The Genus <I>Scaphander</I>
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Age Variability in the Shell of Scaphander Punctostriatus (Mighels Et C.B
ZOOSYSTEMATICA ROSSICA, 22(2): 165–171 25 DECEMBER 2013 Age variability in the shell of Scaphander punctostriatus (Mighels et C.B. Adams, 1842) (Gastropoda: Heterobranchia: Cephalaspidea) as revealed by specimens from the Russian part of the Barents Sea Возрастная изменчивость раковины Scaphander punctostriatus (Mighels et C.B. Adams, 1842) (Gastropoda: Heterobranchia: Cephalaspidea) на примере экземпляров из российских вод Баренцева моря E.M. CHABAN* & I.O. NEKHAEV Е.М. ЧАБАН*, И.О. НЕХАЕВ E.M. Chaban, Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya Emb., S. Petersburg, 199034 Russia. E-mail: [email protected]. *Corresponding author. I.O. Nekhaev, Murmansk Marine Biological Institute of Kola Scientific Centre, Russian Academy of Sciences, 17 Vladimirskaya St, Murmansk, 183010, Russia. E-mail: [email protected] The shell sculpture and morphology of the radula and gizzard plates of juvenile specimens of Scaphander punctostriatus from the Russian part of the Barents Sea is described for the first time and compared with those of adult specimens; the shell morphology is discussed and il- lustrated for the first time. Впервые приведена скульптура раковины и морфология радулы и жевательных пластинок ювенильных экземпляров Scaphander punctostriatus из российских вод Баренцева моря в сравнении с половозрелыми особями; форма раковины обсуждается и впервые иллюстрирована. Key words: shell sculpture, morphology, ontogeny, Cephalaspidea, Scaphandridae, Scaphander Ключевые слова: скульптура раковины, морфология, онтогенез, Cephalaspidea, Scaphan- dridae, Scaphander INTRODUCTION represent a significant source of taxonomic errors, e.g., the cephalaspidean Scaphander Age-specific changes in the shell shape punctostriatus Mighels et Adams, 1842 was and sculpture are well known among many mistakenly redescribed twice based on sub- molluscan taxa. -
Otago Submarine Canyons: Mapping and Macrobenthos
Otago Submarine Canyons: Mapping and Macrobenthos Bryce A. Peebles A thesis submitted in partial fulfilment for the degree of Master of Science at the University of Otago December 2013 ii Abstract Submarine canyons are steep-sided “V’ or “U” shaped valleys that incise continental slopes worldwide. The geophysical and oceanographic features of submarine canyons can produce environmental conditions that cause benthic assemblages to be distinctive and productive compared to those of the adjacent slope; however the assemblages are potentially vulnerable to anthropogenic impacts, including bottom fishing. In order to help inform policy and management, submarine canyons need to be objectively defined topographically and their benthic assemblages characterised. A canyon network occurs off the Otago Peninsula, south-eastern New Zealand, but lack of detailed bathymetric data and adequate benthic sampling has limited study of the canyons. This thesis outlines a method of defining submarine canyon areas and examines epifaunal and infaunal assemblages of the Otago canyons and adjacent slope. Objective definition of the Otago canyon network in the GIS software GRASS along with the steps to use this methodology worldwide are described. Archival count data from 1966-74 on the epifauna are analysed using the PRIMER suite of programs to characterise epifaunal assemblages. Anomurans, polychaetes, asteroids and ascidians make up 70% of the epifaunal canyon assemblage. The epifaunal assemblage is clearly defined by water depth and recognisable from 380 m. Quantitative sampling of infauna in Saunders canyon, Papanui canyon and adjacent slope was carried out to examine infaunal community structure of the canyons and adjacent slope. Infaunal canyon assemblages are dominated by polychaetes, amphipods, ophiuroids, decapods and isopods in canyons, accounting for 75% of collected individuals. -
A New Phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) Based on Expanded Taxon Sampling and Gene Markers Q ⇑ Trond R
Molecular Phylogenetics and Evolution 89 (2015) 130–150 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A new phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) based on expanded taxon sampling and gene markers q ⇑ Trond R. Oskars a, , Philippe Bouchet b, Manuel António E. Malaquias a a Phylogenetic Systematics and Evolution Research Group, Section of Taxonomy and Evolution, Department of Natural History, University Museum of Bergen, University of Bergen, PB 7800, 5020 Bergen, Norway b Muséum National d’Histoire Naturelle, UMR 7205, ISyEB, 55 rue de Buffon, F-75231 Paris cedex 05, France article info abstract Article history: The Cephalaspidea is a diverse marine clade of euthyneuran gastropods with many groups still known Received 28 November 2014 largely from shells or scant anatomical data. The definition of the group and the relationships between Revised 14 March 2015 members has been hampered by the difficulty of establishing sound synapomorphies, but the advent Accepted 8 April 2015 of molecular phylogenetics is helping to change significantly this situation. Yet, because of limited taxon Available online 24 April 2015 sampling and few genetic markers employed in previous studies, many questions about the sister rela- tionships and monophyletic status of several families remained open. Keywords: In this study 109 species of Cephalaspidea were included covering 100% of traditional family-level Gastropoda diversity (12 families) and 50% of all genera (33 genera). Bayesian and maximum likelihood phylogenet- Euthyneura Bubble snails ics analyses based on two mitochondrial (COI, 16S rRNA) and two nuclear gene markers (28S rRNA and Cephalaspids Histone-3) were used to infer the relationships of Cephalaspidea. -
Pubblicazioni Della Stazione Zoologica Di Napoli
PUBBLICAZIONI DELLA STAZIONE ZOOLOGICA DI NAPOLI VOLUME 37, 2° SUPPLEMENTO ATTI DEL 1° CONGRESSO DELLA SOCIETÀ ITALIANA DI BIOLOGIA MARINA Livorno 3-4-5 giugno 1969 STAZIONE ZOOLOGICA DI NAPOLI 1969 Comitato direttivo: G. BACCI, L. CALIFANO, P. DOHRN, G. MONTALENTI. Comitato di consulenza: F. BALTZER (Bern), J. BRACHET (Bruxelles), G. CHIEFFI (Napoli), T. GAMULIN (Dubrovnik), L. W. KLEINHOLZ (Portland), P. WEIß (New York), R. WURMSER (Paris), J. Z. YOUNG (London). Comitato di redazione: G. BONADUCE, G. C. CARRADA, F. CINELLI, E. FRESI. Segreteria di redazione: G. PRINCIVALLI. OSTRACODS AS ECOLOGICAL AND PALAEOECOLOGICAL INDICATORS (Pubbl. Staz. Zool. Napoli, Suppl. 33, 1964, pp. 612) Price: U.S. $ 15,— (Lire 9.400) An International Symposium sponsored by the ANTON and REINHARD DOHRN Foundation at the Stazione Zoologica di Napoli, June 10th-19, 1963. Chairman: Dr. HARBANS S. PURI, Florida Geological Survey, Tallahassee. Fla. U.S.A. Contributions by P. ASCOLI, R. H. BENSON, J. P. HARDING, G. HARTMANN, N. C. HULINGS, H. S. PURI, L. S. KORNICKER, K. G. MCKENZIE, J. NEALE, V. POKORNÝ, G. BONADUCE, J. MALLOY, A. RITTMANN, D. R. ROME, G. RUGGIERI, P. SANDBERG, I. G. SOHN, F. M. SWAIN, J. M. GILBY, and W. WAGNER. FAUNA E FLORA DEL GOLFO DI NAPOLI 39. Monografia: Anthomedusae/Athecatae (Hydrozoa, Cnidaria) of the Mediterranean PART I CAPITATA BY ANITA BRINCKMANN-VOSS with 11 colour - plates drawn by ILONA RICHTER EDIZIONE DELLA STAZIONE ZOOLOGICA DI NAPOLI Prezzo: Ut. 22.000 ($ 35.—) PUBBLICATO IL 19-11-1971 PARTECIPANTI AL SIMPOSIO Livorno 3 - 4 - 5 giugno 1969 ARENA dott. PASQUALE - M essina CRISAFI prof. -
The Bubble Snails (Gastropoda, Heterobranchia) of Mozambique: an Overlooked Biodiversity Hotspot
Mar Biodiv DOI 10.1007/s12526-016-0500-7 ORIGINAL PAPER The bubble snails (Gastropoda, Heterobranchia) of Mozambique: an overlooked biodiversity hotspot Yara Tibiriçá1,2 & Manuel António E. Malaquias3 Received: 9 October 2015 /Revised: 14 March 2016 /Accepted: 17 April 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract This first account, dedicated to the shallow water Keywords Mollusca . Acteonoidea . Cephalaspidea . Sea marine heterobranch gastropods of Mozambique is presented slugs . Taxonomy . Biodiversity . Africa . Western Indian with a focus on the clades Acteonoidea and Cephalaspidea. Ocean Specimens were obtained as a result of sporadic sampling and two dedicated field campaigns between the years of 2012 and 2015, conducted along the northern and southern coasts of Introduction Mozambique. Specimens were collected by hand in the inter- tidal and subtidal reefs by snorkelling or SCUBA diving down The shallow water marine heterobranch gastropods (sea slugs to a depth of 33 m. Thirty-two species were found, of which and alikes) of the Western Indian Ocean (WIO), an area con- 22 are new records to Mozambique and five are new for the fined between the East African coast and the Saya de Malha, Western Indian Ocean. This account raises the total number of Nazareth, and Cargados Carajos banks of the Mascarene shallow water Acteonoidea and Cephalaspidea known in Plateau (Obura 2012), have received little attention when Mozambique to 39 species, which represents approximately compared to other parts of the Indo-West Pacific, and most 50 % of the Indian Ocean diversity and 83 % of the diversity accounts are relatively old with few recent contributions (e.g. -
The Evolution of the Cephalaspidea (Mollusca: Gastropoda) and Its Implications to the Origins and Phylogeny of the Opisthobranchia Terrence Milton Gosliner
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1978 THE EVOLUTION OF THE CEPHALASPIDEA (MOLLUSCA: GASTROPODA) AND ITS IMPLICATIONS TO THE ORIGINS AND PHYLOGENY OF THE OPISTHOBRANCHIA TERRENCE MILTON GOSLINER Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation GOSLINER, TERRENCE MILTON, "THE EVOLUTION OF THE CEPHALASPIDEA (MOLLUSCA: GASTROPODA) AND ITS IMPLICATIONS TO THE ORIGINS AND PHYLOGENY OF THE OPISTHOBRANCHIA" (1978). Doctoral Dissertations. 1197. https://scholars.unh.edu/dissertation/1197 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. -
Földtani Közlöny 141/1 (2011) 5
141/1,3–22., Budapest, 2011 A várpalotai Faller utcai badeni korú üledék molluszka faunája KATONA Lajos Tamás1 , KÓKAY József2, BERTA Tibor 1Bakonyi Természettudományi Múzeum, H–8420 Zirc, Rákóczi tér 3–5., [email protected] 2Magyar Állami Földtani Intézet, H–1143 Budapest Stefánia út 14. Badenian mollusc fauna from Várpalota (Faller street) Abstract Fossiliferous sand layers, similar to those outcropping in the protected Szabó sandpit, were exposed in Várpalota (Faller street) during a construction development in 2005. The cross-stratified, medium-grained sand yielded fossil molluscs (>200 species) and — absent from the Szabó sandpit — corals, sponges, and vertebrates; the latter include shark- and ray teeth, other fish teeth and otoliths, and a fragment of a rhino tooth. However, this paper only presents details about the molluscs. Findings relating to the other fossils will be published elsewhere. More than 10000 mollusc specimens were collected by washing ca. 1 cubic metre of sediment. 166 gastropod and 77 bivalve species were identified. Futhermore, out of these totals 2 gastropod and 12 bivalve species were found for the first time in the Middle Miocene of Hungary. For the Várpalota basin itself, the following 35 gastropod and 21 bivalve species were new: Class Gastropoda: Pareuchelus heres (BOETTGER), Pareuchelus excellens (BOETTGER), Nodiscala cf. stricta DEFRANCE, Lacuna (Pseudocirsope) banatica (BOETTGER), Charonia (Sassia) speciosum (BELLARDI), Nematurella scholli (SCHLICKUM), Tornus parvillimus (SACCO), Tornus quadrifasciatus -
Defensive Adaptations in Opisthobranchs
J. mar. mol. Ass. U.K. (1960), 39, 123-134 123 Printed in Great Britain DEFENSIVE ADAPTATIONS IN OPISTHOBRANCHS By T. E. THOMPSON Marine Biological Station, Port Erin, Isle of Man* (Text-fig. 1) This is the third and concluding part of an investigation into defensive mechanisms in some British gastropods. The first part (Thompson & Slinn, 1959) dealt with a single species of opisthobranch, Pleurobranchus membrana• ceus, which proved able to secrete a strong acid if disturbed. The second part (Thompson, 1960a) recorded further instances of acid secretion. The present paper describes the remainder of my work on opisthobranchs. The two earlier studies were rendered more easy to interpret by the rela• tively simple nature of the defensive fluid; in the forms to be dealt with herein it has not been possible to attempt any biochemical investigations in view of the complexity and diversity of the materials involved. Observations on defensive adaptations in opisthobranchs were made by Garstang (1889, I890a), by Herdman & Clubb (1892), by Crossland (I9II) and by Crozier (1917). Cott (1940), in Adaptive Coloration in Animals, sum• marizes the work of Garstang and Crossland, but omits any reference in the text to that of Crozier or of Herdman & Clubb. It is unfortunate that Cott's account is marred by some misconceptions regarding opisthobranchs; for instance, after mentioning the batteries of nematocysts possessed by some nudibranchs, he states (p. 254) in a section entitled' Poison in defence': 'So effective are these batteries as a deterrent, that fishes have been known to eat shelled molluscs such as Margaritifera which had been long pickled in for• malin, in preference to fresh specimens of the Nudibranch Chromodoris.' Chromodorid nudibranchs do not possess nematocysts. -
A Review of Bathyal Shell-Bearing Gastropods in Sagami Bay
国立科博専報,(47): 97–144,2011年4月15日 Mem. Natl. Mus. Nat. Sci., Tokyo, (47): 97–144, April 15, 2011 A Review of Bathyal Shell-bearing Gastropods in Sagami Bay Kazunori Hasegawa1 and Takashi Okutani2 1 Showa Memorial Institute, National Museum of Nature and Science, 4 –1–1 Amakubo, Tsukuba-shi, Ibaraki 305–0005, Japan. E-mail: [email protected] 2 Marine Biodiversity Research Program, Japan Agency for Marine-Earth Science and Technology, 2–15 Natsushima, Yokosuka-shi, Kanagawa 237–0061, Japan. Abstract. Shell-bearing gastropods occurring in Sagami Bay at bathyal depths from 400 to 1600 m were reviewed based on information in literature, voucher material of some previous studies, and newly acquired specimens. 110 species that have been recorded from this area in lit- erature, excluding those exclusively associated with chemosynthesis-based communities, were reclassified into 97 species. 23 species were newly added to the fauna, resulting in 120 species in total recorded from this area. Among them, 88 species were identified as named species, two were only referrable to similar species, and 30 were not identifiable as any species previously known, at least in the northwestern Pacific. Among the 88 named species, six were recorded for the first time in this area, including one recorded for the first time in Japanese waters. Based on these results, the characteristics of the gastropod fauna in the Sagami Bay and adjacent areas is discussed from the bathymetrical and geographical points of view. Key words: Gastropoda, Sagami, bathyal, fauna, biogeography. continental shelf of the bay has thus been well Introduction documented (see Hasegawa, 2006 for gastro- The Sagami-nada (the Japanese word “nada” pods). -
Phylum: Mollusca
PHYLUM: MOLLUSCA Authors Dai Herbert1, Georgina Jones2 and Lara Atkinson3 Citation Herbert DG, Jones GJ and Atkinson LJ. 2018. Phylum Mollusca In: Atkinson LJ and Sink KJ (eds) Field Guide to the Ofshore Marine Invertebrates of South Africa, Malachite Marketing and Media, Pretoria, pp. 249-320. 1 University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa 2 Southern Underwater Research Group, Kommetjie, Cape Town 3 South African Environmental Observation Network, Egagasini Node, Cape Town 249 Phylum: MOLLUSCA (excluding Cephalopoda) Sea snails, sea slugs, bivalves, tusk shells and chitons Molluscs are one of the most diverse invertebrate Subclass Caenogastropoda groups with more than 100 000 described species A very diverse group including the periwinkles, and approximately 3 154 marine species recorded in cowries, wentletraps, moon snails, murex shells, South Africa. Organisms belonging to this phylum whelks, volutes and cone shells. are highly diverse but can be identiied by several commonly shared traits, including a mantle, the Subclass Heterobranchia presence of a radula, the configuration of the These are more advanced gastropods including sea nervous system and usually the presence of a shell slugs as well as freshwater and terrestrial snails and that encases the mollusc’s soft body for protection. slugs. The mantle plays an important role in respiration and excretion, while also creating the shell by secreting Class Bivalvia calcium and conchiolin. The radula or rasping tongue acts as the primary feeding organ, and is used Subclass Protobranchia by both herbivorous and carnivorous species for This group includes nut clams with taxodont hinge ingesting food. Along with the main characteristics dentition, as well as the awning clams with their of molluscs, the presence of a foot should also be over-grown periostracum. -
Early Miocene Reef- and Mudflat-Associated Gastropods From
PalZ DOI 10.1007/s12542-017-0354-8 RESEARCH PAPER Early Miocene reef- and mudflat-associated gastropods from Makran (SE-Iran) 1 2 3 2 Mathias Harzhauser • Markus Reuter • Tayebeh Mohtat • Werner E. Piller Received: 21 April 2017 / Accepted: 11 May 2017 Ó The Author(s) 2017. This article is an open access publication Abstract A new gastropod fauna of Burdigalian (early might represent examples of vicariance following the Miocene) age is described from the Iranian part of Makran. Tethys closure. The fauna also displays little connection The fauna comprises 19 species and represents three dis- with coeval faunas from Indonesia, documenting a strong tinct assemblages from turbid water coral reef, shallow provincialism within the Indo-West Pacific Region during subtidal soft-bottom and mangrove-fringed mudflat envi- early Miocene times. Neritopsis gedrosiana sp. nov., Cal- ronments in the northern Indian Ocean. Especially the reef- liostoma irerense sp. nov., Calliostoma mohtatae sp. nov. associated assemblage comprises largely new species. This and Trivellona makranica sp. nov. are described as new is explained by the rare occurrence of reefs along the species. northern margin of the Miocene Indian Ocean and the low number of scientific studies dealing with the region. In Keywords Mollusca Á Indian Ocean Á Biogeography Á terms of paleobiogeography, the fauna corresponds well to Neogene Á Makran coeval faunas from the Pakistani Balochistan and Sindh provinces and the Indian Kathiawar, Kutch and Kerala Kurzfassung Eine neue Gastropoden-Fauna aus dem provinces. During the early Miocene, these constituted a Burdigalium (fru¨hes Mioza¨n) des Makrans (SE-Iran) wird discrete biogeographic unit, the Western Indian Province, beschrieben. -
Phylum Mollusca
CHAPTER 13 Phylum Mollusca olluscs include some of the best-known invertebrates; almost everyone is familiar with snails, clams, slugs, squids, and octopuses. Molluscan shells have been popular since ancient times, and some cultures still M use them as tools, containers, musical devices, money, fetishes, reli- gious symbols, ornaments, and decorations and art objects. Evidence of histori- cal use and knowledge of molluscs is seen in ancient texts and hieroglyphics, on coins, in tribal customs, and in archaeological sites and aboriginal kitchen middens or shell mounds. Royal or Tyrian purple of ancient Greece and Rome, and even Biblical blue (Num. 15:38), were molluscan pigments extracted from certain marine snails.1 Many aboriginal groups have for millenia relied on mol- luscs for a substantial portion of their diet and for use as tools. Today, coastal nations annually har- vest millions of tons of molluscs commercially for Classification of The Animal food. Kingdom (Metazoa) There are approximately 80,000 described, liv- Non-Bilateria* Lophophorata ing mollusc species and about the same number of (a.k.a. the diploblasts) PHYLUM PHORONIDA described fossil species. However, many species PHYLUM PORIFERA PHYLUM BRYOZOA still await names and descriptions, especially those PHYLUM PLACOZOA PHYLUM BRACHIOPODA from poorly studied regions and time periods, and PHYLUM CNIDARIA ECDYSOZOA it has been estimated that only about half of the liv- PHYLUM CTENOPHORA Nematoida ing molluscs have so far been described. In addi- PHYLUM NEMATODA Bilateria PHYLUM