[Oceanography and Marine Biology - an Annual Review] R. N

Total Page:16

File Type:pdf, Size:1020Kb

[Oceanography and Marine Biology - an Annual Review] R. N OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 7044_C000.fm Page ii Tuesday, April 25, 2006 1:51 PM OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 Editors R.N. Gibson Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] R.J.A. Atkinson University Marine Biology Station Millport University of London Isle of Cumbrae, Scotland [email protected] J.D.M. Gordon Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] Founded by Harold Barnes Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by R.N. Gibson, R.J.A. Atkinson and J.D.M. Gordon CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-7044-2 (Hardcover) International Standard Book Number-13: 978-0-8493-7044-1 (Hardcover) International Standard Serial Number: 0078-3218 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid- ity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com 7044_Discl.indd 1 5/3/06 1:42:06 PM 7044_C000.fm Page v Tuesday, April 25, 2006 1:51 PM Contents Preface vii Correction to Volume 43 ix Review of three-dimensional ecological modelling related to the North Sea shelf system. Part II: model validation and data needs 1 Günther Radach & Andreas Moll Role, routes and effects of manganese in crustaceans 61 Susanne P. Baden & Susanne P. Eriksson Macrofaunal burrowing: the medium is the message 85 Kelly M. Dorgan, Peter A. Jumars, Bruce D. Johnson & Bernard P. Boudreau Mediterranean coralligenous assemblages: a synthesis of present knowledge 123 Enric Ballesteros Defensive glandular structures in opisthobranch molluscs — from histology to ecology 197 Heike Wägele, Manuel Ballesteros & Conxita Avila Taxonomy, ecology and behaviour of the cirrate octopods 277 Martin A. Collins & Roger Villanueva The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences 323 Martin Thiel & Pilar A. Haye Potential effects of climate change on marine mammals 431 J.A. Learmonth, C.D. MacLeod, M.B. Santos, G.J. Pierce, H.Q.P. Crick & R.A. Robinson Author Index 465 Systematic Index 497 Subject Index 515 7044_C000.fm Page vi Tuesday, April 25, 2006 1:51 PM 7044_C000.fm Page vii Tuesday, April 25, 2006 1:51 PM Preface The forty-fourth volume of this series contains eight reviews written by an international array of authors that, as usual, range widely in subject and taxonomic and geographic coverage. The editors welcome suggestions from potential authors for topics they consider could form the basis of future appropriate contributions. Because an annual publication schedule necessarily places constraints on the timetable for submission, evaluation and acceptance of manuscripts, potential contributors are advised to contact the editors at an early stage of preparation. Contact details are listed on the title page of this volume. The editors gratefully acknowledge the willingness and speed with which authors complied with the editors’ suggestions, requests and questions, and the efficiency of Taylor & Francis in ensuring the timely appearance of this volume. 7044_C000.fm Page viii Tuesday, April 25, 2006 1:51 PM 7044_C000.fm Page ix Tuesday, April 25, 2006 1:51 PM Correction to Volume 43 Carney, R.S. 2005. Zonation of deep biota on continental margins. Oceanography and Marine Biology: An Annual Review 43, 211–278. In reviewing various ideas put forward to explain deep benthic depth zonation (Carney 2005), the TROX, Trophic-Oxygen, model for foraminiferan distributions received special mention. This conceptual model incorporates in an easily understood manner several lines of thought concerning the importance of oxygen and labile carbon influx in controlling surficial and interstitial microhab- itats. The origin of the TROX model, however, is misattributed to Loubere and his associates (page 228). The TROX model was proposed in the context of microhabitats with Adriatic transect data used as an example by Jorissen et al. (1995). An important feature of the TROX model is the explicit link between oxygen and carbon flux, such that the ecological importance of food avail- ability changes with oxygen concentration. Given adequate oxygen, food is the primary factor. When microbial consumption of higher food levels reduces microhabitat oxygen, then low oxygen can become the primary factor. There have been other attempts to create general foraminiferan distribution models that incorporate both oxygen and carbon flux somewhat similar to TROX. An algebraically formal model of gradient distribution employing the concept of ‘r’ and ‘K’ selected species was developed by Sjoerdsma & van der Zwaan (1992) and tested with mixed success on archived distribution data from the Gulf of Mexico. Unfortunately, the geochemical relationship between oxygen and carbon flux was omitted. Bottom oxygen was estimated from water column profiles, and flux estimated only on the basis of depth. The conceptual model proposed by Loubere et al. (1993) was an assemblage model incorporating both production and taphonomy. Like the TROX model, it is an important contribution to the understanding of trophic control of geographic distribution. That mode links the geochemistry of oxygen and carbon flux. Flux was estimated from sedimentary oxygen consumption; samples were analysed from the western Gulf of Mexico. REFERENCES Carney, R.S. 2005. Zonation of deep biota on continental margins. Oceanography and Marine Biology: An Annual Review 43, 211–278. Jorissen, F.J., de Stigter, H.C. & Widmark, J.G.V. 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology 26, 3–15. Loubere, P., Gary, A. & Lagoe, M. 1993. Generation of the benthic foraminiferal assemblage — theory and preliminary data. Marine Micropaleontology 20, 165–181. Sjoerdsma, P.G. & van der Zwaan, G.J. 1992. Simulating the effect of changing organic flux and oxygen content on the distribution of benthic Foraminifera. Marine Micropaleontology 19, 103–150. 7044_C000.fm Page x Tuesday, April 25, 2006 1:51 PM OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 7044_C000.fm Page xii Tuesday, April 25, 2006 1:51 PM 7044_book.fm Page 1 Friday, April 14, 2006 1:28 PM Oceanography and Marine Biology: An Annual Review, 2006, 44, 1-60 © R. N. Gibson, R. J. A. Atkinson, and J. D. M. Gordon, Editors Taylor & Francis REVIEW OF THREE-DIMENSIONAL ECOLOGICAL MODELLING RELATED TO THE NORTH SEA SHELF SYSTEM. PART II: MODEL VALIDATION AND DATA NEEDS GÜNTHER RADACH & ANDREAS MOLL Institut für Meereskunde (IfM), Universität Hamburg (ZMK-ZMAW), Bundesstr. 53, D-20146 Hamburg, Germany E-mail: [email protected], [email protected] Abstract The aim of this review is to provide an overview of the status of validation of eleven biogeochemical and ecological models of the greater North Sea (COHERENS, CSM-NZB, DCM- NZB, DYMONNS, ECOHAM, ELISE, ERSEM, FYFY, GHER, NORWECOM, POLCOMS- ERSEM) showing the realism achieved as well as the problems hindering a better degree of validity of the models. Several of the models were able to reproduce observations of the state variables correctly within an order of magnitude, but all models are not capable of reproducing every simulated state variable in the range of observations. None of the models can be called a valid model. Comparison of results from different models with datasets are evaluated according to the different spatial and temporal scales, for which data products were available, namely for regional distributions, annual cycles, long-term developments and events. The higher the trophic level, the greater was the discrepancy with the data. Problems still exist in determining the necessary com- plexity of the ecosystem model. More complexity in the model does not necessarily improve the simulations. Special
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • SOUTH AFRICAN ASSOCIATION for MARINE BIOLOGICAL RESEARCH OCEANOGRAPHIC RESEARCH INSTITUTE Investigational Report No. 68 Corals O
    SOUTH AFRICAN ASSOCIATION FOR MARINE BIOLOGICAL RESEARCH OCEANOGRAPHIC RESEARCH INSTITUTE Investigational Report No. 68 Corals of the South-west Indian Ocean II. Eleutherobia aurea spec. nov. (Cnidaria, Alcyonacea) from deep reefs on the KwaZulu-Natal Coast, South Africa by Y. Benayahu and M.H. Sch layer Edited by M.H. Schleyer Published by THE OCEANOGRAPHIC RESEARCH INSTITUTE P.0 Box 10712, Manne Parade 4056 DURBAN SOUTH AFRICA October 1995 Copynori ISBN 0 66989 07« 3 ISSN 0078-320X Frontispiece. Colony of Eleutherobia aurea spec. nov. in Its natural habitat with its polyps expanded Eleutherobia aurea spec. nov. (Cnidaria, Alcyonacea) from deep reefs on the KwaZulu-Natal coast, South Africa by Y. Benayahui and M. H. Schleyeri 'Department of Zoology, George S. Wise Faculty of Life Sciences. Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. ^Oceanographic Research Institute, P.O. Box 10712, Marine Parade 4056, Durban, South Africa. ABSTRACT Eleutherobia aurea spec. nov. is a new octocoral species (family Alcyoniidae) described from material collected on deep reefs along the coast of KwaZulu- Natal, South Africa. The species has spheroid, radiate and double deltoid sclerites, the latter being the most conspicuous sclerites and aiso the most abundant in the interior of the colony. Keywords: Eleutherobia, Cnidaria, Alcyonacea. Octocorallia, coral reefs, South Africa. INTRODUCTION The alcyonacean fauna of southern Africa (Cnidaria, Octocorallia) has been thoroughly examined and revised by Williams (1992). The tropical coastal area of northern KwaZulu-Natal has recently been investigated at Sodwana Bay and yielded 37 species of the families Tubiporidae. Alcyoniidae and Xeniidae (Benayahu, 1993). Further collections conducted on the deeper reef areas of Two-Mile Reef at Sodwana Bay.
    [Show full text]
  • A Radical Solution: the Phylogeny of the Nudibranch Family Fionidae
    RESEARCH ARTICLE A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae Kristen Cella1, Leila Carmona2*, Irina Ekimova3,4, Anton Chichvarkhin3,5, Dimitry Schepetov6, Terrence M. Gosliner1 1 Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, California, United States of America, 2 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, 3 Far Eastern Federal University, Vladivostok, Russia, 4 Biological Faculty, Moscow State University, Moscow, Russia, 5 A.V. Zhirmunsky Instutute of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia, 6 National Research University Higher School of Economics, Moscow, Russia a11111 * [email protected] Abstract Tergipedidae represents a diverse and successful group of aeolid nudibranchs, with approx- imately 200 species distributed throughout most marine ecosystems and spanning all bio- OPEN ACCESS geographical regions of the oceans. However, the systematics of this family remains poorly Citation: Cella K, Carmona L, Ekimova I, understood since no modern phylogenetic study has been undertaken to support any of the Chichvarkhin A, Schepetov D, Gosliner TM (2016) A Radical Solution: The Phylogeny of the proposed classifications. The present study is the first molecular phylogeny of Tergipedidae Nudibranch Family Fionidae. PLoS ONE 11(12): based on partial sequences of two mitochondrial (COI and 16S) genes and one nuclear e0167800. doi:10.1371/journal.pone.0167800 gene (H3). Maximum likelihood, maximum parsimony and Bayesian analysis were con- Editor: Geerat J. Vermeij, University of California, ducted in order to elucidate the systematics of this family. Our results do not recover the tra- UNITED STATES ditional Tergipedidae as monophyletic, since it belongs to a larger clade that includes the Received: July 7, 2016 families Eubranchidae, Fionidae and Calmidae.
    [Show full text]
  • Marine Science
    Western Indian Ocean JOURNAL OF Marine Science Volume 18 | Issue 1 | Jan – Jun 2019 | ISSN: 0856-860X Chief Editor José Paula Western Indian Ocean JOURNAL OF Marine Science Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal Copy Editor Timothy Andrew Editorial Board Lena GIPPERTH Aviti MMOCHI Sweden Tanzania Serge ANDREFOUËT Johan GROENEVELD France Cosmas MUNGA South Africa Kenya Ranjeet BHAGOOLI Issufo HALO Mauritius South Africa/Mozambique Nyawira MUTHIGA Kenya Salomão BANDEIRA Christina HICKS Mozambique Australia/UK Brent NEWMAN Betsy Anne BEYMER-FARRIS Johnson KITHEKA South Africa USA/Norway Kenya Jan ROBINSON Jared BOSIRE Kassim KULINDWA Seycheles Kenya Tanzania Sérgio ROSENDO Atanásio BRITO Thierry LAVITRA Portugal Mozambique Madagascar Louis CELLIERS Blandina LUGENDO Melita SAMOILYS Kenya South Africa Tanzania Pascale CHABANET Joseph MAINA Max TROELL France Australia Sweden Published biannually Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) region, in particular on the sustainable use of coastal and marine resources. This is central to the goal of supporting and promoting sustainable coastal development in the region, as well as contributing to the global base of marine science. The journal publishes original research articles dealing with all aspects of marine science and coastal manage- ment. Topics include, but are not limited to: theoretical studies, oceanography, marine biology and ecology, fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between humans and the coastal and marine environment. In addition, Western Indian Ocean Journal of Marine Science features state-of-the-art review articles and short communications.
    [Show full text]
  • Biodiversity Journal, 2020, 11 (4): 861–870
    Biodiversity Journal, 2020, 11 (4): 861–870 https://doi.org/10.31396/Biodiv.Jour.2020.11.4.861.870 The biodiversity of the marine Heterobranchia fauna along the central-eastern coast of Sicily, Ionian Sea Andrea Lombardo* & Giuliana Marletta Department of Biological, Geological and Environmental Sciences - Section of Animal Biology, University of Catania, via Androne 81, 95124 Catania, Italy *Corresponding author: [email protected] ABSTRACT The first updated list of the marine Heterobranchia for the central-eastern coast of Sicily (Italy) is here reported. This study was carried out, through a total of 271 scuba dives, from 2017 to the beginning of 2020 in four sites located along the Ionian coasts of Sicily: Catania, Aci Trezza, Santa Maria La Scala and Santa Tecla. Through a photographic data collection, 95 taxa, representing 17.27% of all Mediterranean marine Heterobranchia, were reported. The order with the highest number of found species was that of Nudibranchia. Among the study areas, Catania, Santa Maria La Scala and Santa Tecla had not a remarkable difference in the number of species, while Aci Trezza had the lowest number of species. Moreover, among the 95 taxa, four species considered rare and six non-indigenous species have been recorded. Since the presence of a high diversity of sea slugs in a relatively small area, the central-eastern coast of Sicily could be considered a zone of high biodiversity for the marine Heterobranchia fauna. KEY WORDS diversity; marine Heterobranchia; Mediterranean Sea; sea slugs; species list. Received 08.07.2020; accepted 08.10.2020; published online 20.11.2020 INTRODUCTION more researches were carried out (Cattaneo Vietti & Chemello, 1987).
    [Show full text]
  • Submission Re Proposed Cooloola World Heritage Area Boundary
    Nearshore Marine Biodiversity of the Sunshine Coast, South-East Queensland: Inventory of molluscs, corals and fishes July 2010 Photo courtesy Ian Banks Baseline Survey Report to the Noosa Integrated Catchment Association, September 2010 Lyndon DeVantier, David Williamson and Richard Willan Executive Summary Nearshore reef-associated fauna were surveyed at 14 sites at seven locations on the Sunshine Coast in July 2010. The sites were located offshore from Noosa in the north to Caloundra in the south. The species composition and abundance of corals and fishes and ecological condition of the sites were recorded using standard methods of rapid ecological assessment. A comprehensive list of molluscs was compiled from personal observations, the published literature, verifiable unpublished reports, and photographs. Photographic records of other conspicuous macro-fauna, including turtles, sponges, echinoderms and crustaceans, were also made anecdotally. The results of the survey are briefly summarized below. 1. Totals of 105 species of reef-building corals, 222 species of fish and 835 species of molluscs were compiled. Thirty-nine genera of soft corals, sea fans, anemones and corallimorpharians were also recorded. An additional 17 reef- building coral species have been reported from the Sunshine Coast in previous publications and one additional species was identified from a photo collection. 2. Of the 835 mollusc species listed, 710 species could be assigned specific names. Some of those not assigned specific status are new to science, not yet formally described. 3. Almost 10 % (81 species) of the molluscan fauna are considered endemic to the broader bioregion, their known distribution ranges restricted to the temperate/tropical overlap section of the eastern Australian coast (Central Eastern Shelf Transition).
    [Show full text]
  • Prey Preference Follows Phylogeny: Evolutionary Dietary Patterns Within the Marine Gastropod Group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A
    Goodheart et al. BMC Evolutionary Biology (2017) 17:221 DOI 10.1186/s12862-017-1066-0 RESEARCHARTICLE Open Access Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A. Goodheart1,2* , Adam L. Bazinet1,3, Ángel Valdés4, Allen G. Collins2 and Michael P. Cummings1 Abstract Background: The impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA- Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales. Results: In the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia).
    [Show full text]
  • The Morphology of Ismaila Monstrosa Bergh (Copepoda)
    AN ABSTRACT OF THE THESIS OF FRANCIS PETER BELCIK for the M. S. inZoology (Name) (Degree) (Major) Date thesis is presented l'/ Ak I Title THE MORPHOLOGY OF ISMAILA MONSTROSA BERGH (COPEPODA) Abstract approvedRedacted for Privacy The morphology of a rather rare parasitic copepod was studied.Ismaila monstrosa Bergh, an endoparasitic copepod was found in the nudibranch, Antiopella fusca,at Coos Bay, Oregon. Many anatomical features were found, which were different from previous descriptions.Males were described for the first time. Young males lacked the gonadal lobes found on the dorsal sides of adult males.Both sexes had similar mouthparts, differing only in size.These mouthparts consisted, like those of Splanchnotrophus, of a bifid lab rum, a pair of simple mandibles, a pair of maxillae and a triangular labium with side processes.There was only a single pair of maxillae and they are unusual in that they were found to be setigerous and two-jointed.The distal portion of this characteristic maxilla was biramous, the smaller member often obscure.Because of this and other anatomical factors, I proposed a new variety Ismaila monstrosa var. pacifica and a newsubfamily, the Ismailinae. Although the female possessed three pairs of lateral appendages, the male lacked these, having only the two pairs of ventral appendages. In the female specimens there were two pairs of ventral appendages or !?stomach_armsh?.The first pair was bifurcate, the second pair trifurcate.In the male specimens the first pair was uniramous and the second pair unequally biramous. The dige.stive system was found to be incomplete in both sexes.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Taxonomic Revision of Tritonia Species (Gastropoda: Nudibranchia) from the Weddell Sea and Bouvet Island
    Rossi, M. E. , Avila, C., & Moles, J. (2021). Orange is the new white: taxonomic revision of Tritonia species (Gastropoda: Nudibranchia) from the Weddell Sea and Bouvet Island. Polar Biology, 44(3), 559- 573. https://doi.org/10.1007/s00300-021-02813-8 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1007/s00300-021-02813-8 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Springer at https://doi.org/10.1007/s00300-021-02813-8 .Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Polar Biology (2021) 44:559–573 https://doi.org/10.1007/s00300-021-02813-8 ORIGINAL PAPER Orange is the new white: taxonomic revision of Tritonia species (Gastropoda: Nudibranchia) from the Weddell Sea and Bouvet Island Maria Eleonora Rossi1,2 · Conxita Avila3 · Juan Moles4,5 Received: 9 December 2019 / Revised: 22 January 2021 / Accepted: 27 January 2021 / Published online: 22 February 2021 © The Author(s) 2021 Abstract Among nudibranch molluscs, the family Tritoniidae gathers taxa with an uncertain phylogenetic position, such as some species of the genus Tritonia Cuvier, 1798. Currently, 37 valid species belong to this genus and only three of them are found in the Southern Ocean, namely T.
    [Show full text]
  • 655 Appendix G
    APPENDIX G: GLOSSARY Appendix G-1. Demersal Fish Species Alphabetized by Species Name. ....................................... G1-1 Appendix G-2. Demersal Fish Species Alphabetized by Common Name.. .................................... G2-1 Appendix G-3. Invertebrate Species Alphabetized by Species Name.. .......................................... G3-1 Appendix G-4. Invertebrate Species Alphabetized by Common Name.. ........................................ G4-1 G-1 Appendix G-1. Demersal Fish Species Alphabetized by Species Name. Demersal fish species collected at depths of 2-484 m on the southern California shelf and upper slope, July-October 2008. Species Common Name Agonopsis sterletus southern spearnose poacher Anchoa compressa deepbody anchovy Anchoa delicatissima slough anchovy Anoplopoma fimbria sablefish Argyropelecus affinis slender hatchetfish Argyropelecus lychnus silver hachetfish Argyropelecus sladeni lowcrest hatchetfish Artedius notospilotus bonyhead sculpin Bathyagonus pentacanthus bigeye poacher Bathyraja interrupta sandpaper skate Careproctus melanurus blacktail snailfish Ceratoscopelus townsendi dogtooth lampfish Cheilotrema saturnum black croaker Chilara taylori spotted cusk-eel Chitonotus pugetensis roughback sculpin Citharichthys fragilis Gulf sanddab Citharichthys sordidus Pacific sanddab Citharichthys stigmaeus speckled sanddab Citharichthys xanthostigma longfin sanddab Cymatogaster aggregata shiner perch Embiotoca jacksoni black perch Engraulis mordax northern anchovy Enophrys taurina bull sculpin Eopsetta jordani
    [Show full text]
  • Phylogenomic Analysis and Morphological Data Suggest Left-Right Swimming Behavior Evolved Prior to the Origin of the Pelagic Phylliroidae (Gastropoda: Nudibranchia)
    Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia) Jessica A. Goodheart & Heike Wägele Organisms Diversity & Evolution ISSN 1439-6092 Org Divers Evol DOI 10.1007/s13127-020-00458-9 1 23 Your article is protected by copyright and all rights are held exclusively by Gesellschaft für Biologische Systematik. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Organisms Diversity & Evolution https://doi.org/10.1007/s13127-020-00458-9 ORIGINAL ARTICLE Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia) Jessica A. Goodheart1 & Heike Wägele2 Received: 13 March 2020 /Accepted: 1 September 2020 # Gesellschaft für Biologische Systematik 2020 Abstract Evolutionary transitions from benthic to pelagic habitats are major adaptive shifts. Investigations into such shifts are critical for understanding the complex interaction between co-opting existing traits for new functions and novel traits that originate during or post-transition.
    [Show full text]