most importantly empower each person in to finding the right products. From the whole GreenStar family, thank you for stopping by and we hope to see you again soon. Thomas Morey, CEO & President OUR MISSION CANNABIS 101 Different people may feel different experi- ences from cannabis. There are many factors that impact the effect: amount used, strain used, method of con- sumption, environment, experience, history of use, biochemistry, mood, nutrition or diet, and type of cannabis. It is always best to start low and go slow. STRAIN CLASSIFICATIONS Sativa strains are often used during the day as they are S reported to be uplifting and energizing. I Indica strains are often used at night as they reported to be calming and provide deep body relaxation. Hybrid strains are created when two or more strains are H crossbred. Hybrids often provide the best of both worlds by combining attributes of Indica and Sativa. C CBD is an abbreviation for Cannabidiol. CBD-rich prod- ucts produce little to no psychoactive effects or “high.” CANNABINOIDS Cannabinoids are chemi- cal compounds produced by the cannabis plant that provide therapeutic relief. Cannabinoids are found in trichomes– globular crystals that cover the flower buds like sugar on a cookie. There are over a hundred cannabi- noids found in the cannabis plant. The most prevalent cannabinoids are Tetrahy- drocannabinol (THC) and Cannabidiol (CBD). MAJOR CANNABINOIDS Δ-9 Tetrahydrocannabinol is responsible for causing THC the psychoactive effects that many people associate with cannabis. produces little to no psychoactive effect or CBD Cannabidiol “high.” MINOR CANNABINOIDS CBG Cannabigerol THCV Tetrahydrocannabivarin CBN Cannabinol CBL Cannabicyclol CBC Cannabichromene CBV Cannabivarin CANNABINOIDS TERPENES Terpenes are chemical compounds produced by the cannabis plant that create distinctive aromas and flavors such as citrus and pine. Terpenes are found everywhere in nature including fruits, plants, and herbs. Terpenes bind with receptors in the human body to provide a vari- ety of therapeutic benefits. LIMONENE MYRCENE BETA-CARYOPHYLLENE PINENE LINALOOL PRODUCTS FLOWER Flower is the most common form of cannabis. It is the dried plant in its raw form. Flower is either vaporized or smoked. Average Starting Dose: 1 puff Onset: 1-5 minutes Duration: 1-4 hours VAPOR CARTRIDGES Cartridges are filled with a gold- en-colored, semi-translucent can- nabis distillate that is known for its COMMON CANNABINOIDSpotency and ease of use. Average Starting Dose: 1 puff Onset: 1-5 minutes Duration: 1-4 hours CONCENTRATES Concentrates are processed to keep the desireable material of the cannabis plant (cannabinoids & ter- penes) while removing excess plant material and impurities. Average Starting Dose: 1 puff Onset: 1-5 minutes Duration: 1-4 hours PRODUCTS PRODUCTS EDIBLES The essential components of the cannabis plant are infused into food or capsules and ingested orally. Please remember to start low and go slow. Average Starting Dose: 5mg or less Onset: 20-120 minutes Duration: 6-8 hours VAPOR CARTRIDGES TINCTURES MYRCENE The essential components of the cannabis plants are extracted and suspended in a liquid concentrate to be ingested sublingually (under the tongue). Average Starting Dose: 5mg or less Onset: 15-60 minutes Duration: 1-6 hours TOPICALSPINENE Topicals are lotions, balms, and salves infused with terpenes and cannabi- noids. Topicals should be applied to clean, dry skin and not recommended for open wounds. Average Starting Dose: use liberally Onset: variable Duration: variable KNOW THE LAW Marijuana is legal in Massachusetts for people 21 and older, but that doesn’t mean you can use it anywhere you want. Here are some basics about the law: • You can’t use marijuana in any form (smoking, vaping, edibles, etc.) in public or on federal land • You can have up to 1 oz on you and up to 10 oz in your home • You can grow up to 6 plants in your home, and up to 12 plants for 2 or more adults • If you have more than 1 oz of marijuana in your home, it has to be locked up. But it’s best to keep any amount locked away to keep kids and pets safe. • You can’t have an open container of any form of marijuana in the pas- senger area of your car while on the road or at a place where the public has access. It must be stored in a closed container in your trunk or a locked glove compartment. • It’s illegal to drive under the influence of marijuana. If you use, don’t get behind the wheel. Instead, use public transportation, ride-shares, or catch a ride with a sober friend. • Employers, landlords, cities, and towns may have their own policies about the use of marijuana. Check with them to see what is legal. • Consumers may not sell marijuana to any other individual; only Mar- ijuana Retailer Establishments licensed by the Commission may sell marijuana and marijuana products directly to consumers. • Selling marijuana to others is illegal and a first-time offense (under 50 pounds) may be punishable by up to 2 years imprisonment / $5,000 fine. Subsequent offenses may be punishable by up to 2.5 years imprison- ment / $10,000 fine. • Possessing more than the legal limit (1 oz.) outside your home may be penalized by up to 6 months imprisonment / $500 fine. • Individuals who knowingly and intentionally supplies or allows a person under 21 years of age to possess marijuana, marijuana products, or marijuana accessories on premises or property owned or controlled by the person charged shall be subject to a civil penalty of not more than $2,000 or imprisonment for not more than one year or both the fine and imprisonment. KNOW THE LAW RESOURCES WARNINGS • Marijuana has not been analyzed or approved by FDA. There is limited information on side effects and there may be health risks associated with using marijuana. All marijuana products should be kept away from children. • When under the influence of marijuana, operating heavy machinery and driving is prohibited by M.G.L.c.90, s. 24. • Cannabis may pose risks to women who are pregnant or who are breastfeeding. Please contact your physician for guid- ance. • Do not drink alcohol when using any cannabis products. MYRCENE TINCTURESTOLERANCE Cannabis is most effective when used in the smallest possible dose to achieve the desired effect. Using higher doses than needed may result in a tolerance to cannabis. Tolerance is defined as a decreasing response to repeated constant doses of a drug or the need for increasing doses to maintain a constant response. DEPENDENCE Dependence refers to a physical condition in which the body has adapted to the presence of a drug. If an individual with drug dependence stops taking that drug suddenly, that person will experience predictable and measurable symptoms, known as a withdrawal symptoms. SUBSTANCEWITHDRAWAL ABUSE SIGNS & SYMPTOMS Some patients may experience withdrawal symptoms when choosing to cease their cannabis use. Those symptoms can in- clude: irritability, sleeplessness, decreased appetite, anxiety, and drug craving. These symptoms usually resolve within a few days. RESOURCES SUBSTANCE ABUSE SIGNS & SYMPTOMS While different drugs can have a range of physical and behavioral effects on the user, the signs and symptoms of substance abuse are often similar: • Failing in attempts to stop using cannabis • Neglecting social or professional responsibilities • Difficulty maintaining healthy relationships or increased desire for privacy • Changes in attitude or personality • Lack of interest in non drug-related activities • Decrease in maintenance of personal hygiene or self- care • Changes in physical appearance • Issues with financial management ADDITIONAL RESOURCES Massachusetts Substance Use Information and Education Helpline: (800) 327-5050 Substanace Abuse & Mental Health Services Ad- ministration Facility Locator: www.findtreatment.samhsa.gov/locator SAMHSA 24/7 National Helpline: (800) 622-HELP (4357) Emergency Services Program: (877) 382-1609 RESOURCES CANNABIS JOURNAL Date: ________________________ Time: ______________TOLERANCE Strain: _______________________ Dose: ______________ Flower Edible Effects: Cartridge Tincture Concentrate Topical Date: ________________________ Time: ______________ WITHDRAWAL Strain: _______________________ Dose: ______________ TINCTURES MYRCENE Flower Edible Effects: Cartridge Tincture Concentrate Topical ADDITIONAL RESOURCES Date: ________________________ Time: ______________ WARNING Strain: _______________________ Dose: ______________ Flower Edible Effects: Cartridge Tincture Concentrate Topical Date: ________________________ Time: ______________ Strain: _______________________ Dose: ______________ Effects: Flower Edible Cartridge Tincture Concentrate Topical LOCATIONS 76-100 Pleasant Street (Entrance on School St) Dracut, MA 01826 200 Beacham Street Chelsea, MA 02150 24 Main Street Maynard, MA 01754.
Recommended publications
  • Targeting the Endocannabinoid System to Reduce Nociception
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2011 Targeting the endocannabinoid system to reduce nociception Lamont Booker Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Pharmacology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2419 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Targeting the Endocannabinoid System to Reduce Nociception A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. By Lamont Booker Bachelor’s of Science, Fayetteville State University 2003 Master’s of Toxicology, North Carolina State University 2005 Director: Dr. Aron H. Lichtman, Professor, Pharmacology & Toxicology Virginia Commonwealth University Richmond, Virginia April 2011 Acknowledgements The author wishes to thank several people. I like to thank my advisor Dr. Aron Lichtman for taking a chance and allowing me to work under his guidance. He has been a great influence not only with project and research direction, but as an excellent example of what a mentor should be (always willing to listen, understanding the needs of each student/technician, and willing to provide a hand when available). Additionally, I like to thank all of my committee members (Drs. Galya Abdrakmanova, Francine Cabral, Sandra Welch, Mike Grotewiel) for your patience and willingness to participate as a member. Our term together has truly been memorable! I owe a special thanks to Sheryol Cox, and Dr.
    [Show full text]
  • Cannabinoid As Potential Aromatase Inhibitor Through Molecular Modeling and Screening for Anti-Cancer Activity
    Cannabinoid as Potential Aromatase Inhibitor Through Molecular Modeling and Screening for Anti-Cancer Activity Sudipta Baroi1, Achintya Saha2, Ritesh Bachar3 and Sitesh C Bachar4 1Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka Dhaka-1000, Bangladesh 2Department of Chemical Technology, Pharmaceutical & Fine Chemical Technology Division University of Calcutta, India 3Department of Pharmacy, School of Science and Engineering, University of Information Technology and Sciences (UITS), Dhaka-1212, Bangladesh 4Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh (Received: April 15, 2020; Accepted: June 2, 2020; Published (web): June 28, 2020) ABSTRACT: Inhibition of aromatase (CYTP450), a key enzyme in the estrogen biosynthesis, could result in regression of estrogen-dependent tumors and even prevent the promotion of breast cancer. The present research has been designed for searching a potent chemical moiety from natural sources to inhibit aromatase enzyme, the over- functionality of which causes the breast cancer. Cannabis sativa contains a very much promising group of cannabinoids with more than 66 compounds with reported anticancer property and for the search of a target specific potent aromatase inhibitor, 61 cannabinoids from C. sativa were selected. The Structures Data File (SDF) of these ligand molecules were subjected to docking studies at the binding site of aromatase X-ray crystallographic structure based on lower resolution of the protein crystal structure and higher docking accuracy, predicted by calculating the correlation between experimental activities and Glide dock scores and compared with the standard aromatase ligand androstenedione and aromatase inhibitor fadrozole with existing drug for breast cancer treatment. The best docked pose of each ligand was selected on the basis of the highest dock score related to the binding free energies of the internal dataset compounds as compared to their observed activities.
    [Show full text]
  • What Is Delta-8 THC?? Cannabinoid Chemistry 101
    What is Delta-8 THC?? Cannabinoid Chemistry 101 National Conference on Weights and Measures Annual Meeting - Rochester, NY Matthew D. Curran, Ph.D. July 21, 2021 Disclaimer Just to be clear… • I am a chemist and not a lawyer so: • This presentation will not discuss the legal aspects of Δ8-THC or DEA’s current position. • This presentation will not discuss whether Δ8-THC is considered “synthetic” or “naturally occurring.” • This is not a position statement on any issues before the NCWM. • Lastly, this should only be considered a scientific sharing exercise. Florida Department of Agriculture and Consumer Services 2 Cannabis in Florida Cannabis Syllabus • What is Cannabis? • “Mother” Cannabinoid • Decarboxylation • Relationship between CBD and THC • What does “Total” mean? • Dry Weight vs. Wet Weight • What does “Delta-9” mean? • Relationship between “Delta-8” and “Delta-9” • CBD to Delta-8 THC • Cannabinoid Chemistry 202… Florida Department of Agriculture and Consumer Services 3 Cannabis Cannabis • Cannabis sativa is the taxonomic name for the plant. • The concentration of Total Δ9-Tetrahydrocannabinol (Total Δ9-THC) is critical when considering the varieties of Cannabis sativa. • Hemp – (Total Δ9-THC) 0.3% or less • Not really a controversial term, “hemp” • Marijuana/cannabis – (Total Δ9-THC) Greater than 0.3% • Controversial term, “marijuana” • Some states prohibit the use of this term whereas some states have it in their laws. • Some states use the term “cannabis.” • Not italicized • Lower case “c” Florida Department of Agriculture and
    [Show full text]
  • Roles of Cannabidiol in Reversing Proteinopathies
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2020 doi:10.20944/preprints202005.0340.v1 Review Roles of Cannabidiol in Reversing Proteinopathies Raju Dash1, Md. Chayan Ali2†, Israt Jahan3†, Yeasmin Akter Munni1†, Sarmistha Mitra4, Md. Abdul Hannan1,5, Binod Timalsina1, Diyah Fatimah Oktaviani1, Ho Jin Choi1, Il Soo Moon1* 1Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea 2Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh 3Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh. 4Plasma Bioscience Research Center and Department of Plasma Bio display, Kwangwoon University, Seoul 01897, Republic of Korea 5Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh †These authors have contributed equally. *Corresponding author: Il Soo Moon Mailing address: Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea Phone: +82-54-770-2414 Fax: +82-54-770-2447 Email: [email protected] Abstract: Cannabidiol is a well-known non-psychotropic phytocannabinoid from Cannabis sativa, which exerts a broad range of neuropharmacological activities in the central nervous systems. Over the past years, compelling evidence from preclinical and clinical studies support therapeutic potentials of cannabidiol in various neurological disorders, including neurodegenerative diseases. Neurodegenerative diseases are characterized by the accumulation of misfolded or aggregated protein due to the defective protein homeostasis or proteostasis network, termed as proteinopathies. Because of its role in the protein homeostasis network, cannabidiol could be a potent molecule to revert not only age-associated neurodegeneration but also other protein misfolding disorders.
    [Show full text]
  • In Silico Assessment of Drug-Like Properties of Phytocannabinoids in Cannabis Sativa
    EDUCATUM JSMT Vol. 4 No. 2 (2017) ISSN 2289-7070 / eISSN 2462-2451 (1-7) https://ejournal.upsi.edu.my/journal/EDSC In Silico Assessment of Drug-Like Properties of Phytocannabinoids in Cannabis Sativa Shakinaz Desa1*, Asiah Osman2, and Richard Hyslop3 1Department of Biology, Universiti Pendidikan Sultan Idris, Malaysia, 2Natural Product Division, Forest Research Institute Malaysia, 3Department of Chemistry and Biochemistry, University of Northern Colorado, USA *Corresponding author: [email protected] Abstract This study investigated drug-like properties of phytocannabinoids in Cannabis sativa using an in silico study. We report sixteen phytocannabinoids: cannabidiol (CBD), cannabidiolic acid (CBDA), cannabinol (CBN), cannabichromene (CBC), cannabigerol (CBG), cannabicyclol (CBL), cannabivarin (CBV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabinodiol (CBDL), cannabielsoin (CBE), cannabitriol (CBT), Δ9-tetrahydrocannabinol (Δ9-THC), Δ9-tetrahydrocannabivarin (Δ9-THCV), and Δ8-tetrahydrocannabinol (Δ8-THC). All chemical structures and properties were obtained from PubChem Compound, National Center for Biotechnology Information, U.S. National Library of Medicine. Molinspiration was used for the calculation of molecular properties and bioactivity score. The parameters were molecular weight (MW), number of hydrogen acceptor (HBA), number of hydrogen donor (HBD), partition coefficient (cLogP), polar surface area (PSA) and number of rotatable bonds (NROTB). We predicted bioactivity scores for G Protein-Coupled Receptors (GPCR) ligand, ion channel modulator, kinase inhibitor, nuclear receptor ligand, protease inhibitor and enzyme inhibitor. Lipinski’s rule was used as reference to determine the drug-like properties of the phytocannabinoids. All compounds have MW<500, HBA<10, HBD<5, TPSA<140Å2 and NRTOB<10. Bioactivity score showed an active or moderately active in all compounds.
    [Show full text]
  • Altered Motor Development Following Late Gestational Alcohol and Cannabinoid
    bioRxiv preprint doi: https://doi.org/10.1101/513713; this version posted January 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Altered Motor Development Following Late Gestational Alcohol and Cannabinoid Exposure in Rats Kristen R. Breit, Brandonn Zamudio, & Jennifer D. Thomas Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA Please address correspondence to: Kristen R. Breit, Ph.D. Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/513713; this version posted January 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 Abstract Cannabis is the most commonly used illicit drug among pregnant women, and rates are likely to increase given recent legalization. In addition, half of pregnant women who report consuming cannabis also report drinking alcohol. However, little is known about the consequences of prenatal cannabis alone or combination with alcohol, particularly with cannabis products that are continually increasing in potency of the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (THC). The current study investigated the effects of early exposure to cannabinoids during the brain growth spurt on early physical and motor development alone (Experiment 1) or in combination with alcohol (Experiment 2). In Experiment 1, Sprague-Dawley rat pups were exposed to a cannabinoid receptor agonist (CP-55,940 [CP]; 0.1, 0.25, 0.4 mg/kg/day), the drug vehicle, or a saline control from postnatal days (PD) 4-9.
    [Show full text]
  • Fast Detection of 10 Cannabinoids by RP-HPLC-UV Method in Cannabis Sativa L
    molecules Article Fast Detection of 10 Cannabinoids by RP-HPLC-UV Method in Cannabis sativa L. Mara Mandrioli 1, Matilde Tura 1, Stefano Scotti 2 and Tullia Gallina Toschi 1,* 1 Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Viale Fanin 40, 40127 Bologna, Italy; [email protected] (M.M.); [email protected] (M.T.) 2 Shimadzu Italia, Via G. B. Cassinis 7, 20139 Milano, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-051-209-6010 Academic Editor: Marcello Locatelli Received: 10 May 2019; Accepted: 31 May 2019; Published: 4 June 2019 Abstract: Cannabis has regained much attention as a result of updated legislation authorizing many different uses and can be classified on the basis of the content of tetrahydrocannabinol (THC), a psychotropic substance for which there are legal limitations in many countries. For this purpose, accurate qualitative and quantitative determination is essential. The relationship between THC and cannabidiol (CBD) is also significant as the latter substance is endowed with many specific and non-psychoactive proprieties. For these reasons, it becomes increasingly important and urgent to utilize fast, easy, validated, and harmonized procedures for determination of cannabinoids. The procedure described herein allows rapid determination of 10 cannabinoids from the inflorescences of Cannabis sativa L. by extraction with organic solvents. Separation and subsequent detection are by RP-HPLC-UV. Quantification is performed by an external standard method through the construction of calibration curves using pure standard chromatographic reference compounds. The main cannabinoids dosed (g/100 g) in actual samples were cannabidiolic acid (CBDA), CBD, and D9-THC (Sample L11 CBDA 0.88 0.04, CBD 0.48 0.02, D9-THC 0.06 0.00; Sample L5 CBDA ± ± ± 0.93 0.06, CBD 0.45 0.03, D9-THC 0.06 0.00).
    [Show full text]
  • Table of Natural Cannabinoids
    Table of Natural Cannabinoids Scientific research continues to develop and further identify individual cannabinoids in cannabis strains and how they affect symptoms of illnesses suffered by patients. The table below identifies the chemical properties of the natural cannabinoids found in the average strains of cannabis. Levels of each of these chemicals will vary with varietal strain, growing method, and plant age. Individual cannabinoids can be enhanced or eliminated depending on need. Cannabigerol- type (CBG) Cannabigerol Cannabigerol Cannabigerovarin (E)-CBG-C monomethyl (E)-CBGV-C 5 Cannabinerolic 3 ether acid A (E)-CBGM-C 5 (Z)-CBGA-C A A 5 Cannabigerolic Cannabigerolic Cannabigerovarinic acid acid A acid A A (E)-CBGA-C5 A monomethyl (E)-CBGVA-C3 A ether (E)-CBGAM- C5 A Cannabichrom ene-type (CBC) (±)- (±)- Cannabichromen (±)- Cannabivarichromene, (±)- e Cannabichrome (±)- Cannabichrome CBC-C5 nic acid A Cannabichromevarin varinic CBCA-C5 A CBCV-C3 acid A CBCVA-C3 A Cannabidiol- type (CBD) 1 | Page (−)-Cannabidiol Cannabidiol Cannabidiol-C4 (−)- Cannabidiorc CBD-C5 momomethyl CBD-C4 Cannabidivarin ol ether CBDV-C3 CBD-C1 CBDM-C5 Cannabidiolic Cannabidivarini acid c acid CBDA-C5 CBDVA-C3 Cannabinodiol- type (CBND) Cannabinodiol Cannabinodivar CBND-C5 in CBND-C3 Tetrahydrocan nabinol-type (THC) 9 9 9 Δ - Δ - Δ - Δ9- Tetrahydrocanna Tetrahydrocan Tetrahydrocannabivarin 9 Tetrahydrocan binol nabinol-C4 Δ -THCV-C3 9 9 nabiorcol Δ -THC-C5 Δ -THC-C4 9 Δ -THCO-C1 9 9 Δ -Tetrahydro- Δ9-Tetrahydro- Δ -Tetrahydro- Δ9-Tetrahydro- cannabinolic
    [Show full text]
  • Beta-Caryophyllene Is a Dietary Cannabinoid
    Beta-caryophyllene is a dietary cannabinoid Ju¨ rg Gertsch*†, Marco Leonti‡§, Stefan Raduner*§, Ildiko Racz¶, Jian-Zhong Chenʈ, Xiang-Qun Xieʈ, Karl-Heinz Altmann*, Meliha Karsak¶, and Andreas Zimmer¶ *Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgeno¨ssische Technische Hochschule (ETH) Zurich, 8092 Zu¨rich, Switzerland; ‡Dipartimento Farmaco Chimico Tecnologico, University of Cagliari, 01924 Cagliari, Italy; ¶Department of Molecular Psychiatry, University of Bonn, 53115 Bonn Germany; and ʈDepartment of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260 Edited by L. L. Iversen, University of Oxford, Oxford, United Kingdom, and approved May 6, 2008 (received for review April 14, 2008) The psychoactive cannabinoids from Cannabis sativa L. and the O 5 arachidonic acid-derived endocannabinoids are nonselective nat- 6 12 ural ligands for cannabinoid receptor type 1 (CB1) and CB2 recep- 3 tors. Although the CB1 receptor is responsible for the psychomodu- 7 4 latory effects, activation of the CB2 receptor is a potential 8 2 therapeutic strategy for the treatment of inflammation, pain, 9 1 13 H H H H H H atherosclerosis, and osteoporosis. Here, we report that the wide- 11 10 spread plant volatile (E)-␤-caryophyllene [(E)-BCP] selectively binds 15 nM) and that it is a functional CB2 4 ؎ 155 ؍ to the CB2 receptor (Ki 14 agonist. Intriguingly, (E)-BCP is a common constituent of the (E)-BCP (Z)-BCP BCP oxide α-humulene essential oils of numerous spice and food plants and a major component in Cannabis. Molecular docking simulations have iden- Fig. 1. Caryophyllane- and humulane-type sesquiterpenes found in C. sativa tified a putative binding site of (E)-BCP in the CB receptor, and numerous other plants.
    [Show full text]
  • Cardiovascular Effects of Marijuana and Synthetic Cannabinoids: the Good, the Bad, and the Ugly
    REVIEWS PREVENTION OF CVD Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly Pal Pacher1, Sabine Steffens2, György Haskó3, Thomas H. Schindler4 and George Kunos5 Abstract | Dysregulation of the endogenous lipid mediators endocannabinoids and their G‑protein‑coupled cannabinoid receptors 1 and 2 (CB1R and CB2R) has been implicated in a variety of cardiovascular pathologies. Activation of CB1R facilitates the development of cardiometabolic disease, whereas activation of CB2R (expressed primarily in immune cells) exerts anti-inflammatory effects. The psychoactive constituent of marijuana, Δ9-tetrahydrocannabinol (THC), is an agonist of both CB1R and CB2R, and exerts its psychoactive and adverse cardiovascular effects through the activation of CB1R in the central nervous and cardiovascular systems. The past decade has seen a nearly tenfold increase in the THC content of marijuana as well as the increased availability of highly potent synthetic cannabinoids for recreational use. These changes have been accompanied by the emergence of serious adverse cardiovascular events, including myocardial infarction, cardiomyopathy, arrhythmias, stroke, and cardiac arrest. In this Review, we summarize the role of the endocannabinoid system in cardiovascular disease, and critically discuss the cardiovascular consequences of marijuana and synthetic cannabinoid use. With the legalization of marijuana for medicinal purposes and/or recreational use in many countries, physicians should be alert to the possibility
    [Show full text]
  • Phytocannabinoids
    Phytocannabinoids More than 100 structurally and physiologically distinct cannabinoid compounds are unique to plants of the genus Cannabis, known collectively as phytocannabinoids. Cayman Chemical offers authentic reference standards for the most prominent of these phytocannabinoids, as well as their metabolites, from our ISO/IEC 17025 and ISO 17034 certified labs. We are working diligently to introduce many more notable phytocannabinoids. If you cannot find a particular compound of interest in our catalog, please contact us for a custom synthesis estimate. Primary Active Constituents Item No. Product Name Metabolites ISO60156 Cannabidiol (CRM)* Item No. Product Name ISO60158 Δ8-THC (CRM)* 21667 (±)-11-hydroxy-Δ9-THC (CRM)* ISO60157 Δ9-THC (CRM)* 20754 (±)-11-nor-9-carboxy-Δ9-THC (CRM)* *Isotopically labeled standard available *Isotopically labeled standard available Naturally Occurring Acids THC Isomers Item No. Product Name Item No. Product Name 9001573 (±)-Cannabichromenic Acid (dicyclohexylamine salt) 25707 (6aR,9S)-Δ10-THC 18090 Cannabidiolic Acid (CRM) 26528 9(R)-Δ6a,10a-THC 20019 Cannabigerolic Acid (CRM) 26529 9(S)-Δ6a,10a-THC ISO60175 THCA-A (CRM) 26283 Varinolic Acid Discover Our Multi-Component Varinol Series Phytocannabinoid CRM Mixtures Item No. Product Name Available to quantify up to 10 21974 (±)-Cannabichromevarin (CRM) prevalent phytocannabinoids 20165 Cannabidivarin (CRM) Learn more 21664 Cannabivarin on Page 2 18091 Tetrahydrocannabivarin (CRM) of this Other Cannabinoids of Interest brochure Item No. Product Name ISO60163
    [Show full text]
  • Regulate Cannabinoid Products. (Public)
    GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2021 H 1 HOUSE BILL 818 Short Title: Regulate Cannabinoid Products. (Public) Sponsors: Representatives Sasser, Humphrey, and McNeely (Primary Sponsors). For a complete list of sponsors, refer to the North Carolina General Assembly web site. Referred to: Agriculture, if favorable, Rules, Calendar, and Operations of the House May 5, 2021 1 A BILL TO BE ENTITLED 2 AN ACT TO DIRECT THE DEPARTMENT OF AGRICULTURE AND CONSUMER 3 SERVICES TO ESTABLISH A VOLUNTARY LICENSING PROGRAM FOR 4 CANNABINOID-RELATED COMPOUNDS. 5 The General Assembly of North Carolina enacts: 6 SECTION 1. G.S. 106-121 reads as rewritten: 7 "§ 106-121. Definitions and general consideration. 8 For the purpose of this Article: 9 (1) The term "advertisement" means all representations disseminated in any 10 manner or by any means, other than by labeling, for the purposes of inducing, 11 or which are likely to induce, directly or indirectly, the purchase of food, 12 drugs, devices or cosmetics. 13 (1a) The term "cannabinoid-related compounds" means any phytocannabinoid 14 found in hemp, including, but not limited to, tetrahydrocannabinol (THC), 15 tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), cannabidiolic acid 16 (CBDA), cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), 17 cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), 18 cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin 19 (CBGV), cannabigerol monomethyl ether (CBGM), cannabielsoin (CBE), or 20 cannabicitran (CBT). Cannabinoids do not include synthetic cannabinoids. 21 (1a)(1b) The term "color" includes black, white, and intermediate grays. 22 (1b)(1c) The term "color additive" means a material which: 23 …." 24 SECTION 2. G.S.
    [Show full text]