A New Phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) Based on Expanded Taxon Sampling and Gene Markers Q ⇑ Trond R

Total Page:16

File Type:pdf, Size:1020Kb

A New Phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) Based on Expanded Taxon Sampling and Gene Markers Q ⇑ Trond R Molecular Phylogenetics and Evolution 89 (2015) 130–150 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A new phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) based on expanded taxon sampling and gene markers q ⇑ Trond R. Oskars a, , Philippe Bouchet b, Manuel António E. Malaquias a a Phylogenetic Systematics and Evolution Research Group, Section of Taxonomy and Evolution, Department of Natural History, University Museum of Bergen, University of Bergen, PB 7800, 5020 Bergen, Norway b Muséum National d’Histoire Naturelle, UMR 7205, ISyEB, 55 rue de Buffon, F-75231 Paris cedex 05, France article info abstract Article history: The Cephalaspidea is a diverse marine clade of euthyneuran gastropods with many groups still known Received 28 November 2014 largely from shells or scant anatomical data. The definition of the group and the relationships between Revised 14 March 2015 members has been hampered by the difficulty of establishing sound synapomorphies, but the advent Accepted 8 April 2015 of molecular phylogenetics is helping to change significantly this situation. Yet, because of limited taxon Available online 24 April 2015 sampling and few genetic markers employed in previous studies, many questions about the sister rela- tionships and monophyletic status of several families remained open. Keywords: In this study 109 species of Cephalaspidea were included covering 100% of traditional family-level Gastropoda diversity (12 families) and 50% of all genera (33 genera). Bayesian and maximum likelihood phylogenet- Euthyneura Bubble snails ics analyses based on two mitochondrial (COI, 16S rRNA) and two nuclear gene markers (28S rRNA and Cephalaspids Histone-3) were used to infer the relationships of Cephalaspidea. The monophyly of the Cephalaspidea Molecular systematics was confirmed. The families Cylichnidae, Diaphanidae, Haminoeidae, Philinidae, and Retusidae were Taxonomy found non-monophyletic. This result suggests that the family level taxonomy of the Cephalaspidea war- rants a profound revision and several new family and genus names are required to reflect the new phy- logenetic hypothesis presented here. We propose a new classification of the Cephalaspidea including five new families (Alacuppidae, Colinatydidae, Colpodaspididae, Mnestiidae, Philinorbidae) and one new genus (Alacuppa). Two family names (Acteocinidae, Laonidae) and two genera (Laona, Philinorbis) are reinstated as valid. An additional lineage with family rank (Philinidae ‘‘Clade 4’’) was unravelled, but no genus and species names are available to reflect the phylogeny and formal description will take place elsewhere. Ó 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction 2008). Most species inhabit soft bottoms of sand or mud, but sev- eral occur in close association with seagrass and algae and others The Cephalaspidea (bubble snails) is a major lineage of marine in coral rubble and sponges (Burn and Thompson, 1998; Gosliner heterobranch gastropods with about 634 species (Jörger et al., et al., 2008). A single genus is known to inhabit exposed rocky 2010; WoRMS, 2015) distributed worldwide across all latitudes, shores (Smaragdinella A. Adams, 1848: Gosliner et al., 2008). reaching highest diversity in tropical and subtropical waters of Malaquias et al. (2009) suggested that diet specialization played the Indo-West Pacific (Lin and Qi, 1985; Bouchet et al., 2002; a chief role in the evolution and diversification of cephalaspids. Gosliner et al., 2008; Too et al., 2014). Cephalaspids occur from Within the group there are herbivorous and carnivorous lineages, the intertidal zone (e.g. Haminoea Turton & Kingston, 1830) to which feed preferentially upon diatoms, filamentous algae, the deep-sea (e.g. Inopinodon Bouchet, 1975, Meloscaphander foraminiferans, small bivalves, gastropods and polychaetes (see Schepman, 1913, Scaphander Montfort, 1810: Bouchet, 1975; Malaquias et al., 2009; Göbbeler and Klussmann-Kolb, 2011; Valdés, 2008; Eilertsen and Malaquias, 2013a), but seem to be Eilertsen and Malaquias, 2013b, for reviews). more abundant in shallow areas to 40 m deep (Gosliner et al., Mikkelsen (1993) highlighted the difficulties on establishing synapomorphies and the sharp discrepancies between proposed classifications. Consequently, the first attempts to study the rela- q This paper has been recommended for acceptance by Jan Strugnell. tionships of the group within a cladistic framework were ham- ⇑ Corresponding author. E-mail addresses: [email protected] (T.R. Oskars), [email protected] pered not only by incomplete taxon sampling, but mostly by (P. Bouchet), [email protected] (M.A.E. Malaquias). difficulties on the interpretation of morphological characters and http://dx.doi.org/10.1016/j.ympev.2015.04.011 1055-7903/Ó 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). T.R. Oskars et al. / Molecular Phylogenetics and Evolution 89 (2015) 130–150 131 resulted in poorly resolved hypotheses (Mikkelsen, 1996, 2002; (4) to test and revise the classification proposed by Malaquias Dayrat and Tillier, 2001; Wägele and Klussmann-Kolb, 2005). et al. (2009) for the Cephalaspidea. Nevertheless, these studies backed the view that some traditional cephalaspidean groups such as Acteonidae, Aplustridae, 2. Methods Bullinidae Gray, 1850, and Ringiculidae Philippi, 1853 were likely not closely related to the remaining lineages, a hypothesis origi- 2.1. Sampling nally suggested by Haszprunar (1985). Since the late 1990s the advent of molecular phylogenetics Novel material used in the present study was self-collected in a yielded significant new insights about the relationships of series of shore based expeditions and deep water cruises con- euthyneuran gastropods and the Cephalaspidea was no exception ducted by the Museum National d’Histoire Naturelle (MNHN) in (reviewed in Malaquias et al., 2009). Molecular studies contributed the tropical Indo-Pacific; and from the University Museum of to an objective redefinition of the concept of Cephalaspidea and Bergen (Natural History), Norway (ZMBN). Whenever possible at become well established that traditional taxa such as the least four species per genus were included in the analyses. In some Acteonoidea (Acteon Montfort, 1810, Hydatina Schumacher, 1817, situations we have added additional species, namely for gen- Micromelo Pilsbry, 1895, Pupa Röding, 1798, Rictaxis Dall, 1871) era/families of uncertain systematic status (e.g. Retusidae; and Runcinacea (Runcina Forbes, 1851, Ilbia Burn, 1963) are not Malaquias et al., 2009) and when previous unpublished prelimi- members of the clade Cephalaspidea. Also, the Diaphanoidea nary work undertaken by us have hinted possible cases of unex- Odhner, 1914 (Diaphana Brown, 1827, Toledonia Dall, 1902) repre- pected non-monophyly (e.g. Chelidonura A. Adams, 1850, sents the basal lineages of the Cephalaspidea sensu stricto (sensu Haminoea, Philinidae). Furthermore, when specimens did not have Malaquias et al., 2009; Jörger et al., 2010; Göbbeler and full gene coverage (the four genes used in this study), we have used Klussmann-Kolb, 2011). The ‘‘Cephalaspidea’’ went from being additional representatives to complement the gene diversity (see considered as basal ‘‘primitive’’ opisthobranchs (e.g. Gosliner, Table 1). 1981) to derived and specialized members of the Euthyneura DNA extracts of Philinoglossa praelongata and Pluscula cuica Spengel, 1881 within the monophyletic Euopisthobranchia (sensu were provided by colleagues from The Bavarian State Collection Jörger et al., 2010; Schrödl et al., 2011; Brenzinger et al., 2013; of Zoology, Germany (ZSM). Additionally 153 sequences from 60 Wägele et al., 2014). specimens were mined from GenBank (Table 1). Yet, the systematics and evolutionary relationships of the Outgroup taxa consisting of 30 species from 24 genera repre- Cephalaspidea remain far from completely understood. The study senting nine higher euthyneuran clades of ranking similar to that by Malaquias et al. (2009) is still the only one to specifically focus of Cephalaspidea (Jörger et al., 2010) were included in the analyses, on the internal relationships of the Cephalaspidea sensu stricto namely Acochlidia, Acteonoidea, Anaspidea, Nudipleura, Pteropoda within a molecular phylogenetic framework. The authors used (Gymnosomata and Thecosomata), Pyramidelloidea, Runcinacea, three gene markers (mitochondrial COI and nuclear 18S rRNA Sacoglossa, and Umbraculida. The trees were rooted with the and 28S rRNA) and included representatives of nine families, 22 caenogastropod species Littorina littorea a sister lineage to the genera, and 41 species. They found the families Cylichnidae, Heterobranchia molluscs (Zapata et al., 2014). In total this study Diaphanidae, Haminoeidae, and Retusidae to be polyphyletic and includes 177 specimens (145 Cephalaspidea, 31 Euthyneura out- in need of revision and reinstated the family names Rhizoridae groups, and 1 Caenogastropoda) and a total of 596 sequences (for Volvulella Newton, 1891) and Scaphandridae (for (Table 1). Scaphander). The family relationships were generally poorly resolved, but sister relationships were found between Philinidae and Aglajidae and between Philinoglossidae and Gastropteridae. 2.2. DNA extraction, amplification, and sequencing A possible
Recommended publications
  • Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
    July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment.
    [Show full text]
  • A Radical Solution: the Phylogeny of the Nudibranch Family Fionidae
    RESEARCH ARTICLE A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae Kristen Cella1, Leila Carmona2*, Irina Ekimova3,4, Anton Chichvarkhin3,5, Dimitry Schepetov6, Terrence M. Gosliner1 1 Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, California, United States of America, 2 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, 3 Far Eastern Federal University, Vladivostok, Russia, 4 Biological Faculty, Moscow State University, Moscow, Russia, 5 A.V. Zhirmunsky Instutute of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia, 6 National Research University Higher School of Economics, Moscow, Russia a11111 * [email protected] Abstract Tergipedidae represents a diverse and successful group of aeolid nudibranchs, with approx- imately 200 species distributed throughout most marine ecosystems and spanning all bio- OPEN ACCESS geographical regions of the oceans. However, the systematics of this family remains poorly Citation: Cella K, Carmona L, Ekimova I, understood since no modern phylogenetic study has been undertaken to support any of the Chichvarkhin A, Schepetov D, Gosliner TM (2016) A Radical Solution: The Phylogeny of the proposed classifications. The present study is the first molecular phylogeny of Tergipedidae Nudibranch Family Fionidae. PLoS ONE 11(12): based on partial sequences of two mitochondrial (COI and 16S) genes and one nuclear e0167800. doi:10.1371/journal.pone.0167800 gene (H3). Maximum likelihood, maximum parsimony and Bayesian analysis were con- Editor: Geerat J. Vermeij, University of California, ducted in order to elucidate the systematics of this family. Our results do not recover the tra- UNITED STATES ditional Tergipedidae as monophyletic, since it belongs to a larger clade that includes the Received: July 7, 2016 families Eubranchidae, Fionidae and Calmidae.
    [Show full text]
  • Tampa Bay Benthic Monitoring Program: Status of Middle Tampa Bay: 1993-1998
    Tampa Bay Benthic Monitoring Program: Status of Middle Tampa Bay: 1993-1998 Stephen A. Grabe Environmental Supervisor David J. Karlen Environmental Scientist II Christina M. Holden Environmental Scientist I Barbara Goetting Environmental Specialist I Thomas Dix Environmental Scientist II MARCH 2003 1 Environmental Protection Commission of Hillsborough County Richard Garrity, Ph.D. Executive Director Gerold Morrison, Ph.D. Director, Environmental Resources Management Division 2 INTRODUCTION The Environmental Protection Commission of Hillsborough County (EPCHC) has been collecting samples in Middle Tampa Bay 1993 as part of the bay-wide benthic monitoring program developed to (Tampa Bay National Estuary Program 1996). The original objectives of this program were to discern the ―health‖—or ―status‖-- of the bay’s sediments by developing a Benthic Index for Tampa Bay as well as evaluating sediment quality by means of Sediment Quality Assessment Guidelines (SQAGs). The Tampa Bay Estuary Program provided partial support for this monitoring. This report summarizes data collected during 1993-1998 from the Middle Tampa Bay segment of Tampa Bay. 3 METHODS Field Collection and Laboratory Procedures: A total of 127 stations (20 to 24 per year) were sampled during late summer/early fall ―Index Period‖ 1993-1998 (Appendix A). Sample locations were randomly selected from computer- generated coordinates. Benthic samples were collected using a Young grab sampler following the field protocols outlined in Courtney et al. (1993). Laboratory procedures followed the protocols set forth in Courtney et al. (1995). Data Analysis: Species richness, Shannon-Wiener diversity, and Evenness were calculated using PISCES Conservation Ltd.’s (2001) ―Species Diversity and Richness II‖ software.
    [Show full text]
  • Biodiversity of Jamaican Mangrove Areas
    BIODIVERSITY OF JAMAICAN MANGROVE AREAS Volume 7 Mangrove Biotypes VI: Common Fauna BY MONA WEBBER (PH.D) PROJECT FUNDED BY: 2 MANGROVE BIOTYPE VI: COMMON FAUNA CNIDARIA, ANNELIDA, CRUSTACEANS, MOLLUSCS & ECHINODERMS CONTENTS Page Introduction…………………………………………………………………… 4 List of fauna by habitat……………………………………………………….. 4 Cnidaria Aiptasia tagetes………………………………………………………… 6 Cassiopeia xamachana………………………………………………… 8 Annelida Sabellastarte magnifica………………………………………………… 10 Sabella sp………………………………………………………………. 11 Crustacea Calinectes exasperatus…………………………………………………. 12 Calinectes sapidus……………………………………………………… 13 Portunis sp……………………………………………………………… 13 Lupella forcepes………………………………………………………… 14 Persephone sp. …………………………………………………………. 15 Uca spp………………………………………………………………..... 16 Aratus pisoni……………………………………………………………. 17 Penaeus duorarum……………………………………………………… 18 Panulirus argus………………………………………………………… 19 Alphaeus sp…………………………………………………………….. 20 Mantis shrimp………………………………………………………….. 21 Balanus eberneus………………………………………………………. 22 Balanus amphitrite…………………………………………………….. 23 Chthamalus sp………………………………………………………….. 23 Mollusca Brachidontes exustus…………………………………………………… 24 Isognomon alatus………………………………………………………. 25 Crassostrea rhizophorae……………………………………………….. 26 Pinctada radiata………………………………………………………... 26 Plicatula gibosa………………………………………………………… 27 Martesia striata…………………………………………………………. 27 Perna viridis……………………………………………………………. 28 Trachycardium muricatum……………………………………..……… 30 Anadara chemnitzi………………………………………………...……. 30 Diplodonta punctata………………………………………………..…... 32 Dosinia sp…………………………………………………………..….
    [Show full text]
  • Nueva Especie De Notodiaphana Thiele, 1931 Del Océano Atlántico Y
    Rev. Acad. Canar. Cicnc, Vol. XXV, 15-24 (diciembre de 2013) NUEVA ESPECIE DE Notodiaphana THIELE, 1931 DEL OCEANO ATLANTICO Y NUEVA UBICACION GENERICA PARA^s alayoi ESPINOSA & ORTEA, 2004 (GASTROPODA: OPISTHOBRANCHIA: CEPHALASPIDEA) 1 2 3 J. Ortea , L. Moro & J. Espinosa 1 Profesor jubilado, Departamento BOS, Universidad de Oviedo. Oviedo, Espana 2 Servicio de Biodiversidad, Gobierno de Canarias, Edif. Usos Multiples I Av. Anaga n° 35, PI. 11, 38071 Tenerife, Islas Canarias [email protected] 3 a Instituto de Oceanologia, Avda. l n° 18406, E. 184 y 186, Playa, La Habana, Cuba [email protected] RESUMEN Se describe la primera especie atlantica del genero Notodiaphana Thiele, 1931 a par- tir de ejemplares colectados en Bahamas, Cuba y Canarias. Asimismo, se propone un nuevo genero para Atys alayoi Espinosa & Ortea, 2004, un pequeno cefalaspideo del mar Caribe. Palabras clave: Mollusca, Cephalaspidea, Notodiaphana, nueva especie, nuevo ge- nero, oceano Atlantico, mar Caribe. ABSTRACT We describe the first species of the genus Notodiaphana Thiele, 1931, in the Atlantic Ocean from specimens collected in the Bahamas, Cuba and the Canary Islands, and proposes a new genus for Atys alayoi Espinosa and Ortea, 2004, a small Caribbean Sea cephalaspidean. Key words: Mollusca, Cephalaspidea, Notodiaphana, new species, new genus, At- lantic Ocean, Caribbean Sea. 1. INTRODUCCION El genero Notodiaphana Thiele, 1917, fue introducido por THIELE [17] para la espe- cie Bulla fragilis Velain, 1877, descrita originalmente por VELAIN [22] a partir de un ejem- plar de 2'5 x 1 mm (fig. 1) colectado bajo piedras durante la bajamar, en el interior de un crater de la isla Saint Paul, en el oceano Indico Sur.
    [Show full text]
  • Nudipleura Bathydorididae Bathydoris Clavigera AY165754 2064 AY427444 1383 AF249222 445 AF249808 599
    !"#$"%&'"()*&**'+),#-"',).+%/0+.+()-,)12+),",1+.)$./&3)1/),+-),'&$,)45&("3'+&.-6) !"#$%&'()*"%&+,)-"#."%)-'/%0(%1/'2,3,)45/6"%7/')89:0/5;,)8/'(7")<=)>(5#&%?)@)A(BC"/5)DBC'E752,3 +F/G"':H/%:)&I)A"'(%/)JB&#K#:/H#)FK%"H(B#,)4:H&#GC/'/)"%7)LB/"%)M/#/"'BC)N%#.:$:/,)OC/)P%(Q/'#(:K)&I)O&RK&,)?S+S?) *"#C(T"%&C",)*"#C(T",)UC(V")2WWSX?Y;,)Z"G"%=)2D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)[&&5&1K,)A9%BCC"$#/%#:'=)2+,)X+2;W) A9%BC/%,)</'H"%K=)3F/G"':H/%:)-(&5&1K)NN,)-(&[/%:'$H,)\$7T(1SA"6(H(5("%#SP%(Q/'#(:]:,)<'&^C"7/'%/'#:'=)2,)X2+?2) _5"%/11SA"'.%#'(/7,)</'H"%K`);D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)_"5/&%:&5&1K)"%7)</&5&1K,)</&V(&)U/%:/')\AP,) M(BC"'7S>"1%/'SD:'=)+a,)Xa333)A9%BC/%,)</'H"%K`)?>/#:/'%)4$#:'"5("%)A$#/$H,)\&BR/7)-"1);b,)>/5#CG&&5)FU,)_/':C,) >4)YbXY,)4$#:'"5("=))U&''/#G&%7/%B/)"%7)'/c$/#:#)I&')H":/'("5#)#C&$57)V/)"77'/##/7):&)!=*=)d/H"(5e)R"%&f"&'(=$S :&RK&="B=gGh) 7&33'+8+#1-.9)"#:/.8-;/#<) =-*'+)7>?)8$B5/&.7/)#/c$/%B/#)&I)G'(H/'#)$#/7)I&')"HG5(iB".&%)"%7)#/c$/%B(%1 =-*'+)7@?)<"#:'&G&7)#G/B(/#)"%7)#/c$/%B/#)$#/7)(%):C/)GCK5&1/%/.B)'/B&%#:'$B.&%)&I)/$:CK%/$'"%)B5"7/#)(%B5$7(%1) M(%1(B$5&(7/" A"$&.+)7>?)M46A\):'//#)V"#/7)&%)I&$'S1/%/)7":"#/:)T(:C&$:)&%/)&I):T&)H"g&')%$7(G5/$'"%)#$VB5"7/#e)d"h)8$7(V'"%BC(") d!"#$%&'()*+"%7),-.)/)&"h)"%7)dVh)_5/$'&V'"%BC&(7/")d0.-1('2("34$1*+"%7)5'/#$'/6*'3)"h= A"$&.+)7@?)O(H/SB"5(V'":/7)-J4DO):'//#)T(:C&$:)&%/)&I)I&$')B"5(V'".&%)G'(&'#e)d"h)i'#:)#G5(:)T(:C(%)J$&G(#:C&V'"%BC(")"%7) dVh)#G5(:#)V/:T//%)7"(%4$)1/)"%7)8/-"9'.)"%7)dBh)V/:T//%):)39)41.'6*)*)"%7):C'//)&:C/')'(%1(B$5(7#= A"$&.+)7B?)A'-"K/#):'//)V"#/7)&%)I&$'S1/%/)7":"#/:=
    [Show full text]
  • Anuário Do Instituto De Geociências - UFRJ
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br As Famílias Veneridae, Trochidae, Akeridae e Acteonidae (Mollusca), na Formação Romualdo: Aspectos Paleoecológicos e Paleobiogeográicos no Cretáceo Inferior da Bacia do Araripe, NE do Brasil The Families Veneridae, Trochidae, Akeridae and Acteonidae (Mollusca), in the Romualdo Formation: Paleoecological and Paleobiogeographic Aspects in the Lower Cretaceous of the Araripe Basin, NE of Brazil Priscilla Albuquerque Pereira1; Rita de Cassia Tardin Cassab2 & Alcina Magnólia Franca Barreto1 1Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Departamento de Geologia, Laboratório de Paleontologia, Av. Hélio Acadêmico Ramos, s/n, Cidade Universitária, 50740-533, Recife, PE, Brasil 2 Universidade Federal do Rio de Janeiro, Instituto de Geociências, Departamento de Geologia, Avenida Athos da Silveira Ramos, 274, 21910-900, Cidade Universitária, Ilha do Fundão, s/n, Rio de Janeiro, Rio de Janeiro-RJ, Brasil E-mail: [email protected]; [email protected]; [email protected] Recebido em: 18/07/2018 Aprovado em: 21/09/2018 DOI: http://dx.doi.org/10.11137/2018_3_137_152 Resumo Moluscos fósseis na Bacia Sedimentar do Araripe são relatados desde a década de 1960, com biválvios presentes nas forma- ções Crato, Romualdo e gastrópodos, restritos a Formação Romualdo. A identiicação e descrição desses moluscos tem auxiliado na reconstituição paleoambiental da Formação Romualdo (Aptiano-Albiano) e na interpretação da rota de incursão marinha que aponta para inluência do mar de Tétis na bacia. Este trabalho, descreve e ilustra fósseis coletados nas localidades de Zé Gomes, Cedro/ Tabuleiro e Santo Antônio município de Exu, Pernambuco, pontuando a paleoecologia e a distribuição paleogeográica dos gêneros, além de observar as ainidades faunísticas entre as formaçõe Romualdo e Riachuelo.
    [Show full text]
  • The Marine and Brackish Water Mollusca of the State of Mississippi
    Gulf and Caribbean Research Volume 1 Issue 1 January 1961 The Marine and Brackish Water Mollusca of the State of Mississippi Donald R. Moore Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Recommended Citation Moore, D. R. 1961. The Marine and Brackish Water Mollusca of the State of Mississippi. Gulf Research Reports 1 (1): 1-58. Retrieved from https://aquila.usm.edu/gcr/vol1/iss1/1 DOI: https://doi.org/10.18785/grr.0101.01 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports Volume 1, Number 1 Ocean Springs, Mississippi April, 1961 A JOURNAL DEVOTED PRIMARILY TO PUBLICATION OF THE DATA OF THE MARINE SCIENCES, CHIEFLY OF THE GULF OF MEXICO AND ADJACENT WATERS. GORDON GUNTER, Editor Published by the GULF COAST RESEARCH LABORATORY Ocean Springs, Mississippi SHAUGHNESSY PRINTING CO.. EILOXI, MISS. 0 U c x 41 f 4 21 3 a THE MARINE AND BRACKISH WATER MOLLUSCA of the STATE OF MISSISSIPPI Donald R. Moore GULF COAST RESEARCH LABORATORY and DEPARTMENT OF BIOLOGY, MISSISSIPPI SOUTHERN COLLEGE I -1- TABLE OF CONTENTS Introduction ............................................... Page 3 Historical Account ........................................ Page 3 Procedure of Work ....................................... Page 4 Description of the Mississippi Coast ....................... Page 5 The Physical Environment ................................ Page '7 List of Mississippi Marine and Brackish Water Mollusca . Page 11 Discussion of Species ...................................... Page 17 Supplementary Note .....................................
    [Show full text]
  • “Opisthobranchia”! a Review on the Contribution of Mesopsammic Sea Slugs to Euthyneuran Systematics
    Thalassas, 27 (2): 101-112 An International Journal of Marine Sciences BYE BYE “OPISTHOBRANCHIA”! A REVIEW ON THE CONTRIBUTION OF MESOPSAMMIC SEA SLUGS TO EUTHYNEURAN SYSTEMATICS SCHRÖDL M(1), JÖRGER KM(1), KLUSSMANN-KOLB A(2) & WILSON NG(3) Key words: Mollusca, Heterobranchia, morphology, molecular phylogeny, classification, evolution. ABSTRACT of most mesopsammic “opisthobranchs” within a comprehensive euthyneuran taxon set. During the last decades, textbook concepts of “Opisthobranchia” have been challenged by The present study combines our published morphology-based and, more recently, molecular and unpublished topologies, and indicates that studies. It is no longer clear if any precise distinctions monophyletic Rhodopemorpha cluster outside of can be made between major opisthobranch and Euthyneura among shelled basal heterobranchs, acte- pulmonate clades. Worm-shaped, mesopsammic taxa onids are the sister to rissoellids, and Nudipleura such as Acochlidia, Platyhedylidae, Philinoglossidae are the basal offshoot of Euthyneura. Furthermore, and Rhodopemorpha were especially problematic in Pyramidellidae, Sacoglossa and Acochlidia cluster any morphology-based system. Previous molecular within paraphyletic Pulmonata, as sister to remaining phylogenetic studies contained a very limited sampling “opisthobranchs”. Worm-like mesopsammic hetero- of minute and elusive meiofaunal slugs. Our recent branch taxa have clear independent origins and thus multi-locus approaches of mitochondrial COI and 16S their similarities are the result of convergent evolu- rRNA genes and nuclear 18S and 28S rRNA genes tion. Classificatory and evolutionary implications (“standard markers”) thus included representatives from our tree hypothesis are quite dramatic, as shown by some examples, and need to be explored in more detail in future studies. (1) Bavarian State Collection of Zoology. Münchhausenstr.
    [Show full text]
  • Gastropoda, Acteonidae) and Remarks on the Other Mediterranean Species of the Family Acteonidae D’Orbigny, 1835
    BASTERIA, 60: 183-193, 1996 Central Tyrrhenian sea Mollusca: XI. of Callostracon Description tyrrhenicum sp. nov. (Gastropoda, Acteonidae) and remarks on the other Mediterranean species of the family Acteonidae d’Orbigny, 1835 Carlo Smriglio Via di Valle Aurelia 134, 1-00167 Rome, Italy & Paolo Mariottini Dipartimento di Biologia, Terza Universita degli Studi di Roma, Via Ostiense 173, 1-00154 Rome, Italy A new acteonid species, collected in the Central Tyrrhenian Sea, is here described. It is placed in Callostracon and named C. Hamlin, 1884, tyrrhenicum. The description is based on shell morpho- logyonly. Remarks on the four bathyal and the three infralittoral species ofthe familyActeonidae known from the Mediterranean Sea, are also featured. Key-words: Gastropoda, Opisthobranchia, Acteonidae, Callostracon, taxonomy, bathyal fauna, Central Tyrrhenian Sea, Italy. INTRODUCTION In the framework of carried an investigation out over the past decade, we continue to characterize the bathyal faunal assemblages from the Central Tyrrhenian Sea, off the Latial coast (Italy) (Smriglio et al., 1987, 1990, 1992, 1993). In particular, we are interested in the molluscan fauna occurring in the deep-sea coral (biocoenose des and des coraux blancs, CB) muddy-bathyal (biocoenose vases bathyales, VB) commu- nities & of this In this we describe of (Peres Picard, 1964) area. paper a new species acteonid, Callostracon tyrrhenicum, from material dredged in a deep-sea coral bank off the coast. Latial Among the molluscan fauna associated with C. tyrrhenicum, we have iden- tified four which bathyal acteonids, we think worth reporting: Acteon monterosatoi Crenilabium Dautzenberg, 1889, exile (Jeffreys, 1870, ex Forbes ms.), Japonacteon pusillus and Liocarenus (McGillavray, 1843), globulinus (Forbes, 1844).
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]