Pharmaceutical Microbiology Manual (PMM)

Total Page:16

File Type:pdf, Size:1020Kb

Pharmaceutical Microbiology Manual (PMM) OOD AND RUG DMINISTRATION Revision #: 02 F D A Document Number: OFFICE OF REGULATORY AFFAIRS Revised: ORA.007 Office of Regulatory Science 25 Aug 2020 Title: Pharmaceutical Microbiology Manual Page 1 of 92 Sections in This Document 1. Purpose ................................................................................................................................. 1 2. Introduction ............................................................................................................................ 2 3. Current Editorial Board .......................................................................................................... 3 4. Original Authors ..................................................................................................................... 3 5. Chapter 1: Antimicrobial Effectiveness Testing ..................................................................... 4 6. Chapter 2: Microbial Examination of Non-Sterile Products ..................................................... 8 7. Chapter 3: Sterility Testing ................................................................................................. 14 8. Chapter 4: Investigating USP Sterility Testing Failure ......................................................... 28 9. Chapter 5: Bacterial Endotoxin Testing ................................................................................ 30 10. Chapter 6: Particulate Matter .............................................................................................. 40 11. Chapter 7: Antibiotic Potency Testing .................................................................................. 44 12. Chapter 8: Bioburden Estimation for Medical Devices......................................................... 59 13. Chapter 9: Environmental Monitoring .................................................................................. 61 14. Chapter 10: Inspectional Guidance ..................................................................................... 70 15. Glossary/Definitions ............................................................................................................. 90 16. Records ............................................................................................................................... 91 17. Supporting Documents ........................................................................................................ 91 18. Document History ................................................................................................................ 91 19. Change History .................................................................................................................... 92 20. Attachments ......................................................................................................................... 92 1. Purpose The purpose of this Pharmaceutical Microbiology Manual (PMM) is to collectively clarify, standardize, and communicate useful analytical procedures that are not specifically addressed in the microbiology methods chapters in the United States Pharmacopeia. In addition, some sections of this manual can serve as a technical reference when conducting microbiological inspections of drug, biotechnology and medical device manufacturers. The contents of this PMM were collaboration between ORS and CDER in order to maximize the efficiency of our analytical results to support CDER’s goal to assure the safety and reliability of commercially distributed medical products. For the most current and official copy, check QMiS. OOD AND RUG DMINISTRATION Revision #: 02 F D A Document Number: OFFICE OF REGULATORY AFFAIRS Revised: ORA.007 Office of Regulatory Science 25 Aug 2020 Title: Pharmaceutical Microbiology Manual Page 2 of 92 2. Introduction The Pharmaceutical Microbiology Manual (PMM) evolved from the Sterility Analytical Manual and is a supplement to the United States Pharmacopeia (USP) for pharmaceutical microbiology testing, including antimicrobial effectiveness testing, microbial examination of non-sterile products, sterility testing, bacterial endotoxin testing, particulate matter, device bioburden and environmental monitoring testing. The goal of this manual is to provide an ORS/CDER harmonized framework on the knowledge, methods and tools needed, and to apply the appropriate scientific standards required to assess the safety and efficacy of medical products within ORS testing laboratories. The PMM has expanded to include some rapid screening techniques along with a new section that covers inspectional guidance for microbiologists that conduct team inspections. This manual was developed by members of the Pharmaceutical Microbiology Editorial Board and includes individuals with specialized experience and training. The instructions in this document are guidelines for ORS analysts. When available, analysts should use procedures and worksheets that are standardized and harmonized across all ORS labs, along with the PMM, when performing analyses related to product testing of pharmaceuticals and medical devices. When changes or deviations are necessary, documentation should be completed per the laboratory’s Quality Management System. Generally, these changes should originate from situations such as new products, unusual products, or unique situations. This manual was written to reduce compendia method ambiguity and increase standardization between ORS laboratories. By providing clearer instructions to ORS labs, greater transparency can be provided to both industry and the public. However, it should be emphasized that this manual is a supplement and does not replace any information in USP or applicable FDA official guidance references. The PMM does not relieve any person or laboratory from the responsibility of ensuring that the methods being employed from the manual are fit for use, and that all testing is validated and/or verified by the user. The PMM will continually be revised as newer products, platforms and technologies emerge or any significant scientific gaps are identified with product testing. Reference to any commercial materials, equipment, or process in the PMM does not in any way constitute approval, endorsement, or recommendation by the U.S. Food and Drug Administration. For the most current and official copy, check QMiS. OOD AND RUG DMINISTRATION Revision #: 02 F D A Document Number: OFFICE OF REGULATORY AFFAIRS Revised: ORA.007 Office of Regulatory Science 25 Aug 2020 Title: Pharmaceutical Microbiology Manual Page 3 of 92 U.S. FDA, Office of Regulatory Affairs Office of Regulatory Science Office of Medical Products and Specialty Laboratory Operations 3. Current Editorial Board Editor-In-Chief: Angele Smith, ORS Headquarters Rick Friedman, Center for Drug Evaluation and Research Jennifer Gogley, Pacific Southwest Medical Products Laboratory Kristy Ford, Detroit Medical Products Laboratory Marilyn Khanna, ORS Headquarters Mivoyel Jeanpaul, ORS Headquarters Sammie La, Pacific Southwest Medical Products Laboratory Matthew Silverman, Winchester Engineering and Analytical Center Marla Stevens-Riley, Center for Drug Evaluation and Research Allison Rodriguez, Winchester Engineering and Analytical Center Radhakrishna Tirumalai, United States Pharmacopeia Theresa To, Winchester Engineering and Analytical Center 4. Original Authors Rhonda Alexander, Southeast Food and Feed Laboratory Jasna Braut-Taormina, Northeast Medical Products Laboratory Jennifer Brzezinski, Forensic Chemistry Center Marie B. Buen-Bigornia, Denver Food and Feed Laboratory Rick Friedman, Center for Drug Evaluation and Research Jennifer Gogley, Pacific Southwest Medical Products Laboratory Andrew Gonzales, Denver Food and Feed Laboratory Dennis Guilfoyle (ret), Northeast Medical Products Laboratory Lawrence James (ret), Northeast Food and Feed Laboratory Marilyn Khanna, ORS Headquarters David Lau, San Francisco Food and Feed Laboratory Eileen Liu, San Francisco Food and Feed Laboratory For the most current and official copy, check QMiS. OOD AND RUG DMINISTRATION Revision #: 02 F D A Document Number: OFFICE OF REGULATORY AFFAIRS Revised: ORA.007 Office of Regulatory Science 25 Aug 2020 Title: Pharmaceutical Microbiology Manual Page 4 of 92 Mercedes Loftis, Denver Food and Feed Laboratory Philip McLaughlin (ret), Winchester Engineering and Analytical Center Zachary Miller, Denver Food and Feed Laboratory Gary Pecic, Denver Food and Feed Laboratory Diane Raccasi (ret), Office of Enforcement and Import Operations George Salem (ret), ORS Headquarters Angele Smith, ORS Headquarters Tammara Stephens, Southeast Food and Feed Laboratory Selen Stromgren, ORS Headquarters Vilasini Suktankar, Southeast Food and Feed Laboratory Radhakrishna Tirumalai, United States Pharmacopeia Evelyn Wong, Pacific Southwest Medical Products Laboratory Jonathon Yenovkian, San Francisco Food and Feed Laboratory 5. Chapter 1: Antimicrobial Effectiveness Testing Antimicrobial Effectiveness testing is described in USP <51>. Previously this chapter was known as “Preservative Effectiveness Testing”. Detailed procedure for the performance of the test can be found in USP <51>. A. Media For the cultivation of the test organisms, select agar medium that is favorable to the rigorous growth of the respective stock culture. The recommended media are Soybean Casein Digest Agar/Broth and Sabouraud’s Dextrose Agar/Broth. Add a suitable inactivator (neutralizer) for the specific antimicrobial properties in the product to the broth and/or agar media used for the test procedure whenever
Recommended publications
  • Meningitis Manual Text
    Laboratory Methods for the Diagnosis of MENINGITIS Caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae Centers for Disease Control and Prevention August, 1998 Laboratory Methods for the Diagnosis of Meningitis Caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae Table of Contents Introduction………………………………………………………………………………… 1 Acknowledgments ……………………………………………………………………….. 2 I. Epidemiology of Meningitis Caused by Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae,…………………………………………… 3 II. General Considerations ......................................................................................................... 5 A. Record Keeping ................................................................................................................... 5 III. Collection and Transport of Clinical Specimens ................................................................... 6 A. Collection of Cerebrospinal Fluid (CSF)............................................................................... 6 A1. Lumbar Puncture ................................................................................................... 6 B. Collection of Blood .............................................................................................................. 7 B1. Precautions ............................................................................................................ 7 B2. Sensitivity of Blood Cultures ................................................................................
    [Show full text]
  • Chapter 10: Classification of Microorganisms
    Chapter 10: Classification of Microorganisms 1. The Taxonomic Hierarchy 2. Methods of Identification 1. The Taxonomic Hierarchy Phylogenetic Tree of the 3 Domains Taxonomic Hierarchy • 8 successive taxa are used to classify each species: Domain Kingdom Phylum Class Order Family Genus **species can also contain different strains** Species Scientific Nomenclature To avoid confusion, every type of organism must be referred to in a consistent way. The current system of nomenclature (naming) has been in use since the 18th century: • every type of organism is referred by its genus name followed by its specific epithet (i.e., species name) Homo sapiens (H. sapiens) Escherichia coli (E. coli) • name should be in italics and only the genus is capitalized which can also be abbreviated • names are Latin (or “Latinized” Greek) with the genus being a noun and the specific epithet an adjective **strain info can be listed after the specific epithet (e.g., E. coli DH5α)** 2. Methods of Identification Biochemical Testing In addition to morphological (i.e., appearance under the microscope) and differential staining characteristics, microorganisms can also be identified by their biochemical “signatures”: • the nutrient requirements and metabolic “by-products” of of a particular microorganism • different growth media can be used to test the physiological characteristics of a microorganism • e.g., medium with lactose only as energy source • e.g., medium that reveals H2S production **appearance on test medium reveals + or – result!** Commercial devices for rapid Identification Perform multiple tests simultaneously Enterotube II Such devices involve the simultaneous inoculation of various test media: • ~24 hrs later the panel of results reveals ID of organism! Use of Dichotomous Keys Series of “yes/no” biochemical tests to ID organism.
    [Show full text]
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • Infection Control in Dentistry: How to Asepsis Photographic Mirrors?
    Infection control in dentistry: how to asepsis photographic mirrors? Amanda Osório Ayres de Freitas* Mariana Marquezan* Giselle Naback Lemes Vilani* Rodrigo César Santiago* Luiz Felipe de Miranda Costa* Sandra Regina Torres** Abstract: The aim of this study was to evaluate the efficacy of six different methods of disinfection and sterilization of intra­oral photographic mirrors through microbiological testing and to analysis their potential harm to mirrors’ surface. Fourteen occlusal mirrors were divided into seven groups. Group 1 comprised two mirrors as received from manufacturer. The other six groups comprised mirrors disinfected/sterilized by autoclave, immersion in enzymatic detergent, and friction with chlorhexidine detergent, chlorhexidine wipes, common detergent and 70% ethylic alcohol. Microbiological and quality surface analyses were performed. Sterilization in autoclave was microbiologic effective, but caused damage to the mirror surface. Chlorhexidine (in wipes or detergent) and liquid soap were effective disinfectant agents for photographic mirrors decontamination, without harmful effect on its surface. Enzymatic detergent immersion and friction with 70% ethylic alcohol were not effective as disinfectant agents for photographic mirrors decontamination. According to the results, the more effective and safe methods for photographic mirrors disinfection were friction with chlorhexidine wipes or detergent, as well as liquid soap. Results, the most efficacious methods for photographic mirrors disinfection were friction with chlorhexidine wipes and detergent, as well as common detergent. Descriptors: Dental Instruments; Decontamination; Microbiology; Surface Properties. *Doutoranda em Odontologia na Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil **Pós­doutora em odontologia pela University of Washington (UW), Seattle, WA, Estados Unidos ISSN 2236­5843 │ 93 Introduction Dental photography is an important tool for diagnostic and treatment planning, and it’s also a registration of the patient’s condition before and after treatment.
    [Show full text]
  • Marine Microorganisms: Evolution and Solution to Pollution Fu L Li1, Wang B1,2
    COMMENTARY Marine microorganisms: Evolution and solution to pollution Fu L Li1, Wang B1,2 Li FL, Wang B. Marine microorganisms: Evolution and solution to pollution. J Mar Microbiol. 2018;2(1):4-5. nce ocean nurtured life, now she needs our care. Marine microorganism will be an opportunity to further understand ourselves and to seek for new Ois the host of ocean in all ages. We should learn from them humbly. methods of fighting old infections. Marine microorganism is tightly bond with human during the history of evolution and nowadays’ environment pollution. Along with industrial revolution, our marine ecosystem suffered serious pollutions. Microplastics are tiny plastic particles (<5 mm) (Figure 1B), Although the topic is still in debate, life is probably originated from which poison marine lives. Because these microplastics are very hard to be submarine in hydrothermal vent systems (1). In the journey of evolution, our degraded, it is predicted that there will be more microplastics than fish in biosphere was completely dominated by microbes for a very long time (Figure ocean by the year 2050 (7). Since marine sediments are considered as the sink 1A). Human being evolves with those microorganisms. Consequently, of microplastics and marine microbes are key dwellers of marine sediments, the influences of microorganisms can be found in all aspects of human more attention should be paid on the interactions between microplastics biology. More than 65% of our genes originated with bacteria, archaea, and and marine microbes. Actually, a call for this has been published in 2011 unicellular eukaryotes, including those genes responsible for host-microbe (8).
    [Show full text]
  • ANTT Guidelines
    www.antt.org ANTT Guidelines The ANTT Clinical Guideline for the Preparation & Administration of Peripheral and Central Intravenous Medications (IV Therapy) Rationale and supporting evidence ANTT IV Prep and Administration V3 .0 2013 The Association for Safe Aseptic Technique (ASAP) www.antt.org www.antt .org ® © 2013 Aseptic Non Touch Technique (ANTT) This document is a publication of The-ASAP and all rights of copyright, intellectual property and Trademark are reserved. ANTT is protected to prevent dilution and misrepresentation of the practice framework so as to avoid ANTT becoming another unhelpful generic term for aseptic technique that is variably interpreted. For guidance see [email protected]. This document may however, be freely reviewed, copied and translated, in part, or in whole, for LOCAL, SINGLE ORGANIZATION educational use. It must not be published via the www/internet or its content used for production and publication of dedicated ANTT e-learning resources. ANTT is not for sale or for use in conjunction with commercial purposes. The-ASAP provide a number of free core ANTT resources to help disseminate and train healthcare staff. The- ASAP requests that the balance it determines between free dissemination and protection of the standard is respected in the interests of patient safety. Disclaimer: The-ASAP provides the ANTT Clinical Practice Framework and ANTT Clinical Guidelines to healthcare organizations in good faith in a collaboration to promote effective aseptic technique. It is the responsibility of healthcare organizations to implement ANTT effectively. No guarantee or responsibility for the application or outcome of clinical practice can be, or is, assumed or accepted by The-ASAP/ANTT.
    [Show full text]
  • Multicellular Oxidant Defense in Unicellular Organisms MUCHOU MA and JOHN W
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 7924-7928, September 1992 Microbiology Multicellular oxidant defense in unicellular organisms MUCHOU MA AND JOHN W. EATON* Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, Albany Medical College, A-81, 47 New Scotland Avenue, Albany, NY 12208 Communicated by David W. Talmage, May 8, 1992 ABSTRACT Although catalase is thought to be a major MATERIALS AND METHODS defense against hydrogen peroxide (H202), the catalase activity Reagents. Brain heart infusion broth, Todd-Hewitt broth, within individual Escherichia coil fails to protect against ex- Lennox L agar (LB agar), and Bactoagar were obtained from ogenous H202. Contrary to earlier reports, we find that dilute GIBCO/BRL. The bicinchoninic acid protein microassay suspensions, of wild-type and catalase-deficient E. colt are was from Pierce. All other enzymes and chemicals were identical in their sensitivity to H202, perhaps because even purchased from Sigma. wild-type, catalase-positive E. colU cannot maintain an inter- Bacterial Strains and Culture Conditions. A catalase- nal/externail concentration gradient of this highly diffusible deficient mutant strain of E. coli K-12 [UM1, hereafter, oxidant. However, concentrated suspensions or colonies of cat(-)] and its parent wild-type [CSH7, hereafter cat(+)] (17) catalase-positive E. colt do preferentially survive H202 chal- were provided by P. C. Loewen (University ofManitoba). E. lenge and can even cross-protect adjacent catalase-deficient coli were grown statically in brain heart infusion broth or M9 organisms. Furthermore, high-density catalase-positive-but minimal salts medium supplemented with 10 mM glucose not catalase-negative-E. colt can survive and multiply in the (M9/glucose) (25) at 370C in room air overnight (18-20 hr) to presence of competitive, peroxide-generating streptococci.
    [Show full text]
  • Growth Characteristics of Escherichia Coli and Staphylococcus Aureus Bacteria on Alternative Medium Leaves of Lamtoro (Leucaena Leucocephala)
    Journal of Xi'an University of Architecture & Technology ISSN No : 1006-7930 Growth Characteristics of Escherichia coli and Staphylococcus aureus Bacteria on Alternative Medium Leaves of Lamtoro (Leucaena leucocephala) Meidawati Suswandari*, Department of Primary School, Faculty of Teacher Training and Education, Universitas Veteran Bangun Nusantara, Sukoharjo, Indonesia Lamtoro leaf has a high protein content. The protein content is very suitable for bacterial growth. Because of the high cost of bacterial growth media for educational and research institutions, lamtoro leaves can be used as an alternative medium for bacterial growth in general. The purpose of this study was to determine the potential of lamtoro leaf as an alternative medium for bacterial growth in general. This research is descriptive. Alternative mediums of lamtoro leaf were tested for the growth of Escherichia coli and Staphylococcus aureus. Escherichia coli bacteria grow on three alternative medium plates. After final identification, there are Escherichia coli bacteria. Whereas the Staphylococcus aureus bacterium did not grow on seven plates of alternative medium despite being incubated for 48 hours. Lamtoro leaf has less potential as an alternative medium for bacterial growth in general. The lamtoro leaf medium can only be used as a growth medium for gram-negative bacteria. While the growth of gram-positive bacteria there is no growth due to the presence of active substances in lamtoro leaves. Key words: Leaves of Lamtoro, Alternative Media, Escherichia coli, Staphylococcus aureus Introduction Bacteria are single-celled creatures that are very small or microscopic. Hans Christian Gram divides bacteria based on the characteristics of cell walls through the Gram staining system, namely Gram Positive and Gram Negative bacteria (Elferia, et al, 1996; Elliot, 2013; Harvey, 2001; Clausen, Gildberg, and Raa, 1985).
    [Show full text]
  • Lokiarchaeota: Biologists Discover 'Missing Link' Microorganism
    Home About Us News Archive Copyright Privacy Policy Contact Us Newsletter RSS HOME ASTRONOMY SPACE EXPLORATION ARCHAEOLOGY PALEONTOLOGY BIOLOGY PHYSICS Lokiarchaeota: Biologists Discover ‘Missing Link’ Microorganism May 7, 2015 by Sci-News.com « PREVIOUS Published in A team of biologists, co-led by Dr Lionel Guy and Dr Thijs J. G. Ettema from Biology Uppsala University in Sweden, has discovered a new group of Tagged as microorganisms that represents an intermediate form in-between the Archaea simple cells of bacteria and the complex cell types of eukaryotes. Bacteria Eukaryote Lokiarchaeota Follow Like 16k Share Tweet 12 Like 58 41 You Might Like Bottlenose Dolphins Form Highly Complex Networks of Friends Rorqual Whales This false-color image shows a cell of thermophilic methanogenic archaea. Image credit: University of Have Unique California Museum of Paleontology. Stretchy Nerves In 1977, biochemist Dr Carl Woese and his colleagues at the University of Illinois described an entirely new group of organisms, the Archaea (originally found in extreme environments, such as hydrothermal vents and terrestrial hot springs). The scientists were studying relationships among the prokaryotes using DNA Extinction of sequences, and found that Archaea have distinct molecular characteristics World’s Largest separating them from bacteria as well as from eukaryotes. They proposed that Herbivores May Lead to Empty life can be divided into three domains: Eukaryota, Eubacteria, and Landscapes, Say Archaebacteria. Researchers Despite that archaeal cells were simple and small like bacteria, scientists found that Archaea were more closely related to organisms with complex cell types, a group collectively known as ‘eukaryotes.’ This observation has puzzled Sichuan Bush biologists for years.
    [Show full text]
  • Medical Laboratory Assistant, a Suggested Guide for A
    p .7/ tWI .7- y,1.. P O R T R ESUM ED 013 321 VT 002 2L4 MEDICAL LABORATORY ASSISTANT, A SUGGESTEDGUIDE FOR A TRAINING PROGRAM. OFFICE OF EDUCATION, WASHINGTON, D.C. REPORT NUMBER 0E-87017 PUB DATE 66 EDRS PRICE MF-$0.50 HC-$4.92 123P. DESCRIPTORS-. *MEDICAL LABORATORY ASSISTANTS,TEACHING GUIDES, *PROGRAM PLANNING, PROGRAM DEVELOPMENT,*CURRICULUM GUIDES, CURRICULUM, *HEALTH OCCUPATIONSEDUCATION, POST SECONDARY EDUCATION, MDTA PROGRAMS, INFORMATION IS GIVEN TO ASSIST IN ORGANIZINGAND ADMINISTERING A TRAINING PROGRAM FOR MEDICAL LABORATORY ASSISTANTS IN A VARIETY OF SETTINGS AND TO PROVIDEGUIDANCE IN ESTABLISHING NEW PROGRAMS AND IN EVALUATINGEXISTING ONES. THE MATERIAL WAS PREPARED UNDER THE DIRECTIONOF THE NATIONAL COMMITTEE =OR CAREERS IN MEDICAL TECHNOLOGY.PATHOLOGISTS AND MEDICAL TECHNOLOGISTS PARTICIPATEDIN THE ORGANIZATIONAL AND DEVELOPMENTAL STAGES. ALL MATERIAL WAS REVIEWEDBY A REPRESENTATIVE NATIONAL GROUP OF EXPERTCONSULTANTS IN THE FIELD OF LABORATORY MEDICINE. THE 12-MONTH PROGRAM WAS DESIGNED FOR HIGH SCHOOL GRADUATES OR THEIREQUIVALENT TO SE ADMINISTERED BY A TEACHING STAFF COMPOSEDOF A NATIONAL DIRECTOR, A. TEACHING SUPERVISOR, ANDINSTRUCTORS. AN OUTLINE OF INFORMATIONAL MATERIAL TO BE PRESENTEDIN THE CLASSROOM, LABORATORY PROCEDURES TO BE DEMONSTRATEDAND THEN PERFORMED AS DIRECT EXERCISES BY THE STUDENTS, AS WELLAS RELEVANT BIBLIOGRAPHIES, AUDIOVISUAL AIDS, AND STUDYQUESTIONS ARE PRESENTED FOR THE FOLLOWING UNITS (1) ORIENTATION TO THE CLINICAL LABORATORY,(2) BACTERIOLOGY,(3) SEROLOGY, (4) PARASITOLOGY,(5) HEMATOLOGY, (6) CLINICAL CHEMISTRY,(7) BLOOD BANKING,(8) ROUTINE ANALYSIS, AND (9) BASAL METABOLISM -- ELECTROCARDIOGRAPHY. THIS DOCUMENT IS AVAILABLE AS GPO NUMBER FS 5.267-07017 FOR 60 CENTS FROMSUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,WASHINGTON, D.C. 20402. (PS) cir 02281"2=10.
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • Module 6: Principles of Asepsis
    Module 6: Medical and Surgical Asepsis Module 6: Medical and Surgical Asepsis Minimum Number of Theory Hours: 2 Suggested Theory Hours: 5 Recommended Clinical Hours: 8 Statement of Purpose: The purpose of this unit is to present information about asepsis and the control of infection. Procedures and precautions to protect patient/patients/residents, health care workers and others from infection are presented, including standard precautions, transmission- based precautions and biohazardous waste management. Terminology 1. Acquired Immunodeficiency 21. Escherichia coli (E. coli) 40. Non-intact Syndrome (AIDS) 22. Excretions 41. Nosocomial 2. Airborne precautions 23. Exposure incident 42. Occupational Safety and Health 3. Asepsis 24. Flora Administration (OSHA) 4. Athlete’s foot 25. Fungus 43. Pathogens 5. Bacteria 26. Health Care-Associated Infection 44. Personal Protective Equipment 6. Barriers (HAI) (PPE) 7. Biohazard symbol 27. Hepatitis A, B, C, D, E 45. Pneumonia 8. Bloodborne 28. Herpes zoster 46. Precautions 9. Carrier spore 29. Host 47. Protozoa 10. Centers for Disease Control (CDC) 30. Immunity 48. Reservoir 11. Chain of infection 31. Infection 49. Reverse isolation 12. Communicable 32. Infectious agent 50. Rickettsia 13. Contact precautions 33. Influenza 51. Scabies 14. Contagious microbes 34. Isolation 52. Sepsis 15. Contamination 35. Lice 53. Standard precautions 16. Disinfection 36. Material Safety Data Sheet (MSDS) 54. Sterilization 17. Disorientation 37. Methicillin-Resistant 55. Streptococcus 18. Disposable Staphylococcus
    [Show full text]