Recent Advances in Poststroke Depression

Total Page:16

File Type:pdf, Size:1020Kb

Recent Advances in Poststroke Depression Recent Advances in Poststroke Depression Haresh M. Tharwani, MD, Pavan Yerramsetty, MD, Paolo Mannelli, MD, Ashwin Patkar, MD, and Prakash Masand, MD Corresponding author Much of the literature on PSD notes a significantly Haresh M. Tharwani, MD increased mortality associated with PSD (in comparison to Duke Psychiatry Specialty Clinic, 2000 Regency Parkway, those poststroke patients without depression) [2,3,4•,5,6]. Suite 280, Cary, NC 27518, USA. E-mail: [email protected] PSD seems to be associated with an increase in inpatient Current Psychiatry Reports 2007, 9:225–231 and outpatient medical utilization over the long term Current Medicine Group LLC ISSN 1523-3812 [2]. PSD has been studied for more than 100 years, but Copyright © 2007 by Current Medicine Group LLC we still face several challenges to understand its precise pathophysiology and effective pharmacotherapy. Depression is the most common psychiatric complication after stroke. Its prevalence varies from 20% to 80%, and Epidemiology it is underdiagnosed and undertreated. It has significant Over the past several years, various researchers have impact on rehabilitation, motor recovery, activities of attempted, with very little agreement, to quantify the daily living, social and interpersonal life, and mortality. prevalence of PSD. The prevalence across these varied Several studies have shown that biological and psycho- studies ranges from 20% to 80% [7,8], depending greatly social factors play significant roles in the development upon the tools of assessment, the size and diversity of the of this disabling disease. Recent research shows that population studied, prior personal history of depression, neurochemical processes also may play some role in and the evaluation time after stroke, as well as varying the pathophysiology of this condition. Several trials have diagnostic criteria of depression itself. Conservative esti- shown evidence that the older, as well as newer anti- mates tended to be very specific in usingDSM IV criteria depressants and psychostimulants may reduce/prevent for major and minor depressive disorders, often excluding depressive symptoms after stroke. At this point there are severely disabled (yet potentially depressed) patients with no clear guidelines available to choose safe and effective aphasia, anosognosia, cognitive impairment, or delirium treatments. Drugs are selected based on their efficacy [9–11]. These studies also often focused on depression and side effect profile in these patients. More research is diagnoses at only one specific time period poststroke. On needed to understand the pathophysiology of depression the other hand, studies with higher levels of prevalence after stroke. There also is a need for more randomized tried to assess depression in a wide range of patients, clinical trials to better treat patients with this condition. in effect including some patients unable to verbally describe their depression [2,8,9]. Instead, these studies often focused on such global depressive behaviors as cry- Introduction ing, included a disproportionate number of hospitalized Depression (major and minor) is the most common patients (who have greater disability), and did not correct psychiatric complication after an individual sustains for past depressive history of the stroke patients [3,7,12]. a clinically apparent stroke (as evidenced by neu- Given that there are approximately 600,000 strokes per roimaging) [1]. Even with its high prevalence, it is year in the United States, this means a sizeable number of underdiagnosed and undertreated. Poststroke depres- Americans (not even considering even larger population sion (PSD) has been associated with increased distress, counts around the world) are suffering with PSD each disability, poor rehabilitation, morbidity, mortality, year [1]. In any epidemiologic study of a disease, it also and suicidal thoughts [1]. Do the negative outcomes is important to examine the risk factors that predispose a associated with stroke lead to the development of stroke patient to PSD. Ouimet et al. [12], in a meta-analy- PSD in these patients, or does the depression in the sis of 25 articles describing the psychosocial risk factors poststroke period cause these negative outcomes? The for PSD, noted that a history of depression, personal psy- authors note that studying this disease may in fact give chiatric history, dysphasia, functional impairment, living us significant insight into the pathophysiology of all alone, and poststroke social isolation all correlated with a forms of depression in general. higher probability of a PSD diagnosis. 226 Medicopsychiatric Disorders Pathophysiology of PSD between PSD and lesion location. They noted that “a Biological hypothesis patient’s risk of depression is not related to where the Stroke is one of the few diseases considered by DSM IV cerebral lesion is located” [17]. to directly cause depression [13]. Searching for such a A unique argument for the psychological basis of PSD biological cause has been a primary driving force in PSD put forth by these researchers relates to the similarity of research. One group of researchers, led by Robinson et al. symptoms and treatment response profiles between func- [4•,14], has proposed a primary biological mechanism tional depression and PSD. Their argument is that if PSD causing PSD whereby ischemic insults directly affect neu- is caused by specific brain lesions and the subsequent dis- ral circuits involved in mood regulation. More specifically, ruption of neural circuitry, it should have a significantly one researcher noted that the disruption of frontal-sub- different symptom and treatment profile than functional cortical circuits after stroke led to a depletion in cortical depression. This is further strengthened by their claim biogenic amines [8]. This biological mechanism has been that the symptom profile of PSD is also significantly dif- supported by a number of findings. First, as early as 1977, ferent than that of vascular depression, a condition that scientists had noticed that stroke survivors had a higher the biological camp had linked etiologically with PSD [1]. prevalence of major depression compared with physically These researchers have noted that many of the risk ill patients with a similar disability level [1]. This seemed factors for PSD are also risk factors for more traditional to suggest that some biological effect of the stroke itself functional depression. As described earlier in this paper, was causing the depression, rather than the level of dis- severity of disability (regardless of whether that disability tress/disability being caused by the particular illness. is a stroke) is one of the most important predictors for Over the past 20 years, a plethora of studies have also the development of depression. Summarizing the middle supported or challenged the specific lesion hypothesis ground position held by many present-day PSD research- first posited by Robinson et al. [14] in 1981, which has ers, Whyte and Mulsant [1] state that, “Any particular sought to find specific stroke-related lesions that cause stroke survivor may have a poststroke depression that PSD [14–17]. Initial support for this argument came from is purely biological in origin, or purely psychosocial, or several small studies noting a correlation between PSD truly multifactorial. Overall, most poststroke depressions and left anterior cortical and left basal ganglia lesions. appear to be multifactorial in origin and consistent with More specifically, notes this group, PSD severity was cor- the biopsychosocial model of psychiatric illness.” related with the “proximity of the anterior border of the Lastly, there is some discussion of potential psychoso- lesion on computed tomography scan (CT) to the frontal cial or even genetic vulnerabilities in certain populations pole in the left hemisphere but not in the right hemi- that might predispose them to depression after a stroke. sphere” [18]. However, these bold claims have not come without significant criticism, particularly from Carson et al. [17] (described subsequently). Another piece of sup- Current and Future Research Directions portive evidence for the biological understanding of PSD Much of the PSD research in the last year has focused centers around the presence of depression in the context on the composition of the neurochemical environment of anosognosia or silent infarcts. If PSD is a result of a after stroke. One study by Craft and DeVries [21••] has psychological response to the stroke itself, the main argu- hypothesized that pathophysiologic processes happening ment of the advocates of psychological hypothesis, then acutely after stroke significantly contribute to the etiology how can we explain the presence of clinical depression of PSD. Noting that stroke is associated with a dysregu- in patients who, due to their stroke, are not cognitively lation of the hypothalamic-pituitary-adrenal axis and aware of their disability? In the case of patients developing neuroinflammation, they sought to flesh out the implica- depression after a silent infarct (not symptomatic, but ver- tions of this unique chemical environment on a patient’s ified by MRI), a condition known as vascular depression, psychological health through the use of animal models of there is a similar issue of the patient’s lack of awareness of stroke progression. Although rats do not express “depres- his or her own condition. Although it is outside the scope sion” in any observable way, researchers have for a long of this
Recommended publications
  • Table S1: Sensitivity, Specificity, PPV, NPV, and F1 Score of NLP Vs. ICD for Identification of Symptoms for (A) Biome Developm
    Table S1: Sensitivity, specificity, PPV, NPV, and F1 score of NLP vs. ICD for identification of symptoms for (A) BioMe development cohort; (B) BioMe validation cohort; (C) MIMIC-III; (D) 1 year of notes from patients in BioMe calculated using manual chart review. A) Fatigue Nausea and/or vomiting Anxiety Depression NLP (95% ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P CI) 0.99 (0.93- 0.59 (0.43- <0.00 0.25 (0.12- <0.00 <0.00 0.54 (0.33- Sensitivity 0.99 (0.9 – 1) 0.98 (0.88 -1) 0.3 (0.15-0.5) 0.85 (0.65-96) 0.02 1) 0.73) 1 0.42) 1 1 0.73) 0.57 (0.29- 0.9 (0.68- Specificity 0.89 (0.4-1) 0.75 (0.19-1) 0.68 0.97 (0.77-1) 0.03 0.98 (0.83-1) 0.22 0.81 (0.53-0.9) 0.96 (0.79-1) 0.06 0.82) 0.99) 0.99 (0.92- 0.86 (0.71- 0.94 (0.79- 0.79 (0.59- PPV 0.96 (0.82-1) 0.3 0.95 (0.66-1) 0.02 0.95 (0.66-1) 0.16 0.93 (0.68-1) 0.12 1) 0.95) 0.99) 0.92) 0.13 (0.03- <0.00 0.49 (0.33- <0.00 0.66 (0.48- NPV 0.89 (0.4-1) 0.007 0.94 (0.63-1) 0.34 (0.2-0.51) 0.97 (0.81-1) 0.86 (0.6-0.95) 0.04 0.35) 1 0.65) 1 0.81) <0.00 <0.00 <0.00 F1 Score 0.99 0.83 0.88 0.57 0.95 0.63 0.82 0.79 0.002 1 1 1 Itching Cramp Pain NLP (95% ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P CI) 0.98 (0.86- 0.24 (0.09- <0.00 0.09 (0.01- <0.00 0.52 (0.37- <0.00 Sensitivity 0.98 (0.85-1) 0.99 (0.93-1) 1) 0.45) 1 0.29) 1 0.66) 1 0.89 (0.72- 0.5 (0.37- Specificity 0.96 (0.8-1) 0.98 (0.86-1) 0.68 0.98 (0.88-1) 0.18 0.5 (0-1) 1 0.98) 0.66) 0.88 (0.69- PPV 0.96 (0.8-1) 0.8 (0.54-1) 0.32 0.8 (0.16-1) 0.22 0.99 (0.93-1) 0.98 (0.87-1) NA* 0.97) 0.98 (0.85- 0.57 (0.41- <0.00 0.58 (0.43- <0.00 NPV 0.98 (0.86-1) 0.5 (0-1) 0.02 (0-0.08) NA* 1) 0.72) 1 0.72) 1 <0.00 <0.00 <0.00 F1 Score 0.97 0.56 0.91 0.28 0.99 0.68 1 1 1 *Denotes 95% confidence intervals and P values that could not be calculated due to insufficient cells in 2x2 tables.
    [Show full text]
  • PDF Download
    CURRENT THERAPEUTIC RESEARCH VOL. 56, NO. 5, MAY 1995 EFFECTS OF CEREBRAL METABOLIC ENHANCERS ON BRAIN FUNCTION IN RODENTS KOICHIRO TAKAHASHI,l MINORU YAMAMOTO,’ MASANORI SUZUKI,’ YUKIKO OZAWA,’ TAKASHI YAMAGUCHI,l HIROFUMI ANDOH, AND KOUICHI ISHIKAWA2 ‘Department of Pharmacology, Clinical Pharmacology Research Laboratory, Yamunouchi Pharmaceutical Co. Ltd., and ‘Department of Pharmacology, School of Medicine, Nihon University, Tokyo, Japan AFWI’RACT The effects of cerebral metabolic enhancers (indeloxazine, bi- femelane, idebenone, and nicergoline) on reserpine-induced hypother- mia, the immobility period in forced swimming tests, and passive avoidance learning behavior were compared with the effects of ami- triptyline in rodents. Indeloxazine, bifemelane, and amitriptyline antagonized hypothermia in mice given reserpine. Indeloxaxine and amitriptyline decreased the immobility period in mice in the forced swimming test in a dose-dependent manner. The latency of step- through in the passive avoidance test in rats was prolonged by ad- ministration of indeloxazine but shortened by administration of amitriptyline. Neither idebenone nor nicergoline displayed any phar- macologic action in these tests. The results suggest that indeloxaxine possesses an antidepressant activity similar to that of amitriptyline but differs from amitriptyline in its anticholinergic properties and its ability to ameliorate impaired brain function such as that of learning behavior. In addition, indeloxazine exhibited broader effects on brain functions than either bifemelane, idebenone, or nicergoline. INTRODUCTION Cerebral metabolic enhancers (drugs that enhance energy metabolism) including brain glucose and ATP levels such as indeloxazine,1*2 bi- femelane, 3*4idebenone?6 and nicergoline,7>8 are currently used for the treatment of patients with various psychiatric symptoms. These symptoms include reduced spontaneity and emotional disturbance in patients with cerebral vascular disease.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • WO 2016/001643 Al 7 January 2016 (07.01.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/001643 Al 7 January 2016 (07.01.2016) P O P C T (51) International Patent Classification: (74) Agents: GILL JENNINGS & EVERY LLP et al; The A61P 25/28 (2006.01) A61K 31/194 (2006.01) Broadgate Tower, 20 Primrose Street, London EC2A 2ES A61P 25/16 (2006.01) A61K 31/205 (2006.01) (GB). A23L 1/30 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/GB20 15/05 1898 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 29 June 2015 (29.06.2015) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 141 1570.3 30 June 2014 (30.06.2014) GB TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 1412414.3 11 July 2014 ( 11.07.2014) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant: MITOCHONDRIAL SUBSTRATE INVEN¬ kind of regional protection available): ARIPO (BW, GH, TION LIMITED [GB/GB]; 39 Glasslyn Road, London GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, N8 8RJ (GB).
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Antidepressant Prophylaxis Reduces Depression Risk but Does Not
    REVIEW Antidepressant prophylaxis reduces depression risk but does not improve sustained virological response in hepatitis C patients receiving interferon without depression at baseline: A systematic review and meta-analysis Awad Al-Omari MD1, Juthaporn Cowan MD1, Lucy Turner BSc MSc2, Curtis Cooper MD FRCPC1,2 A Al-Omari, J Cowan, L Turner, C Cooper. Antidepressant Les antidépresseurs en prophylaxie réduisent le risque de prophylaxis reduces depression risk but does not improve dépression mais n’améliorent pas la réponse virologique sustained virological response in hepatitis C patients receiving soutenue chez les patients atteints d’hépatite C qui interferon without depression at baseline: A systematic review reçoivent de l’interféron sans être déprimés au départ : and meta-analysis. Can J Gastroenterol 2013;27(10):575-581. une analyse systématique et une méta-analyse BACKGROUND: Depression complicates interferon-based hepatitis C HISTORIQUE : La dépression complique l’antivirothérapie à l’interféron virus (HCV) antiviral therapy in 10% to 40% of cases, and diminishes conte le virus de l’hépatite C (VHC) chez 10 % à 40 % des patients et patient well-being and ability to complete a full course of therapy. As réduit leur bien-être et leur capacité de terminer le traitement. Par con- a consequence, the likelihood of achieving a sustained virological séquent, la probabilité d’obtenir une réponse virologique soutenue (RVS response (SVR [ie, permanent viral eradication]) is reduced. [c.-à-d. une éradication virale permanente]) est réduite. OBJECTIVE: To systematically review the evidence of whether pre- OBJECTIF : Procéder à l’analyse systématique des données probantes emptive antidepressant prophylaxis started before HCV antiviral pour déterminer si une prophylaxie préventive aux antidépresseurs amor- initiation is beneficial.
    [Show full text]
  • A Brief Review of the Pharmacology of Amitriptyline and Clinical
    A brief review of the pharmacology of amitriptyline and clinical outcomes in treating fibromyalgia LAWSON, Kim <http://orcid.org/0000-0002-5458-1897> Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/15783/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version LAWSON, Kim (2017). A brief review of the pharmacology of amitriptyline and clinical outcomes in treating fibromyalgia. Biomedicines, 5 (2), p. 24. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk biomedicines Review A Brief Review of the Pharmacology of Amitriptyline and Clinical Outcomes in Treating Fibromyalgia Kim Lawson Department of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; [email protected]; Tel.: +44-(0)114-225-3057 Academic Editor: Shaker A. Mousa Received: 12 March 2017; Accepted: 13 May 2017; Published: 17 May 2017 Abstract: Fibromyalgia is a complex chronic condition characterized by pain, physical fatigue, sleep disorder and cognitive impairment. Evidence-based guidelines recommend antidepressants as treatments of fibromyalgia where tricyclics are often considered to have the greatest efficacy, with amitriptyline often being a first-line treatment. Amitriptyline evokes a preferential reduction in pain and fatigue of fibromyalgia, and in the Fibromyalgia Impact Questionnaire (FIQ) score, which is a quality of life assessment. The multimodal profile of the mechanisms of action of amitriptyline include monoamine reuptake inhibition, receptor modulation and ion channel modulation.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]
  • Florencio Zaragoza Dörwald Lead Optimization for Medicinal Chemists
    Florencio Zaragoza Dorwald¨ Lead Optimization for Medicinal Chemists Related Titles Smith, D. A., Allerton, C., Kalgutkar, A. S., Curry, S. H., Whelpton, R. van de Waterbeemd, H., Walker, D. K. Drug Disposition and Pharmacokinetics and Metabolism Pharmacokinetics in Drug Design From Principles to Applications 2012 2011 ISBN: 978-3-527-32954-0 ISBN: 978-0-470-68446-7 Gad, S. C. (ed.) Rankovic, Z., Morphy, R. Development of Therapeutic Lead Generation Approaches Agents Handbook in Drug Discovery 2012 2010 ISBN: 978-0-471-21385-7 ISBN: 978-0-470-25761-6 Tsaioun, K., Kates, S. A. (eds.) Han, C., Davis, C. B., Wang, B. (eds.) ADMET for Medicinal Chemists Evaluation of Drug Candidates A Practical Guide for Preclinical Development 2011 Pharmacokinetics, Metabolism, ISBN: 978-0-470-48407-4 Pharmaceutics, and Toxicology 2010 ISBN: 978-0-470-04491-9 Sotriffer, C. (ed.) Virtual Screening Principles, Challenges, and Practical Faller, B., Urban, L. (eds.) Guidelines Hit and Lead Profiling 2011 Identification and Optimization ISBN: 978-3-527-32636-5 of Drug-like Molecules 2009 ISBN: 978-3-527-32331-9 Florencio Zaragoza Dorwald¨ Lead Optimization for Medicinal Chemists Pharmacokinetic Properties of Functional Groups and Organic Compounds The Author All books published by Wiley-VCH are carefully produced. Nevertheless, authors, Dr. Florencio Zaragoza D¨orwald editors, and publisher do not warrant the Lonza AG information contained in these books, Rottenstrasse 6 including this book, to be free of errors. 3930 Visp Readers are advised to keep in mind that Switzerland statements, data, illustrations, procedural details or other items may inadvertently be Cover illustration: inaccurate.
    [Show full text]
  • Comparison of the Effects of Bifemelane Hydrochloride
    Journal of J Neural Transm [GenSect] (1992) 88:187-198 Neural Transmission Springer-Verlag 1992 Printed in Austria Comparison of the effects of bifemelane hydrochloride, idebenone and indeloxazine hydrochloride on ischemia-induced changes in brain monoamines and their metabolites in gerbils K. Haba 1, N. Ogawal, M. Asanuma1, H. Hirata1' 2, and A. Mori 1 1Department of Neuroscience, Institute of Molecular and Cellular Medicine, and 2Third Department of Internal Medicine, Okayama University Medical School, Okayama, Japan Accepted February 2, 1992 Summary. Bifemelane hydrochloride (bifemelane), idebenone and indeloxazine hydrochloride (indeloxazine) are used clinically to reduce apathy and other emotional disturbances in patients with cerebrovascular disease. In gerbil brains, ischemia affects many monoaminergic neurotransmitters and their metabolites. In the present study, the effects of treatment with bifemelane, idebenone and indeloxazine on ischemia-induced changes in monoamines and their metabolites were studied in ischemic gerbil brains. Although these drugs had no effect on the monoaminergic neurotransmitters or their metabolites in sham-operated animals, in the ischemic brains both dopamine and serotonin turnovers were abnormal after idebenone or indeloxazine treatment. Bifemelane, in contrast, tended to correct the ischemia-induced changes in the dopaminergic and serotonergic systems in the cerebral cortex, hippocampus and thala- mus + midbrain. From the present results and those in previous reports, we conclude that bifemelane is more appropriate than idebenone or indeloxazine as a treatment for the ischemia-indueed changes in monoaminergic neurotrans- mitter systems. Keywords: Bifemelane hydrochloride, idebenone, indeloxazine hydrochloride, ischemic gerbils, monoamines and their metabolites. Introduction The Mongolian gerbil has been used as a model of cerebral ischemia and of some forms of human stroke (Kahn, 1972).
    [Show full text]
  • Harmonized Tariff Schedule of the United States (2004) -- Supplement 1 Annotated for Statistical Reporting Purposes
    Harmonized Tariff Schedule of the United States (2004) -- Supplement 1 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2004) -- Supplement 1 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABACAVIR 136470-78-5 ACEXAMIC ACID 57-08-9 ABAFUNGIN 129639-79-8 ACICLOVIR 59277-89-3 ABAMECTIN 65195-55-3 ACIFRAN 72420-38-3 ABANOQUIL 90402-40-7 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABIRATERONE 154229-19-3 ACIVICIN 42228-92-2 ABITESARTAN 137882-98-5 ACLANTATE 39633-62-0 ABLUKAST 96566-25-5 ACLARUBICIN 57576-44-0 ABUNIDAZOLE 91017-58-2 ACLATONIUM NAPADISILATE 55077-30-0 ACADESINE 2627-69-2 ACODAZOLE 79152-85-5 ACAMPROSATE 77337-76-9 ACONIAZIDE 13410-86-1 ACAPRAZINE 55485-20-6 ACOXATRINE 748-44-7 ACARBOSE 56180-94-0 ACREOZAST 123548-56-1 ACEBROCHOL 514-50-1 ACRIDOREX 47487-22-9 ACEBURIC ACID 26976-72-7
    [Show full text]