Variation in Consumer Pressure Along 2500 Km in a Major Upwelling System: Crab Predators Are More Important at Higher Latitudes

Total Page:16

File Type:pdf, Size:1020Kb

Variation in Consumer Pressure Along 2500 Km in a Major Upwelling System: Crab Predators Are More Important at Higher Latitudes Marine Biology (2019) 166:142 https://doi.org/10.1007/s00227-019-3587-0 ORIGINAL PAPER Variation in consumer pressure along 2500 km in a major upwelling system: crab predators are more important at higher latitudes Catalina A. Musrri1 · Alistair G. B. Poore2 · Iván A. Hinojosa3,4 · Erasmo C. Macaya4,5,6 · Aldo S. Pacheco7 · Alejandro Pérez‑Matus8 · Oscar Pino‑Olivares1 · Nicolás Riquelme‑Pérez1 · Wolfgang B. Stotz1 · Nelson Valdivia6,9 · Vieia Villalobos1,10 · Martin Thiel1,4,11 Received: 21 January 2019 / Accepted: 10 September 2019 / Published online: 10 October 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Consumer pressure in benthic communities is predicted to be higher at low than at high latitudes, but support for this pat- tern has been ambiguous, especially for herbivory. To understand large-scale variation in biotic interactions, we quantify consumption (predation and herbivory) along 2500 km of the Chilean coast (19°S–42°S). We deployed tethering assays at ten sites with three diferent baits: the crab Petrolisthes laevigatus as living prey for predators, dried squid as dead prey for predators/scavengers, and the kelp Lessonia spp. for herbivores. Underwater videos were used to characterize the consumer community and identify those species consuming baits. The species composition of consumers, frequency of occurrence, and maximum abundance (MaxN) of crustaceans and the blenniid fsh Scartichthys spp. varied across sites. Consumption of P. laevigatus and kelp did not vary with latitude, while squid baits were consumed more quickly at mid and high latitudes. This is likely explained by the increased occurrence of predatory crabs, which was positively correlated with consumption of squidpops after 2 h. Crabs, rather than fsh, were the principal consumers of squid baits (91% of all recorded predation events) at sites south of 30°S. Fish and crustaceans preyed in similar proportion on P. laevigatus, with most fsh predation events at northern sites. The absence of any strong latitudinal patterns in consumption rate of tethered prey is likely due to redundancy among consumers across the latitudinal range, with crustaceans gaining in importance with increasing latitude, possibly replacing fsh as key predators. Introduction processes and modifying consumption rates of both pred- ators and herbivores on large scales (Doney et al. 2012). Consumer pressure varies over large scales due to natural Understanding these large-scale patterns is needed to test gradients in abiotic factors including solar radiation and how consumer pressure relates to latitudinal patterns in bio- temperatures (Valentine 1983; Reynolds et al. 2018). Cur- diversity, and how the strength of top-down control may be rently available evidence suggests a latitudinal pattern in the altered in a warming ocean. strength of consumer pressure, being higher at low than at While most previous studies confrmed higher predation high latitudes (Schemske et al. 2009). Temperature is a key pressure at low latitudes (Heck and Wilson 1987; Peterson driver of this gradient, having a strong efect on metabolic et al. 2001; Schemske et al. 2009; Freestone and Osman 2011; Freestone et al. 2011; Manyak-Davis et al. 2013; Sheppard-Brennand et al. 2017; Rodemann and Brandl Reviewed by Undisclosed experts 2017; Roslin et al. 2017; Reynolds et al. 2018) with just some exceptions (e.g., Harper and Peck 2016), evidence for Responsible Editor: P. Kraufvelin. latitudinal patterns in herbivory is mixed (Freidenburg et al. Electronic supplementary material The online version of this 2007; Poore et al. 2012; but see Longo et al. 2018). Sev- article (https ://doi.org/10.1007/s0022 7-019-3587-0) contains eral studies revealed increasing herbivore pressure at lower supplementary material, which is available to authorized users. latitudes (Pennings and Silliman 2005; Longo et al. 2014; Salazar and Marquis 2012; Baskett and Schemske 2018), * Martin Thiel [email protected] but others reported the expected relationship for some her- bivore groups only (Pennings et al. 2009), or even opposing Extended author information available on the last page of the article Vol.:(0123456789)1 3 142 Page 2 of 17 Marine Biology (2019) 166:142 patterns (Anstett et al. 2014; Moreira et al. 2015). Meta- 2010; Uribe et al. 2015), or barren grounds dominated by analyses of studies that have contrasted herbivory of primary sea urchins (Tetrapygus niger) or snails (Tegula sp.) and producers across latitudes (Moles et al. 2011) and the efect covered by crustose calcareous algae (Stotz et al. 2016). of herbivore exclusion experiments on seaweeds and sea- Species composition is relatively consistent along the con- grass (Poore et al. 2012; Vergés et al. 2018) have found no tinental coast of Chile (between 18°S and 42°S), and the evidence for latitudinal patterns in the strength of herbivory. most important predators are fshes (Ojeda et al. 2000), such In contrast, Longo et al. (2018) recently demonstrated that as Cheilodactylus variegatus, Pinguipes chilensis, Graus fsh herbivory became less prevalent at high latitudes (shift- nigra, Semicossyphus darwini and others (Pérez-Matus et al. ing to omnivory), while invertivory remained constant at all 2007), and invertebrates such as the crustaceans Romaleon latitudes. In addition to diferences among functional groups setosum (Fischer and Thatje 2008; Pacheco et al. 2013) and of consumers, the absence of a clear latitudinal pattern in Homalaspis plana (Fernández and Castilla 2000), the sea- consumer pressure could result from methodological difer- star Meyenaster gelatinosus (Urriago et al. 2011), Heliaster ences among studies (Anstett et al. 2016). helianthus (Gaymer and Himmelman 2008), and the mol- Several studies have contrasted consumption pressure lusc Concholepas concholepas (Dye 1991). These predators between a few sites in tropical and temperate regions (e.g., occur throughout most of the study area (Ojeda et al. 2000; Heck and Wilson 1987; Peterson et al. 2001; Pennings et al. Jesse and Stotz 2003) and infuence community structure 2009; Matassa and Trussell 2015), but the understanding of by preying on crustaceans, gastropods, bivalves and other the fuctuations in consumption intensity at mid-temperate benthic invertebrates (Pérez-Matus et al. 2012, 2017a). locations is incipient. More recent studies have used greater As subtidal hard-bottom communities are very similar numbers of sites (Harper and Peck 2016; Reynolds et al. across the Humboldt Current System (Aguilera et al. 2019), 2018; Longo et al. 2018) or meta-analyses (Poore et al. 2012; we hypothesize a latitudinal gradient in consumer pressure, Sheppard-Brennand et al. 2017; Vergés et al. 2018) to pro- with lower predation and herbivory pressure at higher lati- vide quantitative tests of the relationship between latitude tudes. Here, we studied latitudinal gradients in herbivore and and consumer pressure, with not all of them following the predation pressure in shallow subtidal communities, using expected latitudinal pattern (Poore et al. 2012; Harper and the same methodology over an extensive geographic range Peck 2016). To rigorously examine latitudinal patterns in in the SE Pacifc (19°S–42°S). consumer pressure without possible confounding efects, it is desirable to use the same methodology across multiple sites with similar habitat characteristics and coverage of substra- Methodology tum and organisms. The understanding of large-scale patterns in consumer Study sites pressure can also be improved by quantifying predation and herbivory simultaneously. Given that predators can con- Herbivory and predation assays were conducted at ten study trol the abundance of grazers (Manyak-Davis et al. 2013; sites along the Chilean coast from 19°S to 42°S between Haavisto and Jormalainen 2014; Miller et al. 2014; Östman November 2017 and March 2018 (see Table S1). Our study et al. 2016), variations in their abundance or feeding activ- area covered a latitudinal range of 2500 km along the con- ity could obscure any latitudinal patterns in herbivory or tinental coast of Chile (Aguilera et al. 2019), where annual even result in unexpected patterns (e.g., Rizzari et al. 2014). average sea surface temperatures range from 18 °C at low Analyzing those interactions in combination across the same latitudes (19°S) to 12 °C at high latitudes (42°S, data from latitudinal gradient seems necessary to understand poten- Bio-ORACLE, Tyberghein et al. 2012). The ten sampling tial gradients in consumer pressure and predict the outcome sites were distributed across the latitudinal gradient of of changes in temperature and species distributions (Miller the Chilean coast as evenly as possible, with distances of et al. 2014). 111–528 km between sites (Fig. 1). The Chilean coast is an ideal study system to examine The study sites were subtidal rocky habitats exposed or the above questions and to determine variation in consumer semi-exposed to wave action. Most sites were management pressure across a wide latitudinal gradient. Many species areas where only the local fshermen’s associations are and communities have extensive geographic distributions allowed to harvest assigned resources, except for Guaya- along the Humboldt Current System, which is characterized cancito (30°S) and Playa Blanca (28°S), which were open by high primary and secondary productivity due to intense access areas (Table S1). The macrobenthic community and year-round upwelling (Thiel et al. 2007). Subtidal habi- structure at each site was quantifed by visual estimates of tats comprise extensive rocky reefs with seaweed beds (Agu- the cover of sand, bare rocks (including rocks with encrust- ilera et al. 2019), including large kelps such as Lessonia ing coralline algae), kelps, and understory algae on images trabeculata or Macrocystis pyrifera (Macaya and Zuccarello that were extracted from the videos recorded at each site 1 3.
Recommended publications
  • FIP N° 2003-22 CARACTERIZACIÓN ECOLÓGICA Y PESQUERA DEL ÁREA DE RESERVA ARTESANAL ENTRE LA I Y II REGIONES
    INFORME FINAL FIP N° 2003-22 Caracterización ecológica y pesquera del área de reserva artesanal entre la I y II Regiones • Junio, 2005 • REQUIRENTE FONDO DE INVESTIGACIÓN PESQUERA, FIP Presidente del Consejo: Felipe Sandoval Precht EJECUTOR INSTITUTO DE FOMENTO PESQUERO, IFOP Jefe División Investigación Pesquera: Mauricio Braun Alegría Director Ejecutivo: Guillermo Moreno Paredes • Junio, 2005 • JEFE DE PROYECTO JORGE GONZÁLEZ YÁÑEZ. AUTORES JORGE GONZÁLEZ Y. MÓNICA CATRILAO C. NANCY BARAHONA T. CARLOS MARTÍNEZ F. CARLOS TAPIA J. ÁLVARO WILSON M. JORGE GARRIDO P. VÍCTOR BAROS P. ZAIDA YOUNG U. CARLOS CORTES S. CÉSAR GUEVARA P. CARLOS GASPAR S. JUAN SAAVEDRA N. • Junio, 2005 • INSTITUTO DE FOMENTO PESQUERO / DIVISIÓN DE INVESTIGACIÓN PESQUERA RESUMEN EJECUTIVO El sector pesquero de la I y II Regiones, comprende un importante segmento de la economía nacional, contribuyendo fuertemente con el empleo en las zonas costeras y al abastecimiento de materia prima. En esta macrozona la pesca está representada por dos sectores: industrial y artesanal y a su vez está constituida por tres segmentos principales de recursos; pesquerías bentónicas, pesquerías de peces y recolección de algas. Dada la importancia de la actividad extractiva artesanal e industrial en la franja de las 5 millas de la I y II Regiones, en el presente informe se describe y analiza la actividad extractiva de las principales pesquerías. Además, se entrega una completa revisión de los principales antecedentes eco-pesqueros del litoral de las regiones I y II, los cuales en conjunto con la información generada en el marco del proyecto, permitió generar una base de información georreferenciada, actualizada e integrada, para la franja de las 5 millas.
    [Show full text]
  • Universidad Austral De Chile Facultad De Ciencias Escuela De Biología Marina
    Universidad Austral de Chile Facultad de Ciencias Escuela de Biología Marina Profesor Patrocinante: Dr. Dirk Schories. Instituto de Ciencias Marinas y Limnológicas. Facultad de Ciencias – Universidad Austral de Chile. Profesor Co-patrocinante: Dr. Luis M. Pardo. Instituto de Ciencias Marinas y Limnológicas. Facultad de Ciencias – Universidad Austral de Chile. ECOLOGÍA TRÓFICA DEL ASTEROIDEO Cosmasterias lurida (Phillipi, 1858) EN EL SENO DEL RELONCAVÍ (SUR DE CHILE): DISTRIBUCIÓN, ABUNDANCIA, ALIMENTACIÓN Y MOVIMIENTO. Tesis de Grado presentada como parte de los requisitos para optar al grado de Licenciado en Biología Marina y Título Profesional de Biólogo Marino. IGNACIO ANDRÉS GARRIDO IRIONDO VALDIVIA - CHILE 2012. AGRADECIMIENTOS Primero que todo, me siento extremadamente afortunado gracias a tanta gente maravillosa que en estos 25 años se ha cruzado por mi camino. Quiero agradecer especialmente a todos los que aportaron de alguna forma en mi formación como Biólogo Marino: A mi núcleo familiar, Margarita I., Dagoberto G. y Augusto G. (también Gorlak y Ulises) que con sus consejos y apoyo incondicional logre cumplir este sueño que tanto anhelaba. Gracias por todo el cariño y por creer en mí, esto se los dedico a ustedes. Al Dr. Dirk Schories, amigo y profesor, quien me enseño a disfrutar y valorar lo que más admiro en la vida, la naturaleza y el infinito mundo submarino. Asimismo, quien me guió en mi formación como Biólogo Marino y con quien compartí incontables inmersiones fascinantes e inolvidables. Además fue quien financio esta tesis de pregrado. Espero podamos continuar trabajando en el futuro. ¡Muchas gracias por todo! Al Dr. Luis M. Pardo, quien con el tiempo se convirtió en un importante guía profesional y amigo.
    [Show full text]
  • Final FIP 2003-22.Pdf
    Caracterización ecológica y pesquera del área de reserva artesanal entre la I y II Regiones Item Type Report Authors González, J.; Catrilao, M.; Barahona, N.; Martínez, C.; Tapia, C.; Wilson, A.; Garrido, J.; Baros, V.; Young, Z.; Cortes, C.; Guevara, C.; Gaspar, C.; Saavedra, J. Download date 10/10/2021 21:10:40 Link to Item http://hdl.handle.net/1834/1811 INFORME FINAL FIP N° 2003-22 Caracterización ecológica y pesquera del área de reserva artesanal entre la I y II Regiones • Junio, 2005 • REQUIRENTE FONDO DE INVESTIGACIÓN PESQUERA, FIP Presidente del Consejo: Felipe Sandoval Precht EJECUTOR INSTITUTO DE FOMENTO PESQUERO, IFOP Jefe División Investigación Pesquera: Mauricio Braun Alegría Director Ejecutivo: Guillermo Moreno Paredes • Junio, 2005 • JEFE DE PROYECTO JORGE GONZÁLEZ YÁÑEZ. AUTORES JORGE GONZÁLEZ Y. MÓNICA CATRILAO C. NANCY BARAHONA T. CARLOS MARTÍNEZ F. CARLOS TAPIA J. ÁLVARO WILSON M. JORGE GARRIDO P. VÍCTOR BAROS P. ZAIDA YOUNG U. CARLOS CORTES S. CÉSAR GUEVARA P. CARLOS GASPAR S. JUAN SAAVEDRA N. • Junio, 2005 • INSTITUTO DE FOMENTO PESQUERO / DIVISIÓN DE INVESTIGACIÓN PESQUERA RESUMEN EJECUTIVO El sector pesquero de la I y II Regiones, comprende un importante segmento de la economía nacional, contribuyendo fuertemente con el empleo en las zonas costeras y al abastecimiento de materia prima. En esta macrozona la pesca está representada por dos sectores: industrial y artesanal y a su vez está constituida por tres segmentos principales de recursos; pesquerías bentónicas, pesquerías de peces y recolección de algas. Dada la importancia de la actividad extractiva artesanal e industrial en la franja de las 5 millas de la I y II Regiones, en el presente informe se describe y analiza la actividad extractiva de las principales pesquerías.
    [Show full text]
  • Guía De Peces Litorales
    PECES LITORALES de Chile Guía para una pesca recreativa marina sustentable Conservar las GUÍA PARA UNA PESCA RECREATIVA MARINA SUSTENTABLE tierras y aguas de las cuales depende la vida. Publicación realizada por The Nature Conservancy Este trabajo es producto de la colaboración de expertos académicos, de instituciones del estado, federaciones de pesca recreativa y ONGs. Santiago de Chile, 2020 Nature.org/LatinAmerica nature_org nature_org thenatureconservancy - 3 - GUÍA PARA UNA PESCA RECREATIVA MARINA SUSTENTABLE La pesca recreativa una actividad sustentable The Nature Conservancy (TNC) es una Organización No de Chile. Este grupo de especies incluyen especies carnívoras Gubernamental (ONG) con la misión de conservar y proteger y micro-carnívoras tales como la Vieja Negra o Mulato (Graus las aguas y tierras de las que depende la vida en las princi- nigra), Pejeperro (Semicossyphus darwini), Apañao (Hemilut- pales regiones del planeta, en línea con el desarrollo social, janus macrophthalmos) y Bilagay o Pintacha (Cheilodactylus económico y el respeto por las comunidades. En Chile y Perú, variegatus); omnívoros como el Acha (Medialuna ancietae) y el estamos trabajando en proteger y dar un uso sustentable a Baunco (Girella laevifrons), y el herbívoro Jerguilla (Aplodactylus los recursos pesqueros que son parte del ecosistema mari- punctatus), entre otros. Las especies más emblemáticas del no de la Corriente de Humboldt, especialmente de los peces litoral chileno son tres; la Vieja Negra o Mulato, el Pejeperro litorales y del hábitat marino costero que generan las algas y el Acha y son las que muestran los mayores problemas de pardas. conservación, debido a que alcanzan grandes tamaños y va- lor comercial.
    [Show full text]
  • The Diet and Predator-Prey Relationships of the Sea Star Pycnopodia Helianthoides (Brandt) from a Central California Kelp Forest
    THE DIET AND PREDATOR-PREY RELATIONSHIPS OF THE SEA STAR PYCNOPODIA HELIANTHOIDES (BRANDT) FROM A CENTRAL CALIFORNIA KELP FOREST A Thesis Presented to The Faculty of Moss Landing Marine Laboratories San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Arts by Timothy John Herrlinger December 1983 TABLE OF CONTENTS Acknowledgments iv Abstract vi List of Tables viii List of Figures ix INTRODUCTION 1 MATERIALS AND METHODS Site Description 4 Diet 5 Prey Densities and Defensive Responses 8 Prey-Size Selection 9 Prey Handling Times 9 Prey Adhesion 9 Tethering of Calliostoma ligatum 10 Microhabitat Distribution of Prey 12 OBSERVATIONS AND RESULTS Diet 14 Prey Densities 16 Prey Defensive Responses 17 Prey-Size Selection 18 Prey Handling Times 18 Prey Adhesion 19 Tethering of Calliostoma ligatum 19 Microhabitat Distribution of Prey 20 DISCUSSION Diet 21 Prey Densities 24 Prey Defensive Responses 25 Prey-Size Selection 27 Prey Handling Times 27 Prey Adhesion 28 Tethering of Calliostoma ligatum and Prey Refugia 29 Microhabitat Distribution of Prey 32 Chemoreception vs. a Chemotactile Response 36 Foraging Strategy 38 LITERATURE CITED 41 TABLES 48 FIGURES 56 iii ACKNOWLEDGMENTS My span at Moss Landing Marine Laboratories has been a wonderful experience. So many people have contributed in one way or another to the outcome. My diving buddies perse- vered through a lot and I cherish our camaraderie: Todd Anderson, Joel Thompson, Allan Fukuyama, Val Breda, John Heine, Mike Denega, Bruce Welden, Becky Herrlinger, Al Solonsky, Ellen Faurot, Gilbert Van Dykhuizen, Ralph Larson, Guy Hoelzer, Mickey Singer, and Jerry Kashiwada. Kevin Lohman and Richard Reaves spent many hours repairing com­ puter programs for me.
    [Show full text]
  • Actualización Y Validación De La Clasificación De Las Zonas Biogeográficas Litorales
    Proyecto FIP N° 2004 – 28 INFORME FINAL ACTUALIZACIÓN Y VALIDACIÓN DE LA CLASIFICACIÓN DE LAS ZONAS BIOGEOGRÁFICAS LITORALES UNIVERSIDAD AUSTRAL DE CHILE Enero de 2006 RESUMEN EJECUTIVO El objetivo general de este Proyecto fue actualizar la clasificación de las zonas zoogeográficas litorales de la costa de Chile, determinando los factores físicos y biológicos que permiten caracterizar esas zonas. Se analizaron bases de datos de las características físicas de la costa de Chile, incluyendo rugosidad de la costa, ancho de la plataforma continental, vientos costeros, temperatura superficial del mar, radiación solar y concentración (satelital) de clorofila y de la distribución y abundancia de invertebrados y peces de ambientes inter y submareales y de fondos blandos y rocosos y base de datos de macroalgas. a) Características físicas y ambientales de la costa de Chile La costa de Chile puede ser dividida en tres grandes zonas de acuerdo a la rugosidad de la misma: (i) una costa extremadamente rugosa entre 51 y 55ºS, (ii) una costa rugosa entre 46 y 50ºS y (iii) una costa poco rugosa desde 40ºS hacia el norte. Cuatro zonas se pueden reconocer en base al ancho de la plataforma: (i) plataforma muy angosta (< 10 km) entre el límite norte y 33,5ºS; (ii) plataforma menos angosta (>10 km, < 20 km) entre 33,5ºS y 36ºS; (iii) plataforma ancha (hasta 70 km) entre 36ºS hasta 40ºS; (iv) ancho dificilmente definible al sur de 40ºS, por la extrema rugosidad de la zona. Desde el punto de vista de los vientos, se tienen al menos 3 zonas geográficas: (i) la zona centro- norte del país, desde el límite norte del país hasta 39ºS, con vientos meridionales hacia el norte durante todo el año; (ii) una zona de transición entre 39 y 45ºS, en que la dirección de los vientos meridionales depende de la estación del año; e (iii) la zona austral del país, al sur de 45ºS, en que los vientos meridionales soplan hacia el sur durante todo el año.
    [Show full text]
  • Autotomy of Rays of Heliaster Helianthus (Asteroidea: Echinodermata)*
    Zoosymposia 7: 173–176 (2012) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2012 · Magnolia Press ISSN 1178-9913 (online edition) Autotomy of rays of Heliaster helianthus (Asteroidea: Echinodermata)* JOHN M. LAWRENCE1,3 & CARLOS F. GAYMER2 1 Department of Integrative Biology, University of South Florida, Tampa, Florida, USA 2 Departamento de Biología Marina, CEAZA and IEB, Universidad Católica del Norte, Coquimbo, Chile 3 Corresponding author, E-mail: [email protected] *In: Kroh, A. & Reich, M. (Eds.) Echinoderm Research 2010: Proceedings of the Seventh European Conference on Echinoderms, Göttingen, Germany, 2–9 October 2010. Zoosymposia, 7, xii + 316 pp. Abstract In species of the family Heliasteridae, the ossicles of the proximal parts of the sides of each ray are joined by connective tissue to those of the adjacent rays to form interradial septa. These provide support to the extensive disc. Only a relatively small part of the ray is free. Autotomy of rays occurs in Heliaster helianthus in response to predatory attack by the asteroid Meyenaster gelatinosus. Autotomy of the ray does not occur at the base of the free part of the ray (arm) but near the base of the ray. In addition to the plane of autotomy at this location, a longitudinal plane of autotomy occurs in the connec- tive tissue between the ossicles of the interradial septa. This indicates a plane of mutable collagenous tissue is present. Autotomy of the ray involves all these planes of autotomy and results in loss of most of the ray. Key words: Asteroidea, Heliasteridae, autotomy, ray loss, mutable collagenous tissue Introduction Autotomy of rays occurs near the base of the arm (the free part of the ray) in most asteroids (Emson & Wilkie 1980).
    [Show full text]
  • The Evolution of Gigantism on Temperate Seashores
    bs_bs_banner Biological Journal of the Linnean Society, 2012, 106, 776–793. The evolution of gigantism on temperate seashores GEERAT J. VERMEIJ* University of California Davis, Department of Geology, One Shields Avenue, Davis, CA 95616 Received 10 January 2012; revised 22 February 2012; accepted for publication 22 February 2012bij_1897 776..793 The extent to which animal lineages achieve large body size, a trait with broad advantages in competition and defence, varies in space and time according to the supply of (and demand for) resources, as well as the magnitude and effects of extinction. Using the maximum sizes of shallow-water marine shell-bearing molluscs belonging to nineteen guilds (groups of species with similar habits and food sources) in seven temperate regions from the Early Miocene to the Recent, the present study examined the controls on productivity and predation that enable and compel large size to evolve. The North Pacific (especially its eastern sector) has been most favourable to large-bodied species from the Pliocene onward. Large productive kelps (Laminariales) evolved there in conjunction with herbivorous mammals, setting the stage through positive feedbacks between production and consumption for the evolution of large molluscan herbivores and suspension-feeders. The evolution of bottom-feeding predatory mammals together with other large predators created intense selection for large molluscan sizes. Very large molluscs in the Early Miocene were concentrated in the southern hemisphere, especially among metabolically passive species. Extinctions, which preferentially targeted the largest members of guilds in most regions, were more numerous in the southern hemisphere and the North Atlantic than in the North Pacific.
    [Show full text]
  • UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA PROFESIONAL DE BIOLOGÍA Riqueza Y
    UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA PROFESIONAL DE BIOLOGÍA Riqueza y tipos de hábitat de equinodermos en la Región Arequipa al 2017 Tesis para optar el título profesional de Biólogo presentado por el Bachiller en Ciencias Biológicas: Michael Leopoldo Espinoza Roque Asesor: Blgo. Dr. Graciano Alberto Del Carpio Tejada AREQUIPA – PERÚ 2018 1 ____________________________________ Blgo. Dr. Graciano Alberto Del Carpio Tejada ASESOR 2 DEDICATORIA A la memoria de mi padre, Leopoldo Espinoza Ramos, por todo su cariño, comprensión y sacrificio, sé que estaría feliz al verme cumplir esta meta. 3 AGRADECIMIENTOS A la Universidad Nacional de San Agustín de Arequipa (UNSA INVESTIGA), por el soporte financiero, con recursos del canon de la UNSA, para que se realice el presente proyecto de investigación (Contrato de financiamiento N° 156 – 2016 – UNSA), y un especial agradecimiento al Blgo. Luis Alberto Ponce Soto por la paciencia y apoyo en el acompañamiento y monitoreo de mi proyecto. A mi asesor de tesis, Blgo. Dr. Graciano Alberto Del Carpio Tejada, por su apoyo incondicional durante el desarrollo del presente trabajo de investigación. A la Blga. Rosaura Gonzales Juárez, por su contribución al inicio de este proyecto y sus enseñanzas y consejos que han aportado en mi formación profesional. Al Blgo. Franz Cardoso Pacheco, por permitirme consultar material de la colección científica del Laboratorio de Biología y Sistemática de Invertebrados Marinos de la Facultad de Ciencias Biológicas (LaBSIM), de la Universidad Nacional Mayor de San Marcos. A Gustavo Robles Fernández, Por permitirme consultar material del Instituto de Investigación y Desarrollo Hidrobiológico de la Universidad Nacional de San Agustín (INDEHI – UNSA).
    [Show full text]
  • Scales of Detection and Escape of the Sea Urchin Tetrapygus Niger in Interactions with the Predatory Sun Star Heliaster Helianthus
    Journal of Experimental Marine Biology and Ecology 407 (2011) 302–308 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Scales of detection and escape of the sea urchin Tetrapygus niger in interactions with the predatory sun star Heliaster helianthus Tatiana Manzur a,b,⁎, Sergio A. Navarrete a a Estación Costera de Investigaciones Marinas & Center for Advanced Studies in Ecology and Biodiversity, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile b Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile article info abstract Article history: Predators can simultaneously have lethal (consumption) and non-lethal (modification of traits) effects on Received 26 January 2011 their prey. Prey escape or fleeing from potential predators is a common form of a non-lethal predator effect. Received in revised form 20 June 2011 The efficiency of this response depends on the prey's ability to detect and correctly identify its predator far Accepted 26 June 2011 enough to increase the probability of successful escape, yet short enough to allow it to allocate time to other Available online 26 July 2011 activities (e.g. foraging). In this study, we characterized the non-lethal effect of the sun star Heliaster helianthus on the black sea urchin Tetrapygus niger by assessing the nature of predator detection and the Keywords: fi Detection spatial scale involved both in predator detection and in the escape response. Through eld and laboratory Escape experiments we demonstrate that T.
    [Show full text]
  • Aspects of the Biology of Astrostole Scabra
    ASPECTS OF THE BIOLOGY OF ASTROSTOLE SCABRA (HUTTON, 1872) -------------_.. _.. __ ._. A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in Zoology, in the University of Canterbury by John C. Town University of Canterbury 1979 THESlS i \ ,~ t I ':) [ -lit- ;'. CONTENTS I L r . r'l CHAPTER Page ABSTRACT x INTRODUCTION • 1 SECTION 1 1 DISTRIBUTION AND DISPERSAL OF THE GENUS ASTROSTOLE FISHER, 1923 (ECHINODERMATA: ASTEROIDEA) 3 Introduction 3 Distribution of Astrostole • 4 Distribution of Astrostole scabra •• • • 0 5 Discussion • 9 SECTION 2 2 SOME ASPECTS OF THE POPULATION DYNAMICS OF ASTROSTOLE SCABRA • 17 Introduction • • • • 17 Materials and Methods 19 Results 22 Movement 22 Size and morphology • 30 Growth, recruitment, mortality and longevity 36 Discussion • 39 SECTION 3 3 REPRODUCTIVE PERIODICITY AND SOME FACTORS AFFECTING GONAD PRODUCTION IN ASTROSTOLE SCABRA 46 Introduction • • • • . • 46 Materials and Methods 47 ii CHAPTER Page Results 48 Annual reproductive cycle • 48 Pyloric caeca indices . 51 Gonad production 51 Sex ratio • 54 Discussion • • 54 SECTION 4 4 DIETARY COMPOSITION AND SEASONAL ASPECTS OF FEEDING ACTIVITY IN ASTROSTOLE SCABRA • 59 General Study Area • 61 Study Sites 63 Materials and Methods 64 Results 68 Feeding behaviour • 68 Overall dietary composition • 69 Comparison of diet between sites 74 Seasonal aspects of feeding behaviour and dietary compositon 79 The impact of predation on the prey community • 87 5 SELECTIVE FEEDING 91 Introduction • • • • 91 Materials and Methods 92 Results 94 6 PREY ESCAPE REACTIONS 98 Introduction . • • . • . 98 Materials and Methods 103 Results 103 iii CHAPTER Page chitons • 104 Abalone • 104 Limpets, 107 Fissurellid gastropods 107 Littorinid gastropods • 108 Trochid gastropods 109 Whelks 110 Echinoderms .
    [Show full text]
  • Propuesta Para La Creación Del Área Marina Y Costera Protegida De Multiples Usos La Higuera -Isla Chañaral
    PROPUESTA PARA LA CREACIÓN DEL ÁREA MARINA Y COSTERA PROTEGIDA DE MULTIPLES USOS LA HIGUERA -ISLA CHAÑARAL OCEANA, Oficina para Sudamérica Avda. Bustamante 24, Ofic. 2C, Providencia | Santiago Chile Tel. 56-2-7957140 | www.oceana.org INDICE Contenido INDICE 3 RESUMEN EJECUTIVO 7 RESUMEN EJECUTIVO 8 ANTECEDENTES GENERALES 8 FUNDAMENTACIÓN CIENTÍFICA PARA PROPONER LA CREACION DE UN AMCP -MU 9 DIVERSIDAD DE ESPECIES 9 DIVERSIDAD DE HÁBITATS 10 REPRESENTATIVIDAD DE ESPECIES Y HÁBITATS DE IMPORTANCIA ECOLÓGICA 10 EXCLUSIVIDAD 11 PORCIÓN TERRESTRE DE LA PROPUESTA 11 FUNDAMENTACIÓN SOCIOECONOMICA PARA PROPONER LA CREACION DE UN AMCP – MU 12 USOS ACTUALES Y POTENCIALES DEL ÁREA: MACRO Y MICROZONIFICACIÓN DEL BORDE COSTERO 12 VALORACIÓN DE LOS SERVICIOS AMBIENTALES DE LAS RESERVAS MARINAS I. CHAÑARAL E I. CHOROS – DAMAS 13 PERTINENCIA DEL INSTRUMENTO DE PROTECCIÓN PROPUESTO 14 ANÁLISIS DE ACTORES 14 ANÁLISIS ESTRATÉGICO 15 INTRODUCCIÓN 17 1. INTRODUCCIÓN 18 ANTECEDENTES JURIDICOS Y ADMINISTRATIVOS 22 2. ANTECEDENTES JURIDICOS Y ADMINISTRATIVOS 23 ¿QUÉ ES UN ÁREA MARINA Y COSTERA PROTEGIDA DE MÚLTIPLES USOS (AMCP-MU)? 23 ¿QUÉ IMPLICANCIAS TENDRÍA LA CREACIÓN DE UN AMCP – MU? 23 ASPECTOS JURÍDICOS Y DE ORGANIZACIÓN 24 ANTECEDENTES GENERALES DEL AREA PROPUESTA PARA SER PROTEGIDA 26 3. IDENTIFICACIÓN GEOGRÁFICA DEL ÁREA 27 3.2 CLIMA 29 3.2 COSTA Y OCEANOGRAFÍA 30 3.2.1 COSTA 30 3.2.2 OCEANOGRAFÍA 33 PARÁMETROS OCEANOGRÁFICOS FÍSICOS GENERALES 34 EL FENÓMENO DE EL NINO Y DE LA NIÑA Ó ENSO 37 FUNDAMENTACIÓN GENERAL PARA PROPONER LA CREACIÓN DE UN AMCP-MU
    [Show full text]