Universidad Austral De Chile Facultad De Ciencias Escuela De Biología Marina

Total Page:16

File Type:pdf, Size:1020Kb

Universidad Austral De Chile Facultad De Ciencias Escuela De Biología Marina Universidad Austral de Chile Facultad de Ciencias Escuela de Biología Marina Profesor Patrocinante: Dr. Dirk Schories. Instituto de Ciencias Marinas y Limnológicas. Facultad de Ciencias – Universidad Austral de Chile. Profesor Co-patrocinante: Dr. Luis M. Pardo. Instituto de Ciencias Marinas y Limnológicas. Facultad de Ciencias – Universidad Austral de Chile. ECOLOGÍA TRÓFICA DEL ASTEROIDEO Cosmasterias lurida (Phillipi, 1858) EN EL SENO DEL RELONCAVÍ (SUR DE CHILE): DISTRIBUCIÓN, ABUNDANCIA, ALIMENTACIÓN Y MOVIMIENTO. Tesis de Grado presentada como parte de los requisitos para optar al grado de Licenciado en Biología Marina y Título Profesional de Biólogo Marino. IGNACIO ANDRÉS GARRIDO IRIONDO VALDIVIA - CHILE 2012. AGRADECIMIENTOS Primero que todo, me siento extremadamente afortunado gracias a tanta gente maravillosa que en estos 25 años se ha cruzado por mi camino. Quiero agradecer especialmente a todos los que aportaron de alguna forma en mi formación como Biólogo Marino: A mi núcleo familiar, Margarita I., Dagoberto G. y Augusto G. (también Gorlak y Ulises) que con sus consejos y apoyo incondicional logre cumplir este sueño que tanto anhelaba. Gracias por todo el cariño y por creer en mí, esto se los dedico a ustedes. Al Dr. Dirk Schories, amigo y profesor, quien me enseño a disfrutar y valorar lo que más admiro en la vida, la naturaleza y el infinito mundo submarino. Asimismo, quien me guió en mi formación como Biólogo Marino y con quien compartí incontables inmersiones fascinantes e inolvidables. Además fue quien financio esta tesis de pregrado. Espero podamos continuar trabajando en el futuro. ¡Muchas gracias por todo! Al Dr. Luis M. Pardo, quien con el tiempo se convirtió en un importante guía profesional y amigo. Siempre con la talla a flor de piel, a demás, quien me dio un espacio en su oficina, siempre tuvo el tiempo para responder a mis inquietudes. ¡Muchas gracias! Igualmente espero podamos continuar trabajando en el futuro. Al Dr. Nelson Valdivia, con él cerré la comisión de mi tesis. Gracias por sus consejos y comentarios para mejorar este trabajo. A María José Díaz, mi compañera de viaje en esta vida, con la que viví mí día a día en este largo camino casi desde que llegue a Valdivia. Tu más que nadie sabes todo lo que nos costó llegar hasta acá. Te amo mucho y gracias por todo. A Juan Pablo Rivera, mi perro, amigo del alma, gracias por tus consejos y tu desinteresada e incondicional amistad. ¡Ahora se viene lo mejor! A mis tíos y primos (Marta I., Juan S., Julia I., María Fernanda S., Juan S., Mario I, María Eugenia I., Eduardo del R., Manuel V., Soledad V., José V., Verónica P., Germán P. y a mis sobrinos), por su apoyo y compañía, por tantos momentos agradables en viajes y reuniones familiares, llenas de cariño y de risas, sinceramente inolvidables, espero queden muchas más por delante. A mi tío Manolo que ya no está con nosotros. Lo recordaré por siempre por su espectacular manera de ser. Aprendí mucho de usted y de sus chistes. Lo quiero mucho. A mis amigos Ligia A., Lorena R., Felipe R., Diego O., Daniel S., Francisco O. y muchos otros. Mi infancia y adolescencia la viví con ustedes. A mis amigos de la UACH, equipo de buceo y ATraE. Mauricio L., José Luis K., Benjamín C., Mateo C., Oriana M., Paulina B., Andrea B., Rodrigo F., Tracy G., Lukas M., Fernando C., Jorge H., Isabel Del M., Thomas H., Juan Pablo F., Yoselyn R., a mi equipo de voleibol UACH. Sea cual sea el camino que cada uno tome, siempre serán mis amigos. Tantos momentos entretenidos, tantas anécdotas, realmente tendría que hacer un sobre esfuerzo recordar momentos tensos. Los quiero mucho a todos. A Patricio Cáceres y Ángela Murie, por su cariño, preocupación y por las acogedoras bienvenidas en Punta Arenas. A la Sra. Irenia y Camila R., que viví con ellas los 4 primeros años de mi carrera. Sra. Irenia, gracias por su preocupación y estar atenta a que no me faltará nada. Me hizo indudablemente la vida más fácil en mis inicios aquí en Valdivia. Índice Página ÍNDICE DE FIGURAS I ÍNDICE DE TABLAS II ÍNDICE DE ANEXOS III 1. RESUMEN ....................................................................................................................................... 1 1.1 SUMMARY ...................................................................................................................................... 2 2. INTRODUCCIÓN........................................................................................................................... 3 2.1 Hipótesis de trabajo ......................................................................................................................... 12 2.2 Objetivos generales ......................................................................................................................... 12 2.3 Objetivos específicos ...................................................................................................................... 12 3. MATERIALES Y MÉTODOS ..................................................................................................... 13 3.1 Áreas de estudio .............................................................................................................................. 13 3.1.1 Descripción general de las áreas de estudio.............................................................................. 14 3.2 Distribución y abundancia vertical de Cosmasterias lurida ........................................................... 15 3.2.1 Transectos verticales batimétricos con GPS ............................................................................. 15 3.3 Peso húmedo-seco de Cosmasterias lurida ..................................................................................... 18 3.3.1 Relación peso húmedo-seco de Cosmasterias lurida ............................................................... 18 3.3.2 Peso seco según intervalo de profundidad ................................................................................ 19 3.4 Potenciales presas de Cosmasterias lurida ..................................................................................... 19 3.4.1 Observaciones sobre alimentación in situ ................................................................................. 19 3.4.2 Estimación cobertura (%) fauna y presas, mediante foto-cuadrantes ....................................... 21 3.5 Actividad y movimiento de Cosmasterias lurida ........................................................................... 24 3.5.1 Grabaciones con lapso de tiempo ............................................................................................. 24 3.6 Análisis estadísticos ........................................................................................................................ 27 4. RESULTADOS .............................................................................................................................. 29 4.1 Distribución y abundancia vertical de Cosmasterias lurida ........................................................... 29 4.1.1 Transectos verticales batimétricos de con GPS ........................................................................ 29 4.2 Peso húmedo-seco de Cosmasterias lurida ..................................................................................... 33 4.2.1 Relación peso húmedo – peso seco de Cosmasterias lurida ................................................... 33 4.2.2 Peso seco según intervalo de profundidad ................................................................................ 33 4.3 Potenciales presas de Cosmasterias lurida ..................................................................................... 37 4.3.1 Observaciones sobre alimentación in situ de Cosmasterias lurida ......................................... 37 4.3.2 Estimación de cobertura (%) fauna y presas, mediante foto-cuadrantes .................................. 42 4.4 Actividad y movimiento de Cosmasterias lurida ........................................................................... 48 4.4.1 Grabaciones con lapso de tiempo ............................................................................................. 48 5. DISCUSIÓN................................................................................................................................... 51 6. CONCLUSIÓN .............................................................................................................................. 63 7. BIBLIOGRAFÍA ........................................................................................................................... 65 8. ANEXOS ........................................................................................................................................ 71 I INDICE DE FIGURAS Figura 1: Mapa de Sur América en el que se indica el Seno del Reloncaví y dentro de él, se muestran los 2 sitios de trabajo. Caleta Chaicas y Yerba Buena. Distancia entre Caleta Chaicas y Yerba Buena; 4 Km………………………………………………………………..14 Figura 2: Metodología transectos verticales con GPS subacuático (Schories & Niedzwiedz 2012) .A: Boya con antena de GPS. B: Cable que transmite señal a GPS. C: GPS subacuático. D: Soga de 3 m que une a los 2 buzos. E: Cámara fotográfica con la que se obtenían las fotocuadrantes…………………………………………………………………...17 Figura 3: A: Muestreo en Bahía Yerba Buena, B: Peso húmedo C. lurida, C: C. lurida en estufa de secado a 75 °C, D: Peso seco de C. lurida en laboratorio………………………………………………………………………………...…..18 Figura 4: A: Mediciones en el sitio de muestreo,
Recommended publications
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • A Revision of Ophidiaster Davidsoni De Loriol
    A revision of Ophidiaster davidsoni de Loriol and Pellat 1874 from the Tithonian of Boulogne (France) and its transfer from the Valvatacea to the new forcipulatacean genus Psammaster gen. nov Marine Fau, Loïc Villier, Timothy Ewin, Andrew Gale To cite this version: Marine Fau, Loïc Villier, Timothy Ewin, Andrew Gale. A revision of Ophidiaster davidsoni de Loriol and Pellat 1874 from the Tithonian of Boulogne (France) and its transfer from the Valvatacea to the new forcipulatacean genus Psammaster gen. nov. Fossil Record, Copernicus Publications, 2020, 23 (2), pp.141 - 149. 10.5194/fr-23-141-2020. hal-02935674 HAL Id: hal-02935674 https://hal.sorbonne-universite.fr/hal-02935674 Submitted on 10 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Foss. Rec., 23, 141–149, 2020 https://doi.org/10.5194/fr-23-141-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. A revision of Ophidiaster davidsoni de Loriol and Pellat 1874 from the Tithonian of Boulogne (France) and its transfer from the Valvatacea to the new forcipulatacean genus Psammaster gen. nov. Marine Fau1, Loïc Villier2, Timothy A.
    [Show full text]
  • A Revision of Ophidiaster Davidsoni
    Foss. Rec., 23, 141–149, 2020 https://doi.org/10.5194/fr-23-141-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. A revision of Ophidiaster davidsoni de Loriol and Pellat 1874 from the Tithonian of Boulogne (France) and its transfer from the Valvatacea to the new forcipulatacean genus Psammaster gen. nov. Marine Fau1, Loïc Villier2, Timothy A. M. Ewin3, and Andrew S. Gale3,4 1Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland 2Centre de Recherche en Paléontologie – Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France 3Department of Earth Sciences, The Natural History Museum London, Cromwell Road, South Kensington, London, UK, SW7 5BD, UK 4School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO13QL, UK Correspondence: Marine Fau (marine.fau@unifr.ch) Received: 20 April 2020 – Revised: 20 June 2020 – Accepted: 23 June 2020 – Published: 28 July 2020 Abstract. Forcipulatacea is one of the three major groups 1 Introduction of extant sea stars (Asteroidea: Echinodermata), composed of 400 extant species, but only known from fewer than 25 Asteroidea (starfish or sea stars) is one of the most diverse fossil species. Despite unequivocal members being recog- echinoderm clades with approximately 1900 extant species nized in the early Jurassic, the evolutionary history of this (Mah and Blake, 2012) and around 600 extinct species (Vil- group is still the subject of debate. Thus, the identifica- lier, 2006) However, the fossil record of Asteroidea is rather tion of any new fossil representatives is significant. We here scarce (e.g.
    [Show full text]
  • Crab Predators Are More Important at Higher Latitudes
    Marine Biology (2019) 166:142 https://doi.org/10.1007/s00227-019-3587-0 ORIGINAL PAPER Variation in consumer pressure along 2500 km in a major upwelling system: crab predators are more important at higher latitudes Catalina A. Musrri1 · Alistair G. B. Poore2 · Iván A. Hinojosa3,4 · Erasmo C. Macaya4,5,6 · Aldo S. Pacheco7 · Alejandro Pérez‑Matus8 · Oscar Pino‑Olivares1 · Nicolás Riquelme‑Pérez1 · Wolfgang B. Stotz1 · Nelson Valdivia6,9 · Vieia Villalobos1,10 · Martin Thiel1,4,11 Received: 21 January 2019 / Accepted: 10 September 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Consumer pressure in benthic communities is predicted to be higher at low than at high latitudes, but support for this pat- tern has been ambiguous, especially for herbivory. To understand large-scale variation in biotic interactions, we quantify consumption (predation and herbivory) along 2500 km of the Chilean coast (19°S–42°S). We deployed tethering assays at ten sites with three diferent baits: the crab Petrolisthes laevigatus as living prey for predators, dried squid as dead prey for predators/scavengers, and the kelp Lessonia spp. for herbivores. Underwater videos were used to characterize the consumer community and identify those species consuming baits. The species composition of consumers, frequency of occurrence, and maximum abundance (MaxN) of crustaceans and the blenniid fsh Scartichthys spp. varied across sites. Consumption of P. laevigatus and kelp did not vary with latitude, while squid baits were consumed more quickly at mid and high latitudes. This is likely explained by the increased occurrence of predatory crabs, which was positively correlated with consumption of squidpops after 2 h.
    [Show full text]
  • The Diet and Predator-Prey Relationships of the Sea Star Pycnopodia Helianthoides (Brandt) from a Central California Kelp Forest
    THE DIET AND PREDATOR-PREY RELATIONSHIPS OF THE SEA STAR PYCNOPODIA HELIANTHOIDES (BRANDT) FROM A CENTRAL CALIFORNIA KELP FOREST A Thesis Presented to The Faculty of Moss Landing Marine Laboratories San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Arts by Timothy John Herrlinger December 1983 TABLE OF CONTENTS Acknowledgments iv Abstract vi List of Tables viii List of Figures ix INTRODUCTION 1 MATERIALS AND METHODS Site Description 4 Diet 5 Prey Densities and Defensive Responses 8 Prey-Size Selection 9 Prey Handling Times 9 Prey Adhesion 9 Tethering of Calliostoma ligatum 10 Microhabitat Distribution of Prey 12 OBSERVATIONS AND RESULTS Diet 14 Prey Densities 16 Prey Defensive Responses 17 Prey-Size Selection 18 Prey Handling Times 18 Prey Adhesion 19 Tethering of Calliostoma ligatum 19 Microhabitat Distribution of Prey 20 DISCUSSION Diet 21 Prey Densities 24 Prey Defensive Responses 25 Prey-Size Selection 27 Prey Handling Times 27 Prey Adhesion 28 Tethering of Calliostoma ligatum and Prey Refugia 29 Microhabitat Distribution of Prey 32 Chemoreception vs. a Chemotactile Response 36 Foraging Strategy 38 LITERATURE CITED 41 TABLES 48 FIGURES 56 iii ACKNOWLEDGMENTS My span at Moss Landing Marine Laboratories has been a wonderful experience. So many people have contributed in one way or another to the outcome. My diving buddies perse- vered through a lot and I cherish our camaraderie: Todd Anderson, Joel Thompson, Allan Fukuyama, Val Breda, John Heine, Mike Denega, Bruce Welden, Becky Herrlinger, Al Solonsky, Ellen Faurot, Gilbert Van Dykhuizen, Ralph Larson, Guy Hoelzer, Mickey Singer, and Jerry Kashiwada. Kevin Lohman and Richard Reaves spent many hours repairing com­ puter programs for me.
    [Show full text]
  • Biostratigraphy and Diversity Patterns of Cenozoic Echinoderms from Florida
    BIOSTRATIGRAPHY AND DIVERSITY PATTERNS OF CENOZOIC ECHINODERMS FROM FLORIDA By CRAIG W. OYEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2001 Walter and Norma Oyen, who have always I dedicate this to my parents, expressed absolute confidence in my ability to succeed and supported all my this without their endeavors without question or hesitation. I could not have done it realize. support through all these years and I appreciate more than they ACKNOWLEDGMENTS This project could not have been completed without the aid of many people. Most important is the assistance and direction given by my dissertation committee chair, Dr. Douglas S. Jones. He encouraged me to work on whatever suggestions to improve my topic(s) I found interesting, and simply gave me approach in order to answer any of those questions. He also made my time in Gainesville enjoyable academically and socially by introducing me to other faculty and students, inviting me to his home or restaurants for dinners, and participating in pick-up basketball games and intramural games for relaxation. He (along with Roger Portell) accompanied me on many fascinating fieldtrips in Florida and other locations (often in association with GSA meetings) that expanded my scientific and other perspectives greatly. I thank the other members of my dissertation committee, Drs. Randazzo, Hodell, MacFadden, and Mature, for participating in my research and providing guidance whenever I it to had this group of faculty asked for their help. I consider a pleasure have members participating on my committee because they only treated me with respect and they openly provided suggestions they believed would serve me best in the context of completing my research and degree.
    [Show full text]
  • Autotomy of Rays of Heliaster Helianthus (Asteroidea: Echinodermata)*
    Zoosymposia 7: 173–176 (2012) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2012 · Magnolia Press ISSN 1178-9913 (online edition) Autotomy of rays of Heliaster helianthus (Asteroidea: Echinodermata)* JOHN M. LAWRENCE1,3 & CARLOS F. GAYMER2 1 Department of Integrative Biology, University of South Florida, Tampa, Florida, USA 2 Departamento de Biología Marina, CEAZA and IEB, Universidad Católica del Norte, Coquimbo, Chile 3 Corresponding author, E-mail: lawr@usf.edu *In: Kroh, A. & Reich, M. (Eds.) Echinoderm Research 2010: Proceedings of the Seventh European Conference on Echinoderms, Göttingen, Germany, 2–9 October 2010. Zoosymposia, 7, xii + 316 pp. Abstract In species of the family Heliasteridae, the ossicles of the proximal parts of the sides of each ray are joined by connective tissue to those of the adjacent rays to form interradial septa. These provide support to the extensive disc. Only a relatively small part of the ray is free. Autotomy of rays occurs in Heliaster helianthus in response to predatory attack by the asteroid Meyenaster gelatinosus. Autotomy of the ray does not occur at the base of the free part of the ray (arm) but near the base of the ray. In addition to the plane of autotomy at this location, a longitudinal plane of autotomy occurs in the connec- tive tissue between the ossicles of the interradial septa. This indicates a plane of mutable collagenous tissue is present. Autotomy of the ray involves all these planes of autotomy and results in loss of most of the ray. Key words: Asteroidea, Heliasteridae, autotomy, ray loss, mutable collagenous tissue Introduction Autotomy of rays occurs near the base of the arm (the free part of the ray) in most asteroids (Emson & Wilkie 1980).
    [Show full text]
  • Autotomy of Rays of Heliaster Helianthus (Asteroidea: Echinodermata)*
    Zoosymposia 7: 173–176 (2012) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2012 · Magnolia Press ISSN 1178-9913 (online edition) Autotomy of rays of Heliaster helianthus (Asteroidea: Echinodermata)* JOHN M. LAWRENCE1,3 & CARLOS F. GAYMER2 1 Department of Integrative Biology, University of South Florida, Tampa, Florida, USA 2 Departamento de Biología Marina, CEAZA and IEB, Universidad Católica del Norte, Coquimbo, Chile 3 Corresponding author, E-mail: lawr@usf.edu *In: Kroh, A. & Reich, M. (Eds.) Echinoderm Research 2010: Proceedings of the Seventh European Conference on Echinoderms, Göttingen, Germany, 2–9 October 2010. Zoosymposia, 7, xii + 316 pp. Abstract In species of the family Heliasteridae, the ossicles of the proximal parts of the sides of each ray are joined by connective tissue to those of the adjacent rays to form interradial septa. These provide support to the extensive disc. Only a relatively small part of the ray is free. Autotomy of rays occurs in Heliaster helianthus in response to predatory attack by the asteroid Meyenaster gelatinosus. Autotomy of the ray does not occur at the base of the free part of the ray (arm) but near the base of the ray. In addition to the plane of autotomy at this location, a longitudinal plane of autotomy occurs in the connec- tive tissue between the ossicles of the interradial septa. This indicates a plane of mutable collagenous tissue is present. Autotomy of the ray involves all these planes of autotomy and results in loss of most of the ray. Key words: Asteroidea, Heliasteridae, autotomy, ray loss, mutable collagenous tissue Introduction Autotomy of rays occurs near the base of the arm (the free part of the ray) in most asteroids (Emson & Wilkie 1980).
    [Show full text]
  • CAMUS PATRICIO.Pmd
    Revista de Biología Marina y Oceanografía Vol. 48, Nº3: 431-450, diciembre 2013 DOI 10.4067/S0718-19572013000300003 Article A trophic characterization of intertidal consumers on Chilean rocky shores Una caracterización trófica de los consumidores intermareales en costas rocosas de Chile Patricio A. Camus1, Paulina A. Arancibia1,2 and M. Isidora Ávila-Thieme1,2 1Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile. pcamus@ucsc.cl 2Programa de Magister en Ecología Marina, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile Resumen.- En los últimos 50 años, el rol trófico de los consumidores se convirtió en un tópico importante en la ecología de costas rocosas de Chile, centrándose en especies de equinodermos, crustáceos y moluscos tipificadas como herbívoros y carnívoros principales del sistema intermareal. Sin embargo, la dieta y comportamiento de muchos consumidores aún no son bien conocidos, dificultando abordar problemas clave relativos por ejemplo a la importancia de la omnivoría, competencia intra-e inter-específica o especialización individual. Intentando corregir algunas deficiencias, ofrecemos a los investigadores un registro dietario exhaustivo y descriptores ecológicos relevantes para 30 especies de amplia distribución en el Pacífico sudeste, integrando muestreos estacionales entre 2004 y 2007 en 4 localidades distribuidas en 1.000 km de costa en el norte de Chile. Basados en el trabajo de terreno y laboratorio,
    [Show full text]
  • The Evolution of Gigantism on Temperate Seashores
    bs_bs_banner Biological Journal of the Linnean Society, 2012, 106, 776–793. The evolution of gigantism on temperate seashores GEERAT J. VERMEIJ* University of California Davis, Department of Geology, One Shields Avenue, Davis, CA 95616 Received 10 January 2012; revised 22 February 2012; accepted for publication 22 February 2012bij_1897 776..793 The extent to which animal lineages achieve large body size, a trait with broad advantages in competition and defence, varies in space and time according to the supply of (and demand for) resources, as well as the magnitude and effects of extinction. Using the maximum sizes of shallow-water marine shell-bearing molluscs belonging to nineteen guilds (groups of species with similar habits and food sources) in seven temperate regions from the Early Miocene to the Recent, the present study examined the controls on productivity and predation that enable and compel large size to evolve. The North Pacific (especially its eastern sector) has been most favourable to large-bodied species from the Pliocene onward. Large productive kelps (Laminariales) evolved there in conjunction with herbivorous mammals, setting the stage through positive feedbacks between production and consumption for the evolution of large molluscan herbivores and suspension-feeders. The evolution of bottom-feeding predatory mammals together with other large predators created intense selection for large molluscan sizes. Very large molluscs in the Early Miocene were concentrated in the southern hemisphere, especially among metabolically passive species. Extinctions, which preferentially targeted the largest members of guilds in most regions, were more numerous in the southern hemisphere and the North Atlantic than in the North Pacific.
    [Show full text]
  • UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA PROFESIONAL DE BIOLOGÍA Riqueza Y
    UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA PROFESIONAL DE BIOLOGÍA Riqueza y tipos de hábitat de equinodermos en la Región Arequipa al 2017 Tesis para optar el título profesional de Biólogo presentado por el Bachiller en Ciencias Biológicas: Michael Leopoldo Espinoza Roque Asesor: Blgo. Dr. Graciano Alberto Del Carpio Tejada AREQUIPA – PERÚ 2018 1 ____________________________________ Blgo. Dr. Graciano Alberto Del Carpio Tejada ASESOR 2 DEDICATORIA A la memoria de mi padre, Leopoldo Espinoza Ramos, por todo su cariño, comprensión y sacrificio, sé que estaría feliz al verme cumplir esta meta. 3 AGRADECIMIENTOS A la Universidad Nacional de San Agustín de Arequipa (UNSA INVESTIGA), por el soporte financiero, con recursos del canon de la UNSA, para que se realice el presente proyecto de investigación (Contrato de financiamiento N° 156 – 2016 – UNSA), y un especial agradecimiento al Blgo. Luis Alberto Ponce Soto por la paciencia y apoyo en el acompañamiento y monitoreo de mi proyecto. A mi asesor de tesis, Blgo. Dr. Graciano Alberto Del Carpio Tejada, por su apoyo incondicional durante el desarrollo del presente trabajo de investigación. A la Blga. Rosaura Gonzales Juárez, por su contribución al inicio de este proyecto y sus enseñanzas y consejos que han aportado en mi formación profesional. Al Blgo. Franz Cardoso Pacheco, por permitirme consultar material de la colección científica del Laboratorio de Biología y Sistemática de Invertebrados Marinos de la Facultad de Ciencias Biológicas (LaBSIM), de la Universidad Nacional Mayor de San Marcos. A Gustavo Robles Fernández, Por permitirme consultar material del Instituto de Investigación y Desarrollo Hidrobiológico de la Universidad Nacional de San Agustín (INDEHI – UNSA).
    [Show full text]
  • Scales of Detection and Escape of the Sea Urchin Tetrapygus Niger in Interactions with the Predatory Sun Star Heliaster Helianthus
    Journal of Experimental Marine Biology and Ecology 407 (2011) 302–308 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Scales of detection and escape of the sea urchin Tetrapygus niger in interactions with the predatory sun star Heliaster helianthus Tatiana Manzur a,b,⁎, Sergio A. Navarrete a a Estación Costera de Investigaciones Marinas & Center for Advanced Studies in Ecology and Biodiversity, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile b Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile article info abstract Article history: Predators can simultaneously have lethal (consumption) and non-lethal (modification of traits) effects on Received 26 January 2011 their prey. Prey escape or fleeing from potential predators is a common form of a non-lethal predator effect. Received in revised form 20 June 2011 The efficiency of this response depends on the prey's ability to detect and correctly identify its predator far Accepted 26 June 2011 enough to increase the probability of successful escape, yet short enough to allow it to allocate time to other Available online 26 July 2011 activities (e.g. foraging). In this study, we characterized the non-lethal effect of the sun star Heliaster helianthus on the black sea urchin Tetrapygus niger by assessing the nature of predator detection and the Keywords: fi Detection spatial scale involved both in predator detection and in the escape response. Through eld and laboratory Escape experiments we demonstrate that T.
    [Show full text]