Isolation, Identification and Evaluation of New Anti-Prion Compounds from Australian Marine Invertebrates Using Novel Yeast-Prion Screening

Total Page:16

File Type:pdf, Size:1020Kb

Isolation, Identification and Evaluation of New Anti-Prion Compounds from Australian Marine Invertebrates Using Novel Yeast-Prion Screening Isolation, Identification and Evaluation of New Anti-prion Compounds from Australian Marine Invertebrates using Novel Yeast-prion Screening Author Jennings, Laurence Published 2018-11 Thesis Type Thesis (PhD Doctorate) School School of Environment and Sc DOI https://doi.org/10.25904/1912/722 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/382708 Griffith Research Online https://research-repository.griffith.edu.au Isolation, Identification and Evaluation of New Anti-prion Compounds from Australian Marine Invertebrates using Novel Yeast-prion Screening Written by Laurence Kane Jennings, BMarSc, BSc(Hons) Griffith School of Environment & Science Griffith University (Gold Coast campus), Queensland, Australia This thesis is submitted in fulfilment of the requirements of the degree of doctor of philosophy November 2018 I ABSTRACT Prion diseases are fatal neurodegenerative diseases caused by the build-up of a misfolded form of the prion protein in the brain. These misfolded isoforms of the prion protein are infectious and capable of catalysing the transformation of the native protein into the same misfolded ‘prion’ form. Prion diseases include Creutzfeldt-Jakob disease (CJD) in humans, as well as scrapie and bovine spongiform encephalopathy (mad cow disease) in animals. Other neurodegenerative diseases caused by the build-up of misfolded proteins include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and Motor Neurone disease. An outbreak of CJD in the UK in the 1990s led to an extensive search for therapeutics to treat prion diseases. This resulted in the identification of a number of anti-prion compounds active in vitro, however, very few compounds active in vivo that could be used as drugs. Therefore, there is currently no curative therapeutic available for the treatment of these fatal diseases. The screening of large, diverse compound libraries has been considered an important strategy for the identification of novel anti-prion compounds. However, this has been hindered by a number of factors, including the limited of knowledge of prion mechanisms and the lack of suitable screening assays. For this reason, we aimed to develop a new assay that could be used to screen chemically complex natural extracts for anti-prion activity. This assay was then used to identify novel anti-prion compounds from the marine environment, a large source of chemical and biological diversity previously untapped in the search for anti-prion compounds. The isolated anti-prion compounds were further evaluated and compared to previously identified compounds that lack sufficient activity in vivo. Chapter One (Prion publication) describes the development of a new yeast-based anti- prion assay that can be used for screening naturally-derived extracts. This assay utilises prions of the yeast Saccharomyces cerevisiae as the basis for a simple colorimetric anti- prion screen. The yeast is white when infected with the yeast prion and red when the protein is in its non-infectious normal form. This assay was then used to screen 500 marine invertebrate derived extracts resulting in the identification of four extracts with activity. This chapter then describes the use of the anti-prion assay to target the isolation of the active compounds from the active extract from the Australian sponge, Suberea II ianthelliformis. This resulted in the identification of three known bromotyrosine alkaloids with potent anti-prion activity. Chapter Two describes the bioassay-guided isolation of active compounds from the anti-prion extract from the Australian ascidian, Polycarpa procera. Extensive purification and structural elucidation resulted in the identification of four new butenolide and two new propanone metabolites, the procerolides and procerones, respectively. These compounds exhibited potent anti-prion activity. Chapter Three describes the bioassay-guided isolation of new anti-prion compounds from an active extract from the Australian ascidian, Didemnum sp. This resulted in the isolation and identification of a new set of sulfated poly-oxygenated sterol derivatives, the didemnisterols. These compounds were isolated in low yields but exhibit potent anti-prion activity. Further biological testing also showed that these compounds display binding to α-synuclein, another neurodegenerative disease causing misfolded protein, and inhibit its aggregation. Chapter Four describes the bioassay-guided isolation of active compounds from an anti- prion extract from the Australian sponge, Dysidea sp. This resulted in the identification of four known poly-oxygenated sterol derivatives. These Dysidea-sterols displayed potent anti-prion activity in the yeast-based anti-prion assay. Chapter Five describes the evaluation of the sixteen potent anti-prion natural products isolated in this study. We evaluate their anti-prion activity, physicochemical properties, neurotoxicity and ability to inhibit α-synuclein aggregation in vitro. This data was compared to that of previously identified anti-prion compounds and currently used CNS drugs for the selection of the most promising lead candidates. We suggest that the lead compounds from this study be further evaluated using structure-activity relationship studies to identify their important molecular fragments. This knowledge can then be used for the design of novel therapeutics to treat prion diseases. III Statement of Originality This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. (Signed)_____________________________ Laurence Kane Jennings Date:________ (Signed)_____________________________ Supervisor: Anthony R. Carroll Date:________ (Signed)_____________________________ Co-supervisor: Alan L. Munn Date:________ IV Acknowledgements I would like to thank my supervisors, Prof. Anthony R. Carroll and Dr. Alan L. Munn who over the last 3-4 years have given me a great deal of support, patience and guidance. Without their continued support the outcomes of this PhD would not have been possible. I also acknowledge the Carroll and Munn laboratory groups: Joshua Hayton, Leesa Klau, Fan Yang, Dayani Sarath Parakumge, Larissa Buedenbender, Guy Kleks, Tanja Voser, Joshua Porter, James Baxter, Darren Holland, Dale Prebble Ishtiaq Ahmed and Zain Akram for their support throughout my PhD. Particularly, Dr. J. Hayton, Mr. L. Robertson and Mr. I. Ahmed for their hours of help and support. I would like to thank my lovely wife Shannon for her support and patience throughout my PhD. I also thank my family and close friends for their continued support over the last 3-4 years. I would like to thank our collaborators whose support has made this project possible. We thank Prof. Marc Blondel, Dr. Cecile Voisset and Ms. Flavie Soubigou from CNRS in Roscoff, France for providing the yeast strains. We thank Dr. Wendy Loa-Kum- Cheung, and Mr. Jeremy Carrington for their technical assistance. We thank Prof. George D. Mellick and Mr. Mingming Xu for α-synuclein screening. We thank Assoc. Prof. Shailendra Anoopkumar-Dukie and Ms. Fleur McLeary for toxicity screening. We thank Dr. Santosh Rudrawar and Mr. Philip Ryan for the synthesis of compounds. Additionally, I would like to thank the Environmental Futures Research Institute, Griffith Research Institute for Drug Discovery and Griffith School of Environment and Science for their financial support as well as equipment used. I would also like to acknowledge that this research was supported by an Australian Government Research Training Program Scholarship. V Table of Contents ABSTRACT ............................................................................................................... II Statement of Originality ........................................................................................... IV Acknowledgements .................................................................................................... V List of Abbreveations ............................................................................................. VIII List of Figures and Tables ......................................................................................... X INTRODUCTION: The current understanding of prions and anti-prion therapeutic leads. ........................................................................................................ 1 Abstract .................................................................................................................... 2 Prions and their Properties......................................................................................... 3 Methods of Screening for Anti-prion Compounds ................................................... 11 Anti-prion Therapeutic Leads .................................................................................. 15 Natural Product Drug Discovery ............................................................................. 33 Conclusion .............................................................................................................. 36 Aims, objectives and scope of the study .................................................................. 37 References .............................................................................................................. 38 CHAPTER 1: Yeast-Based Screening of Natural
Recommended publications
  • Table S1: Sensitivity, Specificity, PPV, NPV, and F1 Score of NLP Vs. ICD for Identification of Symptoms for (A) Biome Developm
    Table S1: Sensitivity, specificity, PPV, NPV, and F1 score of NLP vs. ICD for identification of symptoms for (A) BioMe development cohort; (B) BioMe validation cohort; (C) MIMIC-III; (D) 1 year of notes from patients in BioMe calculated using manual chart review. A) Fatigue Nausea and/or vomiting Anxiety Depression NLP (95% ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P CI) 0.99 (0.93- 0.59 (0.43- <0.00 0.25 (0.12- <0.00 <0.00 0.54 (0.33- Sensitivity 0.99 (0.9 – 1) 0.98 (0.88 -1) 0.3 (0.15-0.5) 0.85 (0.65-96) 0.02 1) 0.73) 1 0.42) 1 1 0.73) 0.57 (0.29- 0.9 (0.68- Specificity 0.89 (0.4-1) 0.75 (0.19-1) 0.68 0.97 (0.77-1) 0.03 0.98 (0.83-1) 0.22 0.81 (0.53-0.9) 0.96 (0.79-1) 0.06 0.82) 0.99) 0.99 (0.92- 0.86 (0.71- 0.94 (0.79- 0.79 (0.59- PPV 0.96 (0.82-1) 0.3 0.95 (0.66-1) 0.02 0.95 (0.66-1) 0.16 0.93 (0.68-1) 0.12 1) 0.95) 0.99) 0.92) 0.13 (0.03- <0.00 0.49 (0.33- <0.00 0.66 (0.48- NPV 0.89 (0.4-1) 0.007 0.94 (0.63-1) 0.34 (0.2-0.51) 0.97 (0.81-1) 0.86 (0.6-0.95) 0.04 0.35) 1 0.65) 1 0.81) <0.00 <0.00 <0.00 F1 Score 0.99 0.83 0.88 0.57 0.95 0.63 0.82 0.79 0.002 1 1 1 Itching Cramp Pain NLP (95% ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P CI) 0.98 (0.86- 0.24 (0.09- <0.00 0.09 (0.01- <0.00 0.52 (0.37- <0.00 Sensitivity 0.98 (0.85-1) 0.99 (0.93-1) 1) 0.45) 1 0.29) 1 0.66) 1 0.89 (0.72- 0.5 (0.37- Specificity 0.96 (0.8-1) 0.98 (0.86-1) 0.68 0.98 (0.88-1) 0.18 0.5 (0-1) 1 0.98) 0.66) 0.88 (0.69- PPV 0.96 (0.8-1) 0.8 (0.54-1) 0.32 0.8 (0.16-1) 0.22 0.99 (0.93-1) 0.98 (0.87-1) NA* 0.97) 0.98 (0.85- 0.57 (0.41- <0.00 0.58 (0.43- <0.00 NPV 0.98 (0.86-1) 0.5 (0-1) 0.02 (0-0.08) NA* 1) 0.72) 1 0.72) 1 <0.00 <0.00 <0.00 F1 Score 0.97 0.56 0.91 0.28 0.99 0.68 1 1 1 *Denotes 95% confidence intervals and P values that could not be calculated due to insufficient cells in 2x2 tables.
    [Show full text]
  • PDF Download
    CURRENT THERAPEUTIC RESEARCH VOL. 56, NO. 5, MAY 1995 EFFECTS OF CEREBRAL METABOLIC ENHANCERS ON BRAIN FUNCTION IN RODENTS KOICHIRO TAKAHASHI,l MINORU YAMAMOTO,’ MASANORI SUZUKI,’ YUKIKO OZAWA,’ TAKASHI YAMAGUCHI,l HIROFUMI ANDOH, AND KOUICHI ISHIKAWA2 ‘Department of Pharmacology, Clinical Pharmacology Research Laboratory, Yamunouchi Pharmaceutical Co. Ltd., and ‘Department of Pharmacology, School of Medicine, Nihon University, Tokyo, Japan AFWI’RACT The effects of cerebral metabolic enhancers (indeloxazine, bi- femelane, idebenone, and nicergoline) on reserpine-induced hypother- mia, the immobility period in forced swimming tests, and passive avoidance learning behavior were compared with the effects of ami- triptyline in rodents. Indeloxazine, bifemelane, and amitriptyline antagonized hypothermia in mice given reserpine. Indeloxaxine and amitriptyline decreased the immobility period in mice in the forced swimming test in a dose-dependent manner. The latency of step- through in the passive avoidance test in rats was prolonged by ad- ministration of indeloxazine but shortened by administration of amitriptyline. Neither idebenone nor nicergoline displayed any phar- macologic action in these tests. The results suggest that indeloxaxine possesses an antidepressant activity similar to that of amitriptyline but differs from amitriptyline in its anticholinergic properties and its ability to ameliorate impaired brain function such as that of learning behavior. In addition, indeloxazine exhibited broader effects on brain functions than either bifemelane, idebenone, or nicergoline. INTRODUCTION Cerebral metabolic enhancers (drugs that enhance energy metabolism) including brain glucose and ATP levels such as indeloxazine,1*2 bi- femelane, 3*4idebenone?6 and nicergoline,7>8 are currently used for the treatment of patients with various psychiatric symptoms. These symptoms include reduced spontaneity and emotional disturbance in patients with cerebral vascular disease.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • WO 2016/001643 Al 7 January 2016 (07.01.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/001643 Al 7 January 2016 (07.01.2016) P O P C T (51) International Patent Classification: (74) Agents: GILL JENNINGS & EVERY LLP et al; The A61P 25/28 (2006.01) A61K 31/194 (2006.01) Broadgate Tower, 20 Primrose Street, London EC2A 2ES A61P 25/16 (2006.01) A61K 31/205 (2006.01) (GB). A23L 1/30 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/GB20 15/05 1898 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 29 June 2015 (29.06.2015) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 141 1570.3 30 June 2014 (30.06.2014) GB TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 1412414.3 11 July 2014 ( 11.07.2014) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant: MITOCHONDRIAL SUBSTRATE INVEN¬ kind of regional protection available): ARIPO (BW, GH, TION LIMITED [GB/GB]; 39 Glasslyn Road, London GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, N8 8RJ (GB).
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Antidepressant Prophylaxis Reduces Depression Risk but Does Not
    REVIEW Antidepressant prophylaxis reduces depression risk but does not improve sustained virological response in hepatitis C patients receiving interferon without depression at baseline: A systematic review and meta-analysis Awad Al-Omari MD1, Juthaporn Cowan MD1, Lucy Turner BSc MSc2, Curtis Cooper MD FRCPC1,2 A Al-Omari, J Cowan, L Turner, C Cooper. Antidepressant Les antidépresseurs en prophylaxie réduisent le risque de prophylaxis reduces depression risk but does not improve dépression mais n’améliorent pas la réponse virologique sustained virological response in hepatitis C patients receiving soutenue chez les patients atteints d’hépatite C qui interferon without depression at baseline: A systematic review reçoivent de l’interféron sans être déprimés au départ : and meta-analysis. Can J Gastroenterol 2013;27(10):575-581. une analyse systématique et une méta-analyse BACKGROUND: Depression complicates interferon-based hepatitis C HISTORIQUE : La dépression complique l’antivirothérapie à l’interféron virus (HCV) antiviral therapy in 10% to 40% of cases, and diminishes conte le virus de l’hépatite C (VHC) chez 10 % à 40 % des patients et patient well-being and ability to complete a full course of therapy. As réduit leur bien-être et leur capacité de terminer le traitement. Par con- a consequence, the likelihood of achieving a sustained virological séquent, la probabilité d’obtenir une réponse virologique soutenue (RVS response (SVR [ie, permanent viral eradication]) is reduced. [c.-à-d. une éradication virale permanente]) est réduite. OBJECTIVE: To systematically review the evidence of whether pre- OBJECTIF : Procéder à l’analyse systématique des données probantes emptive antidepressant prophylaxis started before HCV antiviral pour déterminer si une prophylaxie préventive aux antidépresseurs amor- initiation is beneficial.
    [Show full text]
  • A Brief Review of the Pharmacology of Amitriptyline and Clinical
    A brief review of the pharmacology of amitriptyline and clinical outcomes in treating fibromyalgia LAWSON, Kim <http://orcid.org/0000-0002-5458-1897> Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/15783/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version LAWSON, Kim (2017). A brief review of the pharmacology of amitriptyline and clinical outcomes in treating fibromyalgia. Biomedicines, 5 (2), p. 24. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk biomedicines Review A Brief Review of the Pharmacology of Amitriptyline and Clinical Outcomes in Treating Fibromyalgia Kim Lawson Department of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; [email protected]; Tel.: +44-(0)114-225-3057 Academic Editor: Shaker A. Mousa Received: 12 March 2017; Accepted: 13 May 2017; Published: 17 May 2017 Abstract: Fibromyalgia is a complex chronic condition characterized by pain, physical fatigue, sleep disorder and cognitive impairment. Evidence-based guidelines recommend antidepressants as treatments of fibromyalgia where tricyclics are often considered to have the greatest efficacy, with amitriptyline often being a first-line treatment. Amitriptyline evokes a preferential reduction in pain and fatigue of fibromyalgia, and in the Fibromyalgia Impact Questionnaire (FIQ) score, which is a quality of life assessment. The multimodal profile of the mechanisms of action of amitriptyline include monoamine reuptake inhibition, receptor modulation and ion channel modulation.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]
  • Florencio Zaragoza Dörwald Lead Optimization for Medicinal Chemists
    Florencio Zaragoza Dorwald¨ Lead Optimization for Medicinal Chemists Related Titles Smith, D. A., Allerton, C., Kalgutkar, A. S., Curry, S. H., Whelpton, R. van de Waterbeemd, H., Walker, D. K. Drug Disposition and Pharmacokinetics and Metabolism Pharmacokinetics in Drug Design From Principles to Applications 2012 2011 ISBN: 978-3-527-32954-0 ISBN: 978-0-470-68446-7 Gad, S. C. (ed.) Rankovic, Z., Morphy, R. Development of Therapeutic Lead Generation Approaches Agents Handbook in Drug Discovery 2012 2010 ISBN: 978-0-471-21385-7 ISBN: 978-0-470-25761-6 Tsaioun, K., Kates, S. A. (eds.) Han, C., Davis, C. B., Wang, B. (eds.) ADMET for Medicinal Chemists Evaluation of Drug Candidates A Practical Guide for Preclinical Development 2011 Pharmacokinetics, Metabolism, ISBN: 978-0-470-48407-4 Pharmaceutics, and Toxicology 2010 ISBN: 978-0-470-04491-9 Sotriffer, C. (ed.) Virtual Screening Principles, Challenges, and Practical Faller, B., Urban, L. (eds.) Guidelines Hit and Lead Profiling 2011 Identification and Optimization ISBN: 978-3-527-32636-5 of Drug-like Molecules 2009 ISBN: 978-3-527-32331-9 Florencio Zaragoza Dorwald¨ Lead Optimization for Medicinal Chemists Pharmacokinetic Properties of Functional Groups and Organic Compounds The Author All books published by Wiley-VCH are carefully produced. Nevertheless, authors, Dr. Florencio Zaragoza D¨orwald editors, and publisher do not warrant the Lonza AG information contained in these books, Rottenstrasse 6 including this book, to be free of errors. 3930 Visp Readers are advised to keep in mind that Switzerland statements, data, illustrations, procedural details or other items may inadvertently be Cover illustration: inaccurate.
    [Show full text]
  • Recent Advances in Poststroke Depression
    Recent Advances in Poststroke Depression Haresh M. Tharwani, MD, Pavan Yerramsetty, MD, Paolo Mannelli, MD, Ashwin Patkar, MD, and Prakash Masand, MD Corresponding author Much of the literature on PSD notes a significantly Haresh M. Tharwani, MD increased mortality associated with PSD (in comparison to Duke Psychiatry Specialty Clinic, 2000 Regency Parkway, those poststroke patients without depression) [2,3,4•,5,6]. Suite 280, Cary, NC 27518, USA. E-mail: [email protected] PSD seems to be associated with an increase in inpatient Current Psychiatry Reports 2007, 9:225–231 and outpatient medical utilization over the long term Current Medicine Group LLC ISSN 1523-3812 [2]. PSD has been studied for more than 100 years, but Copyright © 2007 by Current Medicine Group LLC we still face several challenges to understand its precise pathophysiology and effective pharmacotherapy. Depression is the most common psychiatric complication after stroke. Its prevalence varies from 20% to 80%, and Epidemiology it is underdiagnosed and undertreated. It has significant Over the past several years, various researchers have impact on rehabilitation, motor recovery, activities of attempted, with very little agreement, to quantify the daily living, social and interpersonal life, and mortality. prevalence of PSD. The prevalence across these varied Several studies have shown that biological and psycho- studies ranges from 20% to 80% [7,8], depending greatly social factors play significant roles in the development upon the tools of assessment, the size and diversity of the of this disabling disease. Recent research shows that population studied, prior personal history of depression, neurochemical processes also may play some role in and the evaluation time after stroke, as well as varying the pathophysiology of this condition.
    [Show full text]
  • Comparison of the Effects of Bifemelane Hydrochloride
    Journal of J Neural Transm [GenSect] (1992) 88:187-198 Neural Transmission Springer-Verlag 1992 Printed in Austria Comparison of the effects of bifemelane hydrochloride, idebenone and indeloxazine hydrochloride on ischemia-induced changes in brain monoamines and their metabolites in gerbils K. Haba 1, N. Ogawal, M. Asanuma1, H. Hirata1' 2, and A. Mori 1 1Department of Neuroscience, Institute of Molecular and Cellular Medicine, and 2Third Department of Internal Medicine, Okayama University Medical School, Okayama, Japan Accepted February 2, 1992 Summary. Bifemelane hydrochloride (bifemelane), idebenone and indeloxazine hydrochloride (indeloxazine) are used clinically to reduce apathy and other emotional disturbances in patients with cerebrovascular disease. In gerbil brains, ischemia affects many monoaminergic neurotransmitters and their metabolites. In the present study, the effects of treatment with bifemelane, idebenone and indeloxazine on ischemia-induced changes in monoamines and their metabolites were studied in ischemic gerbil brains. Although these drugs had no effect on the monoaminergic neurotransmitters or their metabolites in sham-operated animals, in the ischemic brains both dopamine and serotonin turnovers were abnormal after idebenone or indeloxazine treatment. Bifemelane, in contrast, tended to correct the ischemia-induced changes in the dopaminergic and serotonergic systems in the cerebral cortex, hippocampus and thala- mus + midbrain. From the present results and those in previous reports, we conclude that bifemelane is more appropriate than idebenone or indeloxazine as a treatment for the ischemia-indueed changes in monoaminergic neurotrans- mitter systems. Keywords: Bifemelane hydrochloride, idebenone, indeloxazine hydrochloride, ischemic gerbils, monoamines and their metabolites. Introduction The Mongolian gerbil has been used as a model of cerebral ischemia and of some forms of human stroke (Kahn, 1972).
    [Show full text]