Effect of Soil Amendments on the Chemical Transformation of Arsenic and the Microbial Diversity in Rice Paddy Microbiome

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Soil Amendments on the Chemical Transformation of Arsenic and the Microbial Diversity in Rice Paddy Microbiome DOCTOR OF PHILOSOPHY Effect of soil amendments on the chemical transformation of arsenic and the microbial diversity in rice paddy microbiome Begum, Monira Award date: 2021 Awarding institution: Queen's University Belfast Link to publication Terms of use All those accessing thesis content in Queen’s University Belfast Research Portal are subject to the following terms and conditions of use • Copyright is subject to the Copyright, Designs and Patent Act 1988, or as modified by any successor legislation • Copyright and moral rights for thesis content are retained by the author and/or other copyright owners • A copy of a thesis may be downloaded for personal non-commercial research/study without the need for permission or charge • Distribution or reproduction of thesis content in any format is not permitted without the permission of the copyright holder • When citing this work, full bibliographic details should be supplied, including the author, title, awarding institution and date of thesis Take down policy A thesis can be removed from the Research Portal if there has been a breach of copyright, or a similarly robust reason. If you believe this document breaches copyright, or there is sufficient cause to take down, please contact us, citing details. Email: [email protected] Supplementary materials Where possible, we endeavour to provide supplementary materials to theses. This may include video, audio and other types of files. We endeavour to capture all content and upload as part of the Pure record for each thesis. Note, it may not be possible in all instances to convert analogue formats to usable digital formats for some supplementary materials. We exercise best efforts on our behalf and, in such instances, encourage the individual to consult the physical thesis for further information. Download date: 29. Sep. 2021 Abstracts Effect of soil amendments on the chemical transformation of arsenic and the microbial diversity in rice paddy microbiome A thesis submitted to the School of Biological Sciences Queens University Belfast For the degree of Doctor of Philosophy Monira Begum Summer, 2021 i Abstracts Abstracts Paddy management practices greatly influence arsenic biogeochemistry. For sustainable rice production, rice needs to be free from arsenic. Different soil amendments such as animal manure in flooded paddy soil could enhance arsenic reductive mobilization, biomethylation, and volatilization which could be a useful option for the arsenic detoxification process. Also, arsM genes in composting manure could enhance arsenic methylation. Furthermore, cattle manure also enhances arsenic mobilization and increased arsenic assimilation in rice grain in some regions. However, the application of biomass ash, a source of silicon (Si) could be beneficial for rice growth, as silicate competes with arsenite for root uptake and hence has the potential to decrease translocation of arsenic into the rice grain. In contrast, the application of chemical fertilizer is not sustainable and could lead to long-run problems. As such, it is hypothesized “do different fertilizers affect the rice paddy microbiome and influence arsenic biogeochemistry, arsenic speciation, methylation and ultimately assimilation of arsenic into rice grain?” Thus, the objectives of this research were to ascertain the effect of different soil amendments on arsenic methylation and mobility in paddy soil and rice arsenic accumulation over time. In addition, how soil amendments affect the abundance and diversity of the arsM, 16S rRNA bacterial and ITS1 fungal genes in the rice microbiome was also investigated. Therefore, the research approach was to set up a rice microcosm experiment in a growth cabinet with a rice cultivar, ‘Yongyou12’ (a Japonica indica hybrid) with application of five different treatments- mineral fertilizers, full- slurry, half-slurry, ash and no application (four replicates per treatment), were applied to study the arsenic biogeochemistry and microbial population in rice paddy microbiome. Rice soil porewater chemical characterization at 7, 14, 28, 56, 84 d, during heading (99-126 d), grain fill (107-134 d) and dry stage (145-170 d) showed a highly significant effect of time on overall soil and arsenic biogeochemistry, while different soil treatments resulted in a significant response only for pH, Eh, Asi, B, Zn, Rb, Pb. Rice porewater arsenic species (Asi and MMA, DMA and TMAO) showed a strong correlation with different porewater properties, B, P, Mn, Fe, Co, Cu, Zn, Se, Rb, Sr, Mo, Cd and Pb. In rice shoot, overall treatments had a significant response ii Abstracts for B, P, Cr, Mn, Fe, Co, Ni, Zn, Rb, Cd, S, K, Na and Sn; while in rice grain, the effects were not pronounced. The 16SrRNA and arsM bacterial abundance in rice rhizosphere soil at 14 d, 56 d, grain fill (107-134 d) and dry stage (145-170 d) revealed a significant increase in both arsM and 16S rRNA gene copy number over time. The highest bacterial abundance was observed during the grain fill (107-134 d) compared to other time points. For treatments, a significant increase in 16S rRNA gene copy number was identified in response to the full slurry treatment. Amplicon sequencing at the grain fill stage of both the bacterial 16S rRNA and fungal ITS1 genes showed that diversity significantly varied among the three compartments, rice rhizosphere soil, root and shoot. Soil showed the highest level of richness and diversity, followed by the rice root, while a low level of richness and diversity was seen in the shoot. The most pronounced treatment effects on microbial operational taxonomic units (OTU’s) were observed for soil bacterial OTU’s. In most instances, copy number was increased in response to full-slurry and/or half-slurry treatment or decreased in response to ash, full-slurry and/or half- slurry, while mineral fertiliser had no or little effect. For bacterial OTU’s, Clostridium was the most relatively abundant genus in rhizosphere soil and shoot and Geobacter was the most relatively abundant in rice root. Geobacter, Clostridium, Anaeromyxobacter, Opitutus, Desulfocapsa, Methylocystis and Gemmatimonas were relatively abundant in all three compartments. Some of these have arsenic detoxification and methylation and could control the N, C and Fe cycling. The statistical analysis identified a significant increase in response to the manure treatment for several genus-level bacterial OTU’s in soil (Sarcina, unclassified genera within the phylum Cyanobacteria, Bacteroidetes, the order Clostridiales and the family Rhodothermaceae). These could be involved in arsenic methylation and volatilization as found in the literature. For fungal ITS1, Ascomycota annotated OTU’s was identified as the most abundant phylum in all three compartments. Pseudeurotium, Talaromyces, Cladosporium and Mortierella were relatively abundant genus in rhizosphere soil, Cladosporium, Fusarium, Pseudeurotium, Sarocladium, Talaromyces and Zopfiella in root and Cladosporium, Penicillium, Pseudeurotium in the shoot. Statistical analysis identified only a small number of fungal OTU’s with significant treatment effect. iii Abstracts Application of full-slurry, half-slurry, and ash showed much stronger effect compared to the chemical fertilizer in controlling rice arsenic chemistry and could be applied after filed trial. It is clear that the manure, ash, and half-slurry had some significant effect and could be beneficial to increase arsenic methylating bacteria and fungi in rice microbiome. iv Table of contents Table of Contents Page no. Chapter 1 Introduction………………………………………………………………………….. 1 1.1 Arsenic (As) a potential problem in rice environment.……………………… 1 1.2 Sources and forms of Arsenic……………………………………………………………. 2 1.3 The biogeochemistry of arsenic in paddy soil……………………………………. 3 1.3.1 Flooding induced arsenic mobilization…………………………………………… 3 1.3.2 Arsenate reduction………………………………………………………………………… 4 1.3.3 Arsenite oxidation…………………………………………………………………………. 5 1.3.4 Arsenic methylation, volatilisation and demethylation………………….. 5 1.4 Arsenic uptake pathways in rice ………………………………………………………. 6 1.4.1 Silicic acid transporters………………………………………………………………….. 6 1.4.2 Phosphate transporters…………………………………………………………………. 8 1.5 Microbes and their role in arsenic dynamics in paddy soil………………… 8 1.6 Microbial interaction and function in paddy soil………………………………. 10 1.7 Effects of soil amendments………………………………………………………………. 11 1.8 Thesis objectives and hypothesis……………………………………………………… 13 1.9 Outline of the thesis and chapters……………………………………………………. 14 Chapter 2 Rice microcosms……………………………………………………………………. 15 2.1 Introduction……………………………………………………………………………………… 15 2.2 Collection of soil for the experiment………………………………………………… 16 2.2.1 Location and topography of sampling……………………………………………. 16 2.3 Experimental design…………………………………………………………………………. 17 2.4 Collection and storage of samples……………………………………………………. 23 Chapter 3 Impact of soil management and time on arsenic biogeochemical cycling of paddy soils…………………………………………………… 29 3.1 Introduction……………………………………………………………………………………… 29 3.2 Materials and methods…………………………………………………………………….. 32 3.2.1 Porewater characterisation…………………………………………………………… 32 3.2.1.1 Determination of pH and Eh……………………………………………………….. 32 3.2.1.2 Porewater processing…………………………………………………………………. 33 3.2.1.3 Determination of Total Organic Carbon (TOC)…………………………….. 33 v Table of contents 3.2.1.4 Speciation of arsenic in rice porewater ……………………………………… 33 3.2.1.5 Total elemental analysis of rice porewater……………….................... 34 3.2.2 Rice biomass information……………………………………………………………….
Recommended publications
  • Phylogeny of the Genus Arachnomyces and Its Anamorphs and the Establishment of Arachnomycetales, a New Eurotiomycete Order in the Ascomycota
    STUDIES IN MYCOLOGY 47: 131-139, 2002 Phylogeny of the genus Arachnomyces and its anamorphs and the establishment of Arachnomycetales, a new eurotiomycete order in the Ascomycota 1, 2 1* 3 2 C. F. C. Gibas , L. Sigler , R. C. Summerbell and R. S. Currah 1University of Alberta Microfungus Collection and Herbarium, Edmonton, Alberta, Canada; 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; 3Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands Abstract: Arachnomyces is a genus of cleistothecial ascomycetes that has morphological similarities to the Onygenaceae and the Gymnoascaceae but is not accommodated well in either taxon. The phylogeny of the genus and its related anamorphs was studied using nuclear SSU rDNA gene sequences. Partial sequences were determined from ex-type cultures representing A. minimus, A. nodosetosus (anamorph Onychocola canadensis), A. kanei (anamorph O. kanei) and A. gracilis (anamorph Malbranchea sp.) and aligned together with published sequences of onygenalean and other ascomycetes. Phylogenetic analysis based on maximum parsimony showed that Arachnomyces is monophyletic, that it includes the hyphomycete Malbranchea sclerotica, and it forms a distinct lineage within the Eurotiomycetes. Based on molecular and morphological data, we propose the new order Arachnomycetales and a new family Arachnomycetaceae. All known anamorphs in this lineage are arthroconidial and have been placed either in Onychocola (A. nodosetosus, A. kanei) or in Malbranchea (A. gracilis). Onychocola is considered appropriate for disposition of the arthroconidial states of Arachnomyces and thus Malbranchea sclerotica and the unnamed anamorph of A. gracilis are redisposed as Onychocola sclerotica comb. nov. and O. gracilis sp. nov. Keywords: Eurotiomycetes, Arachnomycetales, Arachnomycetaceae, Arachnomyces, Onychocola, Malbranchea sclerotica, SSU rDNA, Ascomycota, phylogeny Introduction described from herbivore dung maintained in damp chambers (Singh & Mukerji, 1978; Mukerji, pers.
    [Show full text]
  • Black Fungal Extremes
    Studies in Mycology 61 (2008) Black fungal extremes Edited by G.S. de Hoog and M. Grube CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Black fungal extremes STUDIE S IN MYCOLOGY 61, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR S Manon van den Hoeven-Verweij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Kasper Luijsterburg, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • (Hypocreales) Proposed for Acceptance Or Rejection
    IMA FUNGUS · VOLUME 4 · no 1: 41–51 doi:10.5598/imafungus.2013.04.01.05 Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) ARTICLE proposed for acceptance or rejection Amy Y. Rossman1, Keith A. Seifert2, Gary J. Samuels3, Andrew M. Minnis4, Hans-Josef Schroers5, Lorenzo Lombard6, Pedro W. Crous6, Kadri Põldmaa7, Paul F. Cannon8, Richard C. Summerbell9, David M. Geiser10, Wen-ying Zhuang11, Yuuri Hirooka12, Cesar Herrera13, Catalina Salgado-Salazar13, and Priscila Chaverri13 1Systematic Mycology & Microbiology Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA; corresponding author e-mail: Amy.Rossman@ ars.usda.gov 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada 3321 Hedgehog Mt. Rd., Deering, NH 03244, USA 4Center for Forest Mycology Research, Northern Research Station, USDA-U.S. Forest Service, One Gifford Pincheot Dr., Madison, WI 53726, USA 5Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia 6CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 7Institute of Ecology and Earth Sciences and Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia 8Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK 9Sporometrics, Inc., 219 Dufferin Street, Suite 20C, Toronto, Ontario, Canada M6K 1Y9 10Department of Plant Pathology and Environmental Microbiology, 121 Buckhout Laboratory, The Pennsylvania State University, University Park, PA 16802 USA 11State
    [Show full text]
  • Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and Related Genera with Cylindrocarpon-Like Anamorphs
    available online at www.studiesinmycology.org StudieS in Mycology 68: 57–78. 2011. doi:10.3114/sim.2011.68.03 Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs P. Chaverri1*, C. Salgado1, Y. Hirooka1, 2, A.Y. Rossman2 and G.J. Samuels2 1University of Maryland, Department of Plant Sciences and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland 20742, USA; 2United States Department of Agriculture, Agriculture Research Service, Systematic Mycology and Microbiology Laboratory, Rm. 240, B-010A, 10300 Beltsville Avenue, Beltsville, Maryland 20705, USA *Correspondence: Priscila Chaverri, [email protected] Abstract: Neonectria is a cosmopolitan genus and it is, in part, defined by its link to the anamorph genusCylindrocarpon . Neonectria has been divided into informal groups on the basis of combined morphology of anamorph and teleomorph. Previously, Cylindrocarpon was divided into four groups defined by presence or absence of microconidia and chlamydospores. Molecular phylogenetic analyses have indicated that Neonectria sensu stricto and Cylindrocarpon sensu stricto are phylogenetically congeneric. In addition, morphological and molecular data accumulated over several years have indicated that Neonectria sensu lato and Cylindrocarpon sensu lato do not form a monophyletic group and that the respective informal groups may represent distinct genera. In the present work, a multilocus analysis (act, ITS, LSU, rpb1, tef1, tub) was applied to representatives of the informal groups to determine their level of phylogenetic support as a first step towards taxonomic revision of Neonectria sensu lato. Results show five distinct highly supported clades that correspond to some extent with the informal Neonectria and Cylindrocarpon groups that are here recognised as genera: (1) N.
    [Show full text]
  • Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
    Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).
    [Show full text]
  • Phylogeny of Chrysosporia Infecting Reptiles: Proposal of the New Family Nannizziopsiaceae and Five New Species
    CORE Metadata, citation and similar papers at core.ac.uk Provided byPersoonia Diposit Digital 31, de Documents2013: 86–100 de la UAB www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X669698 Phylogeny of chrysosporia infecting reptiles: proposal of the new family Nannizziopsiaceae and five new species A.M. Stchigel1, D.A. Sutton2, J.F. Cano-Lira1, F.J. Cabañes3, L. Abarca3, K. Tintelnot4, B.L. Wickes5, D. García1, J. Guarro1 Key words Abstract We have performed a phenotypic and phylogenetic study of a set of fungi, mostly of veterinary origin, morphologically similar to the Chrysosporium asexual morph of Nannizziopsis vriesii (Onygenales, Eurotiomycetidae, animal infections Eurotiomycetes, Ascomycota). The analysis of sequences of the D1-D2 domains of the 28S rDNA, including rep- ascomycetes resentatives of the different families of the Onygenales, revealed that N. vriesii and relatives form a distinct lineage Chrysosporium within that order, which is proposed as the new family Nannizziopsiaceae. The members of this family show the mycoses particular characteristic of causing skin infections in reptiles and producing hyaline, thin- and smooth-walled, small, Nannizziopsiaceae mostly sessile 1-celled conidia and colonies with a pungent skunk-like odour. The phenotypic and multigene study Nannizziopsis results, based on ribosomal ITS region, actin and β-tubulin sequences, demonstrated that some of the fungi included Onygenales in this study were different from the known species of Nannizziopsis and Chrysosporium and are described here as reptiles new. They are N. chlamydospora, N. draconii, N. arthrosporioides, N. pluriseptata and Chrysosporium longisporum. Nannizziopsis chlamydospora is distinguished by producing chlamydospores and by its ability to grow at 5 °C.
    [Show full text]
  • Nectria-Related Fungi Causing Dieback and Canker Diseases in China, with Neothyronectria Citri Sp
    A peer-reviewed open-access journal MycoKeys 56: 49–66Nectria (2019) -related fungi causing dieback and canker diseases in China ... 49 doi: 10.3897/mycokeys.56.36079 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Nectria-related fungi causing dieback and canker diseases in China, with Neothyronectria citri sp. nov. described Qin Yang1, Wen-Yan Chen1, Ning Jiang1, Cheng-Ming Tian1 1 The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry Univer- sity, Beijing 100083, China Corresponding author: Cheng-Ming Tian ([email protected]) Academic editor: R. Phookamsak | Received 10 May 2019 | Accepted 28 June 2019 | Published 10 July 2019 Citation: Yang Q, Chen W-Y, Jiang N, Tian C-M (2019) Nectria-related fungi causing dieback and canker diseases in China, with Neothyronectria citri sp. nov. described. MycoKeys 56: 49–66. https://doi.org/10.3897/mycokeys.56.36079 Abstract To clarify phylogenetic relationships amongst Nectria, Neothyronectria and Thyronectria in Nectriaceae, we examined detailed morphological characters and performed phylogenetic analyses of a concatenated data- set, based on the ITS, LSU, tef1 and tub2 DNA sequences of fungal specimens in China. Four species of nectria-related fungi were identified, i.e. Nectria dematiosa, N. pseudotrichia, Neothyronectria citri and Thy- ronectria pinicola. The newly described species,Neothyronectria citri, is characterised by its ascomatal wall with bright yellow scurf, unitunicate asci, each with 4-spored and ascospores allantoid to short-cylindrical, uniseriate, muriform, hyaline to slightly yellowish-brown. This species has affinities with other one known species of Neothyronectria and can be distinguished by molecular data.
    [Show full text]
  • An Overview of the Taxonomy, Phylogeny, and Typification of Nectriaceous Fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella
    available online at www.studiesinmycology.org StudieS in Mycology 68: 79–113. 2011. doi:10.3114/sim.2011.68.04 An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella T. Gräfenhan1, 4*, H.-J. Schroers2, H.I. Nirenberg3 and K.A. Seifert1 1Eastern Cereal and Oilseed Research Centre, Biodiversity (Mycology and Botany), 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada; 2Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; 3Julius-Kühn-Institute, Institute for Epidemiology and Pathogen Diagnostics, Königin-Luise-Str. 19, D-14195 Berlin, Germany; 4Current address: Grain Research Laboratory, Canadian Grain Commission, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada *Correspondence: [email protected] Abstract: A comprehensive phylogenetic reassessment of the ascomycete genus Cosmospora (Hypocreales, Nectriaceae) is undertaken using fresh isolates and historical strains, sequences of two protein encoding genes, the second largest subunit of RNA polymerase II (rpb2), and a new phylogenetic marker, the larger subunit of ATP citrate lyase (acl1). The result is an extensive revision of taxonomic concepts, typification, and nomenclatural details of many anamorph- and teleomorph-typified genera of theNectriaceae, most notably Cosmospora and Fusarium. The combined phylogenetic analysis shows that the present concept of Fusarium is not monophyletic and that the genus divides into two large groups, one basal in the family, the other terminal, separated by a large group of species classified in genera such as Calonectria, Neonectria, and Volutella. All accepted genera received high statistical support in the phylogenetic analyses. Preliminary polythetic morphological descriptions are presented for each genus, providing details of perithecia, micro- and/or macro-conidial synanamorphs, cultural characters, and ecological traits.
    [Show full text]
  • Hypocreales, Sordariomycetes) from Decaying Palm Leaves in Thailand
    Mycosphere Baipadisphaeria gen. nov., a freshwater ascomycete (Hypocreales, Sordariomycetes) from decaying palm leaves in Thailand Pinruan U1, Rungjindamai N2, Sakayaroj J2, Lumyong S1, Hyde KD3 and Jones EBG2* 1Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 2BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand Pinruan U, Rungjindamai N, Sakayaroj J, Lumyong S, Hyde KD, Jones EBG 2010 – Baipadisphaeria gen. nov., a freshwater ascomycete (Hypocreales, Sordariomycetes) from decaying palm leaves in Thailand. Mycosphere 1, 53–63. Baipadisphaeria spathulospora gen. et sp. nov., a freshwater ascomycete is characterized by black immersed ascomata, unbranched, septate paraphyses, unitunicate, clavate to ovoid asci, lacking an apical structure, and fusiform to almost cylindrical, straight or curved, hyaline to pale brown, unicellular, and smooth-walled ascospores. No anamorph was observed. The species is described from submerged decaying leaves of the peat swamp palm Licuala longicalycata. Phylogenetic analyses based on combined small and large subunit ribosomal DNA sequences showed that it belongs in Nectriaceae (Hypocreales, Hypocreomycetidae, Ascomycota). Baipadisphaeria spathulospora constitutes a sister taxon with weak support to Leuconectria clusiae in all analyses. Based
    [Show full text]
  • <I>Thyronectria
    Persoonia 33, 2014: 182–211 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X685211 Persistent hamathecial threads in the Nectriaceae, Hypocreales: Thyronectria revisited and re-instated W.M. Jaklitsch1, H. Voglmayr1,2 Key words Abstract Based on type studies and freshly collected material we here re-instate the genus Thyronectria (Nec- triaceae, Hypocreales). Species of this genus were recently for the most part classified in the genera Pleonectria act (Nectriaceae) or Mattirolia (Thyridiaceae), because Thyronectria and other genera had been identified as members Ascomycota of the Thyridiaceae due to the presence of paraphyses. Molecular phylogenies based on several markers (act, ITS, Hypocreales LSU rDNA, rpb1, rpb2, tef1, tub) revealed that the Nectriaceae contain members whose ascomata are characterised Mattirolia by long, more or less persistent, apical paraphyses. All of these belong to a single genus, Thyronectria, which thus Nectriaceae has representatives with hyaline, rosy, green or even dark brown and sometimes distoseptate ascospores. The new species type species of Thyronectria, T. rhodochlora, syn. T. patavina, syn. T. pyrrhochlora is re-described and illustrated. Pleonectria Within the Nectriaceae persistent, apical paraphyses are common in Thyronectria and rarely also occur in Nectria. pyrenomycetes The genus Mattirolia is revised and merged with Thyronectria and also Thyronectroidea is regarded as a synonym rpb1 of Thyronectria. The three new species T. asturiensis, T. caudata and T. obscura are added to the genus. Species rpb2 recently described in Pleonectria as well as some species of Mattirolia are combined in the genus, and a key to tef1 Thyronectria is provided. Five species are epitypified.
    [Show full text]
  • Microfungi Associated with Camellia Sinensis: a Case Study of Leaf and Shoot Necrosis on Tea in Fujian, China
    Mycosphere 12(1): 430–518 (2021) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/12/1/6 Microfungi associated with Camellia sinensis: A case study of leaf and shoot necrosis on Tea in Fujian, China Manawasinghe IS1,2,4, Jayawardena RS2, Li HL3, Zhou YY1, Zhang W1, Phillips AJL5, Wanasinghe DN6, Dissanayake AJ7, Li XH1, Li YH1, Hyde KD2,4 and Yan JY1* 1Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Tha iland 3 Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an 355015, People’s Republic of China 4Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People’s Republic of China 5Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749–016 Lisbon, Portugal 6 CAS, Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China 7School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China Manawasinghe IS, Jayawardena RS, Li HL, Zhou YY, Zhang W, Phillips AJL, Wanasinghe DN, Dissanayake AJ, Li XH, Li YH, Hyde KD, Yan JY 2021 – Microfungi associated with Camellia sinensis: A case study of leaf and shoot necrosis on Tea in Fujian, China. Mycosphere 12(1), 430– 518, Doi 10.5943/mycosphere/12/1/6 Abstract Camellia sinensis, commonly known as tea, is one of the most economically important crops in China.
    [Show full text]
  • Importation of Fresh Fruit of Avocado, Persea Americana Miller Var. 'Hass
    Importation of Fresh Fruit of Avocado, Persea americana Miller var. ‘Hass’, into the Continental United States from Colombia A Pathway-Initiated Risk Assessment October 31, 2016 Version 4 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Hass Avocado from Colombia Executive Summary The Republic of Colombia requested approval for imports into the continental United States of fresh avocado fruit, Persea americana Mill. var. ‘Hass’, without a peduncle. Because this commodity has not been imported from Colombia before, the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) conducted a pathway-initiated risk assessment to determine the risks associated with importing these ‘Hass’ avocados. We developed a list of pests known to occur in Colombia and associated with avocado based on the scientific literature, port-of-entry pest interception data, and information provided by the Colombian Ministry for Agriculture and Rural Development, and the Colombian Agricultural Institute (ICA). Commercial ‘Hass’ avocado is a conditional non-host for the fruit flies, Anastrepha fraterculus, A. striata, and Ceratitis spp. Thus, we did not list these organisms in the assessment. We determined that three quarantine arthropod pests were likely to follow the pathway, and qualitatively analyzed them to determine the unmitigated risk posed to the United States. Pest Taxonomy Pest Risk Potential Heilipus lauri Boheman Coleoptera: Curculionidae High Heilipus trifasciatus (Fabricius) Coleoptera: Curculionidae High Stenoma catenifer Walsingham Lepidoptera: Elaschistidae High All pests were rated High and for pests with High pest risk potential, mitigations beyond port-of- entry inspection are recommended.
    [Show full text]