International Journal of Molecular Sciences Article Knockdown of a β-Adrenergic-Like Octopamine Receptor Affects Locomotion and Reproduction of Tribolium castaneum Li-Sha Zheng 1,2,†, Xiao-Qiang Liu 1,3,†, Ge-Ge Liu 1, Qian-Qiao Huang 1, Jin-Jun Wang 1,2 and Hong-Bo Jiang 1,2,* 1 Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China;
[email protected] (L.-S.Z.);
[email protected] (X.-Q.L.);
[email protected] (G.-G.L.);
[email protected] (Q.-Q.H.);
[email protected] (J.-J.W.) 2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China 3 Laboratory of Integrated Pest Management on Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Ministry of Agriculture, Haikou 570100, China * Correspondence:
[email protected]; Tel.: +86-23-6825-0255; Fax: +86-23-6825-1269 † These authors contributed equally to this work. Abstract: The neurohormone octopamine regulates many crucial physiological processes in insects and exerts its activity via typical G-protein coupled receptors. The roles of octopamine receptors in regulating behavior and physiology in Coleoptera (beetles) need better understanding. We used the red flour beetle, Tribolium castaneum, as a model species to study the contribution of the octopamine receptor to behavior and physiology. We cloned the cDNA of a β-adrenergic-like octopamine receptor (TcOctb2R). This was heterologously expressed in human embryonic kidney (HEK) 293 cells and Citation: Zheng, L.-S.; Liu, X.-Q.; was demonstrated to be functional using an in vitro cyclic AMP assay.