Habitats in Danger ] Oceana´S Proposal for Protection [ Habitats in Danger ] Oceana´S Proposal for Protection Indice: Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Habitats in Danger ] Oceana´S Proposal for Protection [ Habitats in Danger ] Oceana´S Proposal for Protection Indice: Table of Contents [ Habitats in Danger ] Oceana´s proposal for protection [ Habitats in Danger ] Oceana´s proposal for protection Indice: Table of contents Preface 5 Introduction 7 List of identified habitat types 11 Chapter 1 - Seamounts 16 Chapter 2 - Constructive gases 23 Chapter 3 - Caves, caverns and overhangs 30 Chapter 4 - Pelagic environments 38 Chapter 5 - Marine deserts 48 Chapter 6 - Coral reefs 54 Chapter 7 - Gorgonian gardens 60 Chapter 8 - Sponge fields 64 Chapter 9 - Mollusc reefs 69 Chapter 10 - Worm reefs 75 Chapter 11 - Crustacean reefs 80 Chapter 12 - Seagrass meadows 84 Chapter 13 - Green algae meadows 90 Chapter 14 - Red algae concretions 94 Chapter 15 - Kelp forest 103 Chapter 16 - Fucoid beds 110 Chapter 17 - Other identified habitat 119 Conclusions 122 Bibliographic references 126 Photographic references 156 c OCEANA / Juan Carlos Calvín Illustrated habitats 158 *Cover: c OCEANA / Juan Cuetos Oceana Habitats in Danger Preface A collaboration agreement that was establishment through the Research and Projects Department of the Fundación Biodiversidad has given Oceana the opportunity to demonstrate new criteria in support of the selection of marine habitats of interest to the European Community. The context of the project is included within our mission and exclusive dedication to researching, protecting and recuperating the oceans through investigation and scientific work, with a focus on biodiversity, the environment and sustainable marine development. As part of a general diagnosis, the most environmentally important habitats have been identified in this report according to their unique qualities and biological and biogeographical interest. The following chapters detail research results and include proposals for representative types of natural habitats of interest to the European Community. Although the process of obtaining the data has been long and laborious, we have attempted to include extensive lists of taxonomic classifications that describe the communities associated with the identified habitats. Obviously, the lack of consistent data means priorities should be established, as a point of departure, for the development and implementation of action plans for the protection of these habitats. It is necessary to promote a model for sustainable development that values and conserves natural resources, in order to promote the development and consolidation of a coherent network of special conservation areas within the European Union. In both aspects, the development of the pro- posal stems from the lack of a coherent representation of marine habitats of interest to the community, as well as from the need to urgently update this information. These points specifically refer to the Habitats Directive 92/43/CEE, which is the European Community’s fundamental legislative instrument for halting the decline of biodiversity, specifically in the marine environment, with regards to its framework for application. c OCEANAOCEANA / Soledad / Juan Cuetos Esnaola 5 Oceana Habitats in Danger Introduction The objective of this proposal is to identify and In March, 2003, a workgroup of marine environmental subsequently evaluate habitats that show a repre- experts was created at the request of Member states´ sentation of the geomorphological, hydromorpho- governmental agencies´ Nature Conservation Direc- logical and biogenic structures that contribute to tors and sponsored by the Habitats Committee. Their elevated levels of biomass and specific biological charge was to come to a common understanding on richness. As such, they include a high level of biological the agreements of the Natura 2000 network for ma- diversity and an elevated number of endemic species. rine environments, in order to identify and manage Because the European Union has proposed to safe- those areas designated by the Habitats Directive. guard biodiversity, as well as wild fauna and flora within the territories of Member states, by means One of the objectives of this workgroup was to revise of natural habitat conservation, an ecological the definitions of some of the habitats already inclu- network of special areas of conservation (SACs) ded in the Interpretation Manual of Habitats, so that was created, known as “Natura 2000”. The Natura these may be adapted and modified in order to create 2000 network includes SACs, designated in a coherent network of marine protected areas in the accordance with the Habitats Directive, and also European Union. The results of this work have been includes Special Protection Areas for birds (SPAs), periodically updated by Nature Conservation established in accordance with the Birds Directive. Directors, the Habitats Committee and its scientific The Habitats Directive (92/43/CEE) and the Birds workgroup. Directive (79/409/CEE) are key instruments for Euro- pean Union policy in favour of biodiversity conserva- During an initial review, the need to complete the defi- tion. They are also fundamental tools to be used by the nitions of some of the habitats included the Interpre- EU in meeting more general objectives in these areas, tation Manual of Habitats was considered. The three such as ending biodiversity loss by the year 2010. types of habitats referred to are: sand banks (Code: 1110), reefs (Code: 1170) and undersea structures The Habitats Directive was adopted on May 21, 1992, formed by gas leeks (Code: 1180). Also, for habitat transmitted to member States on June 5, 1992, and 1110, additional scientific advising was necessary finally put into effect two years later, in June, 1994. and provided by an independent panel of experts Currently, only nine marine and coastal habitats are designated (Annex 1) as types of habitats of sponsored by the European Environmental Agency interest to the European Community, the conservation (EEA). The process is not yet complete, a fact that of which requires them to be designated as SACs. was confirmed during the last Habitats Committee. c OCEANA / Juan Cuetos 6 7 Oceana Habitats in Danger scientific inventories in order to propose types Oceana would like to contribute this document as a of habitats of interest to the European Commu- reference open to debate, both scientific and tech- nity which can be included in Annex 1 of the nical, regarding the state of marine conservation in Directive 92/43/CEE, and whose designation as order to guarantee benefits for wildlife and marine SACs is necessary to achieve their conserva- habitat protection. tion. Prompted by the need for greater repre- sentation of marine habitats in Europe, during its These studies have been made possible thanks 2005 and 2006 campaigns, Oceana documented some of the elements necessary to consider and to the research campaigns carried out aboard the support a complete revision of the Habitats Directive. Oceana Ranger catamaran. Through the use of film equipment and at times a remotely-operated subma- The methodology used led to the creation of a uni- rine vehicle (ROV), Oceana documented the habitats fied report, made up of a series of chapters and orga- and key deep-sea species that must be protected and nised by habitat groups, which presents a vision of the are proposed for inclusion in the lists of threatened natural values inherent in the regional seas of Europe. species and habitats. This report reflects Oceana’s mission and exclusive dedication to researching, protecting and recupe- The data compiled during the campaigns provide rating the oceans through studies and work related to biodiversity, the environment and sustainable marine a scientific contribution to the strategies that can development. be used to strengthen and ensure the conservation and sustainable development of natural resources, The main objective of this document is to demonstrate and to identify the threats to these ecosystems and the results of Oceana’s work in identifying, locating, evaluate their state of conservation. and documenting the susceptible marine habitats that should be included in national and regional legislation. As far as future actions are concerned, the informa- tion gathered will allow for knowledge regarding Given that various research centres, universities these marine ecosystems to be consolidated. A pri- and foundations are working on projects to identify c OCEANA / Juan Cuetos sites that should be prioritised by international poli- mary conclusion consists of the need to increase cies for marine and coastal biodiversity conserva- efforts to better understand these ecosystems. tion, it was important to combine efforts with these Certain problems exist for the marine environment nowledged the need for the European Union to revise institutions in order to obtain consistent results. due to a lack of data, complex jurisdictional issues its principal legislation, and have pointed out the Regarding the technical aspects of this project, and overlapping responsibilities amongst different lack of marine species and habitats Oceana would like to see an improved representation of The resulting research and documentation will be administrations. This problem is also being studied represented in its annexes. the different marine species and habitats in the future, communicated to the general public with the hope by a workgroup created by the European Commi- taking into account that some of these habitats are that it will also be used as a tool at institutional levels, ssion in which various Member states are participating. Although anticipated activities such as surveillance, severely deteriorating due to the impact produced given the current
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • [Oceanography and Marine Biology - an Annual Review] R. N
    OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 7044_C000.fm Page ii Tuesday, April 25, 2006 1:51 PM OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 Editors R.N. Gibson Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] R.J.A. Atkinson University Marine Biology Station Millport University of London Isle of Cumbrae, Scotland [email protected] J.D.M. Gordon Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] Founded by Harold Barnes Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by R.N. Gibson, R.J.A. Atkinson and J.D.M. Gordon CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-7044-2 (Hardcover) International Standard Book Number-13: 978-0-8493-7044-1 (Hardcover) International Standard Serial Number: 0078-3218 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid- ity of all materials or for the consequences of their use.
    [Show full text]
  • Adhesion in Echinoderms
    Adhesion in echinoderms PATRICK FLAMMANG* Laboratoire de Biologie marine, Universite' de Mons-Hainaut, Mons, Belgium Final manuscript acceptance: August 1995 KEYWORDS: Adhesive properties, podia, larvae, Cuvierian tubules, Echinodermata. CONTENTS 1 Introduction 2 The podia 2.1 Diversity 2.2 Basic structure and function 2.3 Adhesivity 3 Other attachment mechanisms of echinoderms 3.1 Larval and postlarval adhesive structures 3.2 Cuvierian tubules 4 Comparison with other marine invertebrates 5 Conclusions and prospects Acknowledgements References 1 INTRODUCTION Marine organisms have developed a wide range of mechanisms allowing them to attach to or manipulate a substratum (Nachtigall 1974). Among 1 these mechanisms, one can distinguish between mechanical attachments (e.g. hooks or suckers) and chemical attachments (with adhesive sub- stances). The phylum Echinodermata is quite exceptional in that all its species, *Senior research assistant, National Fund for Scientific Research, Belgium. I whatever their life style, use attachment mechanisms. These mechanisms allow some of them to move, others to feed, and others to burrow in par- ticulate substrata. In echinoderms, adhesivity is usually the function of specialized structures, the podia or tube-feet. These podia are the exter- nal appendages of the arnbulacral system and are also probably the most advanced hydraulic structures in the animal kingdom. 2 THE PODIA From their presumed origin as simple respiratory evaginations of the am- bulacral system (Nichols 1962), podia have diversified into the wide range of specialized structures found in extant echinoderms. This mor- phological diversity of form reflects the variety of functions that podia perform (Lawrence 1987). Indeed, they take part in locomotion, burrow- ing, feeding, sensory perception and respiration.
    [Show full text]
  • Response to Oxygen Deficiency (Depletion): Bivalve Assemblages As an Indicator of Ecosystem Instability in the Northern Adriatic Sea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Response to oxygen deficiency (depletion): Bivalve assemblages as an indicator of ecosystem instability in the northern Adriatic Sea Vedrana NERLOVIĆ1, Alper DOĞAN2 & Mirjana HRS-BRENKO1 1Ruđer Bošković Institute, Centre for Marine Research, Giordano Paliaga 5, HR-52210 Rovinj, Croatia e-mail: [email protected] 2 Department of Hydrobiology, Faculty of Fisheries, Ege University, 35100 Bornova, Izmir, Turkey e-mail: [email protected] Abstract: Benthic communities represent a powerful tool for the detection of natural and anthropogenic disturbances, as well as for the assessment of marine ecosystem stability. This paper shows that Bivalve assemblages could serve as excellent indicators of disturbance and ecosystem instability. The goal of this study was to compare two sets of data in order to determine the differences between two different periods belonging to Bivalve assemblage in the muddy detritic bottom of the northern Adriatic Sea in the post-anoxic period during December 1989, 1990, 1991 and quite a while later, during 2003, 2004 and 2005. Abundances of some indicator species such as Corbula gibba, Modiolarca subpicta, and Timoclea ovata were detected during the post-anoxic period. Recruitment in the quality of Bivalve assemblages was proved by the ecologic and biotic indexes during 2003, 2004 and 2005, during a period of relatively stable ecological conditions. Fluctuation in Bivalve diversity due to the ecological quality of the marine ecosystem in the eastern part of the northern Adriatic Sea is also discussed. Key words: hypoxia; Bivalve assemblages; indicator species; soft bottoms; northern Adriatic Sea Introduction Recent reviews and summaries have provided good introductions on how hypoxia and anoxia came to be such a large and serious problem in the aquatic ecosystem (Gray et al.
    [Show full text]
  • High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
    High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H.
    [Show full text]
  • Reef Sponges of the Genus Agelas (Porifera: Demospongiae) from the Greater Caribbean
    Zootaxa 3794 (3): 301–343 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3794.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:51852298-F299-4392-9C89-A6FD14D3E1D0 Reef sponges of the genus Agelas (Porifera: Demospongiae) from the Greater Caribbean FERNANDO J. PARRA-VELANDIA1,2, SVEN ZEA2,4 & ROB W. M. VAN SOEST3 1St John's Island Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, Singapore 119227. E-mail: [email protected] 2Universidad Nacional de Colombia, Sede Caribe, Centro de Estudios en Ciencias del Mar—CECIMAR; c/o INVEMAR, Calle 25 2- 55, Rodadero Sur, Playa Salguero, Santa Marta, Colombia. E-mail: [email protected] 3Netherlands Centre for Biodiversity Naturalis, P.O.Box 9517 2300 RA Leiden, The Netherlands. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 301 Introduction . 302 The genus Agelas in the Greater Caribbean . 302 Material and methods . 303 Classification . 304 Phylum Porifera Grant, 1835 . 304 Class Demospongiae Sollas, 1875 . 304 Order Agelasida Hartman, 1980 . 304 Family Agelasidae Verrill, 1907 . 304 Genus Agelas Duchassaing & Michelotti, 1864 . 304 Agelas dispar Duchassaing & Michelotti, 1864 . 306 Agelas cervicornis (Schmidt, 1870) . 311 Agelas wiedenmayeri Alcolado, 1984. 313 Agelas sceptrum (Lamarck, 1815) . 315 Agelas dilatata Duchassaing & Michelotti, 1864 . 316 Agelas conifera (Schmidt, 1870). 318 Agelas tubulata Lehnert & van Soest, 1996 . 321 Agelas repens Lehnert & van Soest, 1998. 324 Agelas cerebrum Assmann, van Soest & Köck, 2001. 325 Agelas schmidti Wilson, 1902 .
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Aglaopheniid Hydroids (Cnidaria: Hydrozoa: Aglaopheniidae) from Bathyal Waters of the Flemish Cap, Flemish Pass, and Grand Banks of Newfoundland (NW Atlantic)
    Zootaxa 3737 (5): 501–537 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3737.5.1 http://zoobank.org/urn:lsid:zoobank.org:pub:B5FE322D-4D0A-45E6-84BF-F00FA6308DE1 Aglaopheniid hydroids (Cnidaria: Hydrozoa: Aglaopheniidae) from bathyal waters of the Flemish Cap, Flemish Pass, and Grand Banks of Newfoundland (NW Atlantic) ÁLVARO ALTUNA1, FRANCISCO J. MURILLO2 & DALE R. CALDER3 1INSUB, Museo de Okendo, Zemoria, 12, Apartado 3223, 20013 Donostia-San Sebastián, Spain. E-mail: [email protected] 2Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Programa de Pesquerías Lejanas, Apartado 1552, 36280 Vigo, Spain. E-mail: [email protected] 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6. E-mail: [email protected] 1Corresponding author Abstract Five species of aglaopheniid hydroids (Aglaophenopsis cornuta, Cladocarpus diana, C. formosus, C. integer, and Nema- tocarpus ramuliferus) were collected from the Flemish Cap, Flemish Pass, and Grand Banks of Newfoundland during sur- veys with bottom trawls, rock dredges, and scallop gear. All are infrequently reported species, with C. diana being discovered for the first time since its original description from Iceland. We document here the southernmost collections of C. diana and N. ramuliferus, both previously unknown in the western Atlantic. Each of the five species is described and illustrated based on fertile material, a key is provided for their identification, and bathymetric distributions are noted. Known depth ranges are extended for A. cornuta, C. diana, and C.
    [Show full text]
  • SOUTH AFRICAN ASSOCIATION for MARINE BIOLOGICAL RESEARCH OCEANOGRAPHIC RESEARCH INSTITUTE Investigational Report No. 68 Corals O
    SOUTH AFRICAN ASSOCIATION FOR MARINE BIOLOGICAL RESEARCH OCEANOGRAPHIC RESEARCH INSTITUTE Investigational Report No. 68 Corals of the South-west Indian Ocean II. Eleutherobia aurea spec. nov. (Cnidaria, Alcyonacea) from deep reefs on the KwaZulu-Natal Coast, South Africa by Y. Benayahu and M.H. Sch layer Edited by M.H. Schleyer Published by THE OCEANOGRAPHIC RESEARCH INSTITUTE P.0 Box 10712, Manne Parade 4056 DURBAN SOUTH AFRICA October 1995 Copynori ISBN 0 66989 07« 3 ISSN 0078-320X Frontispiece. Colony of Eleutherobia aurea spec. nov. in Its natural habitat with its polyps expanded Eleutherobia aurea spec. nov. (Cnidaria, Alcyonacea) from deep reefs on the KwaZulu-Natal coast, South Africa by Y. Benayahui and M. H. Schleyeri 'Department of Zoology, George S. Wise Faculty of Life Sciences. Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. ^Oceanographic Research Institute, P.O. Box 10712, Marine Parade 4056, Durban, South Africa. ABSTRACT Eleutherobia aurea spec. nov. is a new octocoral species (family Alcyoniidae) described from material collected on deep reefs along the coast of KwaZulu- Natal, South Africa. The species has spheroid, radiate and double deltoid sclerites, the latter being the most conspicuous sclerites and aiso the most abundant in the interior of the colony. Keywords: Eleutherobia, Cnidaria, Alcyonacea. Octocorallia, coral reefs, South Africa. INTRODUCTION The alcyonacean fauna of southern Africa (Cnidaria, Octocorallia) has been thoroughly examined and revised by Williams (1992). The tropical coastal area of northern KwaZulu-Natal has recently been investigated at Sodwana Bay and yielded 37 species of the families Tubiporidae. Alcyoniidae and Xeniidae (Benayahu, 1993). Further collections conducted on the deeper reef areas of Two-Mile Reef at Sodwana Bay.
    [Show full text]
  • Appendix 1 Table A1
    OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S.
    [Show full text]
  • Amphipholis Squamata MICHAEL P
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1990, p. 2436-2440 Vol. 56, No. 8 0099-2240/90/082436-05$02.00/0 Copyright C) 1990, American Society for Microbiology Description of a Novel Symbiotic Bacterium from the Brittle Star, Amphipholis squamata MICHAEL P. LESSERt* AND RICHARD P. BLAKEMORE Department of Microbiology, University of New Hampshire, Durham, New Hampshire 03824 Received 8 November 1989/Accepted 3 June 1990 A gram-negative, marine, facultatively anaerobic bacterial isolate designated strain AS-1 was isolated from the subcuticular space of the brittle star, Amphipholis squamata. Its sensitivity to 0/129 and novobiocin, overall morphology, and biochemical characteristics and the moles percent guanine-plus-cytosine composition of its DNA (42.9 to 44.4) suggest that this isolate should be placed in the genus Vibrio. Strain AS-1 was not isolated from ambient seawater and is distinct from described Vibrio species. This symbiotic bacterium may assist its host as one of several mechanisms of nutrient acquisition during the brooding of developing embryos. The biology of bacterium-invertebrate symbiotic associa- isopropyl alcohol for 30 s and two rinses in sterile ASW. tions has elicited considerable interest, particularly since the Logarithmic dilutions were plated on Zobell modified 2216E discoveries during the past decade of chemoautotrophic medium (ASW, 1 g of peptone liter-1, 1 g of yeast extract symbiotic bacteria associated with several invertebrate spe- liter-' [pH 7.8 to 8.4]) (29), as were samples of ambient cies in sulfide-rich habitats (4, 5). Bacterial-invertebrate seawater from the site of collection and ASW controls. All symbioses (mutualistic) have been reported from many materials and equipment were sterilized, and all procedures invertebrate taxa, examples of which include cellulolytic were performed by aseptic techniques.
    [Show full text]
  • Fisheries Conservation and Vulnerable Ecosystems in the Mediterranean Open Seas, Including the Deep Seas
    Fisheries conservation and vulnerable ecosystems in the Mediterranean open seas, including the deep seas Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP and RAC/SPA concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. The views expressed in the present technical information document are those of the author and do not necessarily reflect UNEP views. © 2010 United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 - 1080 Tunis CEDEX E-mail: [email protected] This publication may be reproduced in whole or in part and in any form for educational or non- profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP-MAP-RAC/SPA would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without permission in writing from UNEP-MAP-RAC/SPA. For bibliographic purposes this volume should be cited as follows: UNEP-MAP-RAC/SPA. 2010. Fisheries conservation and vulnerable ecosystems in the Mediterranean open seas, including the deep seas. By de Juan, S. and Lleonart, J. Ed. RAC/SPA, Tunis: 103pp. Cover photo credit: - Juan Cuetos This document should not be considered as an official United Nations document.
    [Show full text]