MDPV Bath Salts Test
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Octopamine and Tyramine Regulate the Activity of Reproductive Visceral Muscles in the Adult Female Blood-Feeding Bug, Rhodnius Prolixus Sam Hana* and Angela B
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 1830-1836 doi:10.1242/jeb.156307 RESEARCH ARTICLE Octopamine and tyramine regulate the activity of reproductive visceral muscles in the adult female blood-feeding bug, Rhodnius prolixus Sam Hana* and Angela B. Lange ABSTRACT Monastirioti et al., 1996). Octopamine and tyramine signal via The role of octopamine and tyramine in regulating spontaneous G-protein coupled receptors (GPCRs), leading to changes in second contractions of reproductive tissues was examined in the messenger levels. The recently updated receptor classification α β female Rhodnius prolixus. Octopamine decreased the amplitude of (Farooqui, 2012) divides the receptors into Oct -R, Oct -Rs β β β spontaneous contractions of the oviducts and reduced RhoprFIRFa- (Oct 1-R, Oct 2-R, Oct 3-R), TYR1-R and TYR2-R. In general, β α induced contractions in a dose-dependent manner, whereas tyramine Oct -Rs lead to elevation of cAMP while Oct -R and TYR-Rs lead to 2+ only reduced the RhoprFIRFa-induced contractions. Both octopamine an increase in Ca (Farooqui, 2012). and tyramine decreased the frequency of spontaneous bursal The movement of eggs in the reproductive system of contractions and completely abolished the contractions at Rhodnius prolixus starts at the ovaries, the site of egg maturation. 5×10−7 mol l−1 and above. Phentolamine, an octopamine receptor Upon ovulation, mature eggs are released into the oviducts antagonist, attenuated the inhibition induced by octopamine on the (Wigglesworth, 1942). Eggs are then guided, via oviductal oviducts and the bursa. Octopamine also increased the levels of peristaltic and phasic contractions, to the common oviduct, where cAMP in the oviducts, and this effect was blocked by phentolamine. -
PRODUCT MONOGRAPH ORCIPRENALINE Orciprenaline Sulphate Syrup House Standard 2 Mg/Ml Β2-Adrenergic Stimulant Bronchodilator AA P
PRODUCT MONOGRAPH ORCIPRENALINE Orciprenaline Sulphate Syrup House Standard 2 mg/mL 2-Adrenergic Stimulant Bronchodilator AA PHARMA INC. DATE OF PREPARATION: 1165 Creditstone Road, Unit #1 April 10, 2014 Vaughan, Ontario L4K 4N7 Control Number: 172362 1 PRODUCT MONOGRAPH ORCIPRENALINE Orciprenaline Sulfate Syrup House Standard 2 mg/mL THERAPEUTIC CLASSIFICATION 2–Adrenergic Stimulant Bronchodilator ACTIONS AND CLINICAL PHARMACOLOGY Orciprenaline sulphate is a bronchodilating agent. The bronchospasm associated with various pulmonary diseases - chronic bronchitis, pulmonary emphysema, bronchial asthma, silicosis, tuberculosis, sarcoidosis and carcinoma of the lung, has been successfully reversed by therapy with orciprenaline sulphate. Orciprenaline sulphate has the following major characteristics: 1) Pharmacologically, the action of orciprenaline sulphate is one of beta stimulation. Receptor sites in the bronchi and bronchioles are more sensitive to the drug than those in the heart and blood vessels, so that the ratio of bronchodilating to cardiovascular effects is favourable. Consequently, it is usually possible clinically to produce good bronchodilation at dosage levels which are unlikely to cause cardiovascular side effects. 2 2) The efficacy of the bronchodilator after both oral and inhalation administration has been demonstrated by pulmonary function studies (spirometry, and by measurement of airways resistance by body plethysmography). 3) Rapid onset of action follows administration of orciprenaline sulphate inhalants, and the effect is usually noted immediately. Following oral administration, the effect is usually noted within 30 minutes. 4) The peak effect of bronchodilator activity following orciprenaline sulphate generally occurs within 60 to 90 minutes, and this activity lasts for 3 to 6 hours. 5) Orciprenaline sulphate taken orally potentiates the action of a bronchodilator inhalant administered 90 minutes later, whereas no additive effect occurs when the drugs are given in reverse order. -
Can Hepatic Coma Be Caused by a Reduction of Brain Noradrenaline Or Dopamine?
Gut: first published as 10.1136/gut.18.9.688 on 1 September 1977. Downloaded from Gut, 1977, 18, 688-691 Can hepatic coma be caused by a reduction of brain noradrenaline or dopamine? L. ZIEVE AND R. L. OLSEN From the Department ofMedicine, Minneapolis Veterans Hospital, University of Minnesota, Minneapolis, and Department of Chemistry, Hamline University, St. Paul, Minnesota, USA SUMMARY Intraventricular infusions of octopamine which raised brain octopamine concentrations more than 20 000-fold resulted in reductions in brain noradrenaline and dopamine by as much as 90% without affecting the alertness or activity of normal rats. As this reduction of brain catechol- amines is much greater than any reported in hepatic coma, we do not believe that values observed in experimental hepatic failure have aetiological significance for the encephalopathy that ensues. Though catecholaminergic nerve terminals represent dopamine and noradrenaline had no discernible only a small proportion of brain synapses (Snyder et effect on the state of alertness of the animals. al., 1973), the reduction in brain dopamine or nor- adrenaline by the accumulation of false neuro- Methods transmitterssuch as octopamine or of aromaticamino acids such as phenylalanine or tyrosine has been ANIMALS suggested as a cause of hepatic coma (Fischer and Male Sprague-Dawley rats weighing between 300 and Baldessarini, 1971; Dodsworth et al., 1974; Fischer 350 were g prepared by the method of Peterson and http://gut.bmj.com/ and Baldessarini, 1975; Munro et al., 1975). The Sparber (1974) for intraventricular infusions of following data have been cited in support of this octopamine. Rats of 250-400 g were used as controls. -
Temporary Class Drug Order Report: 5-6APB and Nbome Compounds
ACMD Advisory Council on the Misuse of Drugs Chair: Professor Les Iversen Secretary: Rachel Fowler 3rd Floor (SW), Seacole Building 2 Marsham Street London SW1P 4DF Tel: 020 7035 0555 [email protected] Home Secretary Rt Hon. Theresa May MP Home Office 2 Marsham Street London SW1P 4DF 29 May 2013 Dear Home Secretary, I am writing to formally request that you consider laying a temporary class drug order (TCDO) pursuant to section 2A of the Misuse of Drugs Act 1971 on the following two groups of novel psychoactive substances (NPS). We consider the laying of TCDOs is appropriate as a pre-emptive measure in advance of the summer music festival season. Both classes of drugs have been associated with serious harm and drug-related deaths. ‘Benzofury’ compounds 5- and 6-APB and related substances are phenethylamine-type materials, related to ecstasy (MDMA). There have been several deaths and hospitalisations in the UK associated with these NPS, although poly-substance use often complicates the case. Research indicates that there is a potential risk of cardiac toxicity associated with the long-term use of 5- and 6-APB. Anecdotal user reports suggest that the consumption of these substances can cause insomnia, increased heart rate and anxiety, with some users reporting MDMA like symptoms. The related compound 5-IT has been subject to an EMCDDA-Europol joint report and an EMCDDA risk assessment exercise. [www.emcdda.europa.eu/publications/joint-reports/5- IT] 1 The substances recommended for control are: 5- and 6-APB: (1-(benzofuran-5-yl)-propan-2-amine and 1-(benzofuran-6-yl)-propan- 2-amine) and their N-methyl derivatives. -
Octopamine Regulates Sleep Indrosophilathrough Protein Kinase A-Dependent Mechanisms
The Journal of Neuroscience, September 17, 2008 • 28(38):9377–9385 • 9377 Behavioral/Systems/Cognitive Octopamine Regulates Sleep in Drosophila through Protein Kinase A-Dependent Mechanisms Amanda Crocker and Amita Sehgal Department of Neuroscience, Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Sleep is a fundamental process, but its regulation and function are still not well understood. The Drosophila model for sleep provides a powerful system to address the genetic and molecular mechanisms underlying sleep and wakefulness. Here we show that a Drosophila biogenic amine, octopamine, is a potent wake-promoting signal. Mutations in the octopamine biosynthesis pathway produced a pheno- type of increased sleep, which was restored to wild-type levels by pharmacological treatment with octopamine. Moreover, electrical silencing of octopamine-producing cells decreased wakefulness, whereas excitation of these neurons promoted wakefulness. Because protein kinase A (PKA) is a putative target of octopamine signaling and is also implicated in Drosophila sleep, we investigated its role in the effects of octopamine on sleep. We found that decreased PKA activity in neurons rendered flies insensitive to the wake-promoting effects of octopamine. However, this effect of PKA was not exerted in the mushroom bodies, a site previously associated with PKA action on sleep. These studies identify a novel pathway that regulates sleep in Drosophila. Key words: Drosophila; octopamine; sleep; locomotion; norepinephrine; biogenic amine; arousal Introduction The only arousal-promoting signal identified in Drosophila is Sleep is a core process that spans genetically diverse eukaryotes dopamine (Andretic et al., 2005; Kume et al., 2005). from mammals to arthropods (Tobler, 2005). -
The Place of Physical Exercise and Bronchodilator Drugs in the Assessment of the Asthmatic Child
Arch Dis Child: first published as 10.1136/adc.38.202.539 on 1 December 1963. Downloaded from Arch. Dis. Childh., 1963, 38, 539. THE PLACE OF PHYSICAL EXERCISE AND BRONCHODILATOR DRUGS IN THE ASSESSMENT OF THE ASTHMATIC CHILD BY R. S. JONES, M. J. WHARTON and M. H. BUSTON From Alder Hey Children's Hospital and the Department of Child Health, University ofLiverpool (RECEIVED FOR PUBLICATION MAY 9, 1963) Among the many factors that affect ventilatory exercise. Isoprenaline sulphate I % (Burroughs Wellcome function in the asthmatic subject, physical exercise preparation) was given as an aerosol using a Wright and bronchodilator drugs are two of the more inhaler and an air flow rate of 8-9 litres per minute important. It has been shown that physical exercise (Wright, 1958). The aerosol was fed into a face mask has two distinct and opposite effects on ventilatory held close to the face. The substance was inhaled for one minute and for two subsequent half-minute periods function depending upon the duration and level of during a total time of five minutes. Solutions of exercise (Jones, Buston and Wharton, 1962). adrenaline and noradrenaline were made up from the Providing the level is adequate, exercise lasting less solid substances (Burroughs Wellcome preparations) in than two minutes increases the forced expiratory strengths of 1% with added sodium metabisulphite. volume in one second (F.E.V.), whereas exercise These preparations were used fresh and were inhaled by copyright. lasting eight to 10 minutes produces a fall of F.E.V. in the same way as isoprenaline. -
Recent Trends in the Quantification of Biogenic Amines in Biofluids
Journal of Clinical Medicine Review Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review Alina Plenis 1,* , Ilona Ol˛edzka 1 , Piotr Kowalski 1 , Natalia Mi˛ekus 1,2 and Tomasz B ˛aczek 1 1 Department of Pharmaceutical Chemistry, Medical University of Gda´nsk,Hallera 107, 80-416 Gda´nsk, Poland; [email protected] (I.O.); [email protected] (P.K.); [email protected] (N.M.); [email protected] (T.B.) 2 Department of Animal and Human Physiology, Faculty of Biology, University of Gda´nsk,Wita Stwosza 59, 80-308 Gda´nsk,Poland * Correspondence: [email protected]; Fax: +48-58-349-16-35 Received: 4 April 2019; Accepted: 6 May 2019; Published: 9 May 2019 Abstract: Biogenic amines (BAs) are bioactive endogenous compounds which play a significant physiological role in many cell processes like cell proliferation and differentiation, signal transduction and membrane stability. Likewise, they are important in the regulation of body temperature, the increase/decrease of blood pressure or intake of nutrition, as well as in the synthesis of nucleic acids and proteins, hormones and alkaloids. Additionally, it was confirmed that these compounds can be considered as useful biomarkers for the diagnosis, therapy and prognosis of several neuroendocrine and cardiovascular disorders, including neuroendocrine tumours (NET), schizophrenia and Parkinson’s Disease. Due to the fact that BAs are chemically unstable, light-sensitive and possess a high tendency for spontaneous oxidation and decomposition at high pH values, their determination is a real challenge. Moreover, their concentrations in biological matrices are extremely low. -
Regulations 2021
STATUTORY INSTRUMENTS. S.I. No. 121 of 2021 ________________ MISUSE OF DRUGS (AMENDMENT) REGULATIONS 2021 2 [121] S.I. No. 121 of 2021 MISUSE OF DRUGS (AMENDMENT) REGULATIONS 2021 I, STEPHEN DONNELLY, Minister for Health, in exercise of the powers conferred on me by sections 4, 5 (amended by section 3 of the Misuse of Drugs (Amendment) Act 2016 (No. 9 of 2016)), 18 and 38 of the Misuse of Drugs Act 1977 (No. 12 of 1977) and section 5 of the Misuse of Drugs Act 1984 (No. 18 of 1984), hereby make the following regulations: 1. These Regulations may be cited as the Misuse of Drugs (Amendment) Regulations 2021. 2. The Misuse of Drugs Regulations 2017 (S.I. No. 173 of 2017) are amended by the substitution of the following Schedule for Schedule 1: Notice of the making of this Statutory Instrument was published in “Iris Oifigiúil” of 23rd March, 2021. [121] 3 “Schedule 1 1. The following substance and products, namely- (a) N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide (otherwise known as Clockwork Orange, 5F AKB48) N-[(2S)-1-Amino-3,3-dimethyl-1-oxobutan-2yl]-1-(cyclohexylmethyl)-1H- indazole-3-carboxamide (otherwise known as ADB-CHMINACA) N-(1-Amino-3,3-dimethyl-1-oxobutan-2yl)-1-(4-fluorobenzyl)-1H-indazole- 3-carboxamide (otherwise known as ADB-FUBINACA) N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-(cyclohexylmethyl)-1H- indazole-3-carboxamide (otherwise known as AB-CHMINACA) N-[(2S)-1-Amino-3-methyl-1-oxobutan-2yl]-1-pentyl-1H-indazole-3- carboxamide (otherwise known as AB-PINACA) 5-(2-Aminopropyl)indole (otherwise known -
Catecholamines and the Hydroxylation of Tyrosine in Synaptosomes Isolated from Rat Brain (DOPA/Tyramine/Dopamine/Norepinephrine/Octopamine) M
Proc. Nat. Acad. Sci. USA Vol. 68, No. 10, pp. 2370-2373, October 1971 Catecholamines and the Hydroxylation of Tyrosine in Synaptosomes Isolated from Rat Brain (DOPA/tyramine/dopamine/norepinephrine/octopamine) M. KAROBATH Psychiatric Research Laboratories, Massachusetts General Hospital, Boston, Mass. 02114 Communicated by Seymour S. Kety, July 16, 1971 ABSTRACT Tyrosine hydroxylase activity of synapto- removing transmitters from an extraneuronal location at the somes isolated from rat brain was examined. A modified synapse, then incubation of synaptosomes with catechol- tritium-displacement assay was used, which allowed the measurement of tyrosine hydroxylase activity without the amines should inhibit the formation of DOPA from tyrosine. addition of either inhibitors of the metabolism of the The experiments demonstrate that tyrosine hydroxylase hydroxylated products or added exogenous cofactor. The activity is affected by catecholamine uptake. The concentra- enzyme activity was strongly inhibited by the addition of tions required to inhibit the synthesis of catechols are in the exogenous catecholamines and 3,4-dihydroxy-L-phenyl- M. alanine. Aromatic amines other than catechols did not range of 10-7 markedly influence tyrosine hydroxylase activity. These MATERIALS AND METHODS in vitro findings support the hypothesis that synthesis of catecholamines is regulated by a mechanism of end- [3,5-H]HifTyrosine (Tracerlab) was purified by column chro- product inhibition at the tyrosine hydroxylase step. matography. Catechol impurities were absorbed on alumina and tritiated water and anions were removed by Synaptosomes are pinched-off nerve endings with relatively columns (8), by non-neuronal elements (1, 2). They absorption on Dowex-50 resin. Tyrosine was eluted from little contamination Dowex-50 with 25 ml of 4 N HCl; after distillation of the eluate contain the enzymes necessary for the synthesis of dopamine (v/v) from tyrosine (3, 4). -
(LSD) Test Dip Card (Urine) • Specimen Collection Container % Agreement 98.8% 99
frozen and stored below -20°C. Frozen specimens should be thawed and mixed before testing. GC/MS. The following results were tabulated: Method GC/MS MATERIALS Total Results Results Positive Negative Materials Provided LSD Rapid Positive 79 1 80 LSD • Test device • Desiccants • Package insert • Urine cups Test Dip card Negative 1 99 100 Materials Required But Not Provided Total Results 80 100 180 One Step Lysergic acid diethylamide (LSD) Test Dip card (Urine) • Specimen collection container % Agreement 98.8% 99. % 98.9% • Timer Package Insert DIRECTIONS FOR USE Analytical Sensitivity This Instruction Sheet is for testing of Lysergic acid diethylamide. Allow the test device, and urine specimen to come to room temperature [15-30°C (59-86°F)] prior to testing. A drug-free urine pool was spiked with LSD at the following concentrations: 0 ng/mL, -50%cutoff, -25%cutoff, cutoff, A rapid, one step test for the qualitative detection of Lysergic acid diethylamide and its metabolites in human urine. 1) Remove the test device from the foil pouch. +25%cutoff and +50%cutoff. The result demonstrates >99% accuracy at 50% above and 50% below the cut-off For forensic use only. 2) Remove the cap from the test device. Label the device with patient or control identifications. concentration. The data are summarized below: INTENDED USE 3) Immerse the absorbent tip into the urine sample for 10-15 seconds. Urine sample should not touch the plastic Lysergic acid diethylamide (LSD) Percent of Visual Result The One Step Lysergic acid diethylamide (LSD) Test Dip card (Urine) is a lateral flow chromatographic device. -
Drug and Medication Classification Schedule
KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine -
Amphetamine, 3,4
0026-895X/01/6006-1181–1188$3.00 MOLECULAR PHARMACOLOGY Vol. 60, No. 6 Copyright © 2001 The American Society for Pharmacology and Experimental Therapeutics 1304/951292 Mol Pharmacol 60:1181–1188, 2001 Printed in U.S.A. ACCELERATED COMMUNICATION Amphetamine, 3,4-Methylenedioxymethamphetamine, Lysergic Acid Diethylamide, and Metabolites of the Catecholamine Neurotransmitters Are Agonists of a Rat Trace Amine Receptor JAMES R. BUNZOW, MARK S. SONDERS, SEKSIRI ARTTAMANGKUL, LAURA M. HARRISON, GE ZHANG, DENISE I. QUIGLEY, TRISTAN DARLAND, KATHERINE L. SUCHLAND, SHAILAJA PASUMAMULA, JAMES L. KENNEDY, SUSAN B. OLSON, R. ELLEN MAGENIS, SUSAN G. AMARA, and DAVID K. GRANDY Departments of Physiology & Pharmacology (J.R.B., S.A., L.M.H., G.Z., D.I.Q., T.D., K.L.S., S.P., S.B.O., R.E.M., D.K.G.) and Molecular and Medical Genetics (S.B.O., R.E.M), School of Medicine, the Vollum Institute (M.S.S., S.G.A.), and the Howard Hughes Medical Institute (S.G.A.), Oregon Health & Science University, Portland, Oregon; and Centre for Addiction and Mental Health, University of Toronto, Canada (J.L.K.) Received August 21, 2001; accepted September 28, 2001 This paper is available online at http://molpharm.aspetjournals.org ABSTRACT The trace amine para-tyramine is structurally and functionally re- goline derivatives, adrenergic ligands, and 3-methylated metabo- lated to the amphetamines and the biogenic amine neurotrans- lites of the catecholamine neurotransmitters are also good ago- mitters. It is currently thought that the biological activities elicited nists at the rat trace amine receptor 1 (rTAR1). These results by trace amines such as p-tyramine and the psychostimulant suggest that the trace amines and catecholamine metabolites amphetamines are manifestations of their ability to inhibit the may serve as the endogenous ligands of a novel intercellular clearance of extracellular transmitter and/or stimulate the efflux of signaling system found widely throughout the vertebrate brain and transmitter from intracellular stores.