The Lower Pliocene Gastropods of Le Pigeon Blanc (Loire- Atlantique, Northwest France). Part 5* – Neogastropoda (Conoidea) and Heterobranchia (Fine)

Total Page:16

File Type:pdf, Size:1020Kb

The Lower Pliocene Gastropods of Le Pigeon Blanc (Loire- Atlantique, Northwest France). Part 5* – Neogastropoda (Conoidea) and Heterobranchia (Fine) Cainozoic Research, 18(2), pp. 89-176, December 2018 89 The lower Pliocene gastropods of Le Pigeon Blanc (Loire- Atlantique, northwest France). Part 5* – Neogastropoda (Conoidea) and Heterobranchia (fine) 1 2 3,4 Luc Ceulemans , Frank Van Dingenen & Bernard M. Landau 1 Avenue Général Naessens de Loncin 1, B-1330 Rixensart, Belgium; email: [email protected] 2 Cambeenboslaan A 11, B-2960 Brecht, Belgium; email: [email protected] 3 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, Netherlands; Instituto Dom Luiz da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; and International Health Centres, Av. Infante de Henrique 7, Areias São João, P-8200 Albufeira, Portugal; email: [email protected] 4 Corresponding author Received 25 February 2017, revised version accepted 7 July 2018 In this final paper reviewing the Zanclean lower Pliocene assemblage of Le Pigeon Blanc, Loire-Atlantique department, France, which we consider the ‘type’ locality for Assemblage III of Van Dingenen et al. (2015), we cover the Conoidea and the Heterobranchia. Fifty-nine species are recorded, of which 14 are new: Asthenotoma lanceolata nov. sp., Aphanitoma marqueti nov. sp., Clathurella pierreaimei nov. sp., Clavatula helwerdae nov. sp., Haedropleura fratemcontii nov. sp., Bela falbalae nov. sp., Raphitoma georgesi nov. sp., Raphitoma landreauensis nov. sp., Raphitoma palumbina nov. sp., Raphitoma turtaudierei nov. sp., Raphitoma vercingetorixi nov. sp., Raphitoma pseudoconcinna nov. sp., Adelphotectonica bieleri nov. sp., and Ondina asterixi nov. sp. One new name is erected: Genota maximei nov. nom. is proposed for Pleurotoma insignis Millet, non Edwards, 1861. Actaeonidea achatina Sacco, 1896 is considered a junior subjective synonym of Rictaxis tornatus (Millet, 1854). The data presented here concur with that discussed in previous parts of this monograph, suggesting that average Sea Surface Temperatures off the NW French coast in the Zanclean early Pliocene may have been higher than they are at these latitudes today, possibly similar to those found today off the southern Portuguese coasts. KEY WORDS: northwestern France, lower Pliocene, Neogastropoda, new taxa Introduction Geological setting, material and methods In this paper we continue our studies on Neogene gastro- (see Van Dingenen et al., 2015: 75-79, figures 1, 2). pod fossil assemblages of northwestern France (see Ceu- Systematics are updated following Bouchet & Rocroi lemans et al., 2014, 2016a, b; Van Dingenen et al., 2014, (2017). 2015, 2016, 2017): Gastropods of the order Neogastropo- da (Conoidea) and Heterobranchia are revised. The study Abbreviations: is restricted to the locality of Le Pigeon Blanc, which we consider to be the ‘type’ locality for Assemblage III gas- IRScNB Institut Royal des Sciences naturelles de tropods (of Van Dingenen et al., 2015). Belgique, Brussels (Belgium). In his unpublished thesis, Brébion (1964) of the Centre MNHN.F Muséum national d’Histoire naturelle (collec- National de la Recherche Scientifique, Paris recorded 44 tion de Paléontologie), Paris (France). species within the groups covered in this paper from Le NHMW Naturhistorisches Museum Wien collection, Pigeon Blanc and six from other Assemblage III locali- Vienna (Austria). ties, some of which were described as new. However, as FVD Frank van Dingenen private collection, Brecht the thesis was never published, the names do not comply (Belgium). with article 13 of the ICZN code (1999) and must be con- LC Luc Ceulemans private collection (Rixensart, sidered nomina nuda. Belgium). * For nr 3 in this series see Vita Malacologica 15: 35-55. 90 Ceulemans, Van Dingenen & Landau. The lower Pliocene gastropods of Le Pigeon Blanc. Neogastropoda (Conoidea) and Heterobranchia Systematic palaeontology relatively narrow, simple (edge damaged in all speci- mens), irregularly lirate within. Columella callus poorly Superfamily Conoidea Fleming, 1822 expanded, closely apressed, thickened, bearing broad Family Borsoniidae Bellardi, 1875 fold mid-aperture, developed to a variable degree. Sipho- Genus Asthenotoma Harris & Burrows, 1891 nal canal short, open, slightly posteriorly recurved and notched at tip. Type species – Pleurotoma meneghinii Mayer, 1868, by original designation, Miocene, Italy. Discussion – Asthenotoma lanceolata nov. sp. co-occurs with Asthenotoma ornata (Defrance, 1826) in the lower 1875 Oligotoma Bellardi, p. 21. Type species (by origi- Pliocene of northwestern France (see below) but is less nal designation): Pleurotoma meneghinii Mayer, common. It differs from A. ornata in being larger, in 1868, Miocene, Italy (non Westwood, 1836 [In- having a relatively higher spire, shorter last whorl and secta, Embioptera]). siphonal canal, the last whorl is less inflated mid-whorl 1891 Asthenotoma Harris & Burrows, p. 113. Nom. nov. and less constricted at the base and the sculpture is fin- pro Oligotoma Bellardi, 1875, non Westwood, er, especially the spiral cords, which are subequal and 1836 [Insecta, Embioptera]. crowded, whereas in A. ornata they tend to be of alter- nate strength. The genus Asthenotoma in the Italian Neo- gene was reviewed by Gatto (1997). None of the species Asthenotoma lanceolata nov. sp. reviewed is as tall spired as A. lanceolata. Plate 1, figs 1-2 Distribution – Lower Pliocene: Atlantic, NW France (this Type material – Holotype NHMW 2015/0133/0557, height paper). 20.7 mm, width 5.6 mm (Pl. 1, fig. 1); paratype 1 NHMW 2015/0133/0558, height 20.8 mm, width 6.3 mm (Pl. 1, fig. 2). Asthenotoma ornata (Defrance, 1826) Plate 1, figs 3-5 Other material – Maximum height 20.8 mm. LC (1). Le Pigeon Blanc, Le Landreau, Nantes area, Loire-Atlan- *1826 Pleurotoma ornata Defrance, p. 390. tique department, NW France. 1848 Peurotoma semicolon (?) J. Sow. – S.V. Wood, p. 54, pl. 6, fig. 3b (non J. Sowerby, 1816). Etymology – Latin ‘lanceola, -ae’, diminutive of ‘lancea’, 1854 Pleurotoma Ornata Defr. – Millet, p. 161. noun, meaning like a small lance. Asthenotoma gender non 1877 Pleurotoma ornata Defr. – Bellardi, p. 238, pl. 7, feminine. fig. 25 (= Asthenotoma bellardiana Gatto, 1997). 1878 Pleurotoma granulina Nyst, pl. 3, fig. 7. Locus typicus – Le Landreau, Le Pigeon Blanc, Loire- 1882 Pleurotoma granulina Nyst, p. 43. Atlantique department, NW France. non 1890 Pleurotoma (Oligotoma) ornata Defr. – Hoernes & Auinger, pl. 34, figs 16, 17 [= Asthenotoma co- Stratum typicum – Zanclean, lower Pliocene. lus (Dujardin, 1837)]. non 1891 Pleurotoma (Oligotoma) ornata Defr. – Hoernes Diagnosis – Asthenotoma species of medium-size, high & Auinger, pl. 50, fig. 27 [= Asthenotoma colus conical spire composed of flat-sided whorls, finely re- (Dujardin, 1837)]. ticulated sculpture composed of crowded spiral cords non 1912 Asthenotoma ornata Defr. – Friedberg, p. 221, pl. and stongly sinuous close-set axial ribs, short last whorl 14, fig. 2. and siphonal canal, small aperture, outer lip lirate within, non 1915 Oligotoma ornata (Defrance) – Harmer, p. 216, columella bearing broad fold. pl. 27, figs 1, 2 [= Asthenotoma colus (Dujardin, 1837)]. Description – Shell medium-sized, high conical spire, 1915 Oligotoma festiva (Döderlein in Hörnes) – Harmer 54% of total height. Protoconch not preserved. Teleoconch (partim), p. 216, pl. 27, fig. 6 (only). consisting of nine straight-sided whorls with periphery 1915 Oligotoma decorata (A. Bell, MS) Harmer, p. 217, at abapical suture. Suture incised, shallow. Sculpture of pl. 27, figs 3, 4. low, narrow, close-set, strongly sinuous axial ribs crossed 1915 Oligotoma bipunctula (S.V. Wood, 1848) – Harm- by fine, irregular, close-set spiral cords, somewhat more er, p. 218, pl. 27, figs 12-15, pl. 28, figs 5-8 (non crowded on adapical half of whorl, forming fine reticulat- Pleurotoma bipunctula S.V. Wood, 1848 = Gem- ed surface pattern. Last whorl relatively short, 46% total mula sp. fide Gatto, 1997). height, adapical half straight-sided, broadly rounded at 1915 Oligotoma bipunctula var. proxima Harmer, p. periphery, moderately constricted at base; base slightly 219, pl. 28, figs 3, 4. concave, delimited abapically by poorly defined, low si- non 1937 Asthenotoma ornata Defr. – Montanaro, p. 166, phonal fasciole. pl. 7, fig. 72 (= Asthenotoma bellardiana Gatto, Anal sinus broadly U-shaped, with apex placed just 1997). above mid-whorl. Aperture small, 29% of total height, non 1938 Asthenotoma ornata Defrance – Peyrot, p. 279 [= Cainozoic Research, 18(2), pp. 89-176, December 2018 91 Asthenotoma colus (Dujardin, 1837)]. blage I specimens (BL unpublished data) but not seen in 1946 Asthenotoma (Asthenotoma) bipunctula (Wood, the Le Pigeon Blanc specimen illustrated here, as the pro- 1872) – Beets, p. 101, pl. 6, figs 2-4 (non Pleu- toconch surface is abraded. For further comparison with rotoma bipunctula S.V. Wood, 1848 = Gemmula its congeners see Gatto (1997). sp. fide Gatto, 1997). Millet (1854, p. 161) recorded this species from Assem- 1954 Asthenotoma ornata Defrance, 1826 – Glibert blage I localities (Renauleau, Sceaux-d’Anjou, Thorigné). (partim), p. 35, pl. 1, fig. 15, pl. 5, fig. 8a, c-e (not Brébion (1964, p. 569) added St-Michel and Beaulieu, 8b). Assemblage II localities (Apigné, Le Temple du Cerisier) non 1963 Asthenotoma (Asthenotoma) ornata (Defr.) – Ven- and Assemblage III (Le Pigeon Blanc, Le Girondor, Pal- zo & Pelosio, p. 126, pl. 11, fig. 12 (= Asthenoto- luau). ma falunica Peyrot, 1938). 1964 Asthenotoma ornata Defrance, 1826 – Brébion, p. Distribution – Upper Miocene: Atlantic (Tortonian): NW 568. France (Glibert, 1954; Brébion,
Recommended publications
  • Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
    July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment.
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Tampa Bay Benthic Monitoring Program: Status of Middle Tampa Bay: 1993-1998
    Tampa Bay Benthic Monitoring Program: Status of Middle Tampa Bay: 1993-1998 Stephen A. Grabe Environmental Supervisor David J. Karlen Environmental Scientist II Christina M. Holden Environmental Scientist I Barbara Goetting Environmental Specialist I Thomas Dix Environmental Scientist II MARCH 2003 1 Environmental Protection Commission of Hillsborough County Richard Garrity, Ph.D. Executive Director Gerold Morrison, Ph.D. Director, Environmental Resources Management Division 2 INTRODUCTION The Environmental Protection Commission of Hillsborough County (EPCHC) has been collecting samples in Middle Tampa Bay 1993 as part of the bay-wide benthic monitoring program developed to (Tampa Bay National Estuary Program 1996). The original objectives of this program were to discern the ―health‖—or ―status‖-- of the bay’s sediments by developing a Benthic Index for Tampa Bay as well as evaluating sediment quality by means of Sediment Quality Assessment Guidelines (SQAGs). The Tampa Bay Estuary Program provided partial support for this monitoring. This report summarizes data collected during 1993-1998 from the Middle Tampa Bay segment of Tampa Bay. 3 METHODS Field Collection and Laboratory Procedures: A total of 127 stations (20 to 24 per year) were sampled during late summer/early fall ―Index Period‖ 1993-1998 (Appendix A). Sample locations were randomly selected from computer- generated coordinates. Benthic samples were collected using a Young grab sampler following the field protocols outlined in Courtney et al. (1993). Laboratory procedures followed the protocols set forth in Courtney et al. (1995). Data Analysis: Species richness, Shannon-Wiener diversity, and Evenness were calculated using PISCES Conservation Ltd.’s (2001) ―Species Diversity and Richness II‖ software.
    [Show full text]
  • Rachor, E., Bönsch, R., Boos, K., Gosselck, F., Grotjahn, M., Günther, C
    Rachor, E., Bönsch, R., Boos, K., Gosselck, F., Grotjahn, M., Günther, C.-P., Gusky, M., Gutow, L., Heiber, W., Jantschik, P., Krieg, H.J., Krone, R., Nehmer, P., Reichert, K., Reiss, H., Schröder, A., Witt, J. & Zettler, M.L. (2013): Rote Liste und Artenlisten der bodenlebenden wirbellosen Meerestiere. – In: Becker, N.; Haupt, H.; Hofbauer, N.; Ludwig, G. & Nehring, S. (Red.): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeresorganismen. – Münster (Landwirtschaftsverlag). – Na- turschutz und Biologische Vielfalt 70 (2): S. 81-176. Die Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeres- organismen (ISBN 978-3-7843-5330-2) ist zu beziehen über BfN-Schriftenvertrieb – Leserservice – im Landwirtschaftsverlag GmbH 48084 Münster Tel.: 02501/801-300 Fax: 02501/801-351 http://www.buchweltshop.de/bundesamt-fuer-naturschutz.html bzw. direkt über: http://www.buchweltshop.de/nabiv-heft-70-2-rote-liste-gefahrdeter-tiere-pflanzen-und- pilze-deutschlands-bd-2-meeresorganismen.html Preis: 39,95 € Naturschutz und Biologische Vielfalt 70 (2) 2013 81 –176 Bundesamtfür Naturschutz Rote Liste und Artenlisten der bodenlebenden wirbellosen Meerestiere 4. Fassung, Stand Dezember 2007, einzelne Aktualisierungenbis 2012 EIKE RACHOR,REGINE BÖNSCH,KARIN BOOS, FRITZ GOSSELCK, MICHAEL GROTJAHN, CARMEN- PIA GÜNTHER, MANUELA GUSKY, LARS GUTOW, WILFRIED HEIBER, PETRA JANTSCHIK, HANS- JOACHIM KRIEG,ROLAND KRONE, PETRA NEHMER,KATHARINA REICHERT, HENNING REISS, ALEXANDER SCHRÖDER, JAN WITT und MICHAEL LOTHAR ZETTLER unter Mitarbeit von MAREIKE GÜTH Zusammenfassung Inden hier vorgelegten Listen für amMeeresbodenlebende wirbellose Tiere (Makrozoo- benthos) aus neun Tierstämmen wurden 1.244 Arten bewertet. Eszeigt sich, dass die Verhältnis- se in den deutschen Meeresgebietender Nord-und Ostsee (inkl.
    [Show full text]
  • Comparison of Some Interesting Molluscs, Trawled by the Belgian Fishery in the Bay of Biscay, with Similar Representatives from Adjacent Waters: Part III
    Comparison of some interesting molluscs, trawled by the Belgian fishery in the Bay of Biscay, with similar representatives from adjacent waters: part III Frank Nolf 1 & Jean-Paul Kreps 2 1 Pr. Stefanieplein, 43/8 – B-8400 Oostende [email protected] 2 Rode Kruisstraat, 5 – B-8300 Knokke-Heist [email protected] Keywords: Bay of Biscay, W France, Belgian XLIV, Fig. 248; Pl. XLV, Figs 249-254), the North fishery, Mollusca, Gastropoda, Bivalvia. Sea (Pl. XLVI, Figs 255-257) and the English Channel south to the Bay of Biscay (Pl. XLIV, Abstract: In the third part of the report on the Figs 243-244) and Portugal (Pl. XLVI, Figs 260- molluscs collected by the Belgian fishery in the 261). Bay of Biscay during the last decade, the Specimens reported from the Mediterranean are remaining gastropods and a first series of erroneous identifications and have to be bivalves are briefly described, figured and attributed to Colus jeffreysianus (P. Fischer, compared with similar specimens from North 1868). The species lives on muddy and sandy Atlantic waters, the Mediterranean Sea or West bottoms, usually from 30 to 800 m deep. It is less Africa. common and lives deeper in the south of its range. Abbreviations: This is a rather variable species with respect to FN: private collection of Frank Nolf. its shell, especially in relation to the H.: height. breadth/height ratio, the size of the aperture and JPK: private collection of Jean-Paul Kreps. the length of the siphonal canal. This is probably JV: private collection of Johan Verstraeten. due to its occurrence in several different L.: length.
    [Show full text]
  • The Marine and Brackish Water Mollusca of the State of Mississippi
    Gulf and Caribbean Research Volume 1 Issue 1 January 1961 The Marine and Brackish Water Mollusca of the State of Mississippi Donald R. Moore Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Recommended Citation Moore, D. R. 1961. The Marine and Brackish Water Mollusca of the State of Mississippi. Gulf Research Reports 1 (1): 1-58. Retrieved from https://aquila.usm.edu/gcr/vol1/iss1/1 DOI: https://doi.org/10.18785/grr.0101.01 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports Volume 1, Number 1 Ocean Springs, Mississippi April, 1961 A JOURNAL DEVOTED PRIMARILY TO PUBLICATION OF THE DATA OF THE MARINE SCIENCES, CHIEFLY OF THE GULF OF MEXICO AND ADJACENT WATERS. GORDON GUNTER, Editor Published by the GULF COAST RESEARCH LABORATORY Ocean Springs, Mississippi SHAUGHNESSY PRINTING CO.. EILOXI, MISS. 0 U c x 41 f 4 21 3 a THE MARINE AND BRACKISH WATER MOLLUSCA of the STATE OF MISSISSIPPI Donald R. Moore GULF COAST RESEARCH LABORATORY and DEPARTMENT OF BIOLOGY, MISSISSIPPI SOUTHERN COLLEGE I -1- TABLE OF CONTENTS Introduction ............................................... Page 3 Historical Account ........................................ Page 3 Procedure of Work ....................................... Page 4 Description of the Mississippi Coast ....................... Page 5 The Physical Environment ................................ Page '7 List of Mississippi Marine and Brackish Water Mollusca . Page 11 Discussion of Species ...................................... Page 17 Supplementary Note .....................................
    [Show full text]
  • Acanthochitona Pygmea (Pilsbry, 1893)
    Lista de especies del phylum Mollusca registradas para el Caribe colombiano Abra aequalis (Say, 1822) Abra longicallis (Sacchi, 1837) Abralia veranyi (Rüppell, 1844) Acanthochitona pygmea (Pilsbry, 1893) Acanthochitona rodea (Pilsbry, 1893) Acanthochitona spiculosa (Reeve, 1847) Acanthochitona venezuelana Lyons, 1888 Acanthopleura granulata (Gmelin, 1791) Acar domingensis (Lamarck, 1819) Acesta colombiana (H.E. Vokes, 1970) Acmaea antillarum (Sowerby, 1831) Acmaea leucopleura (Gmelin, 1791) Acmaea pustulata (Helbling, 1779) Acteocina candei (d'Orbigny, 1842) Acteocina recta (d'Orbigny, 1841) Acteon danaida Dall, 1881 Acteon punctostriatus (C.B. Adams, 1840) Actinotrophon actinophorus (Dall, 1889) Adrana gloriosa (A. Adams, 1855) Adrana patagonica (d'Orbigny, 1846) Adrana scaphoides Rehder, 1939 Adrana tellinoides (Sowerby, 1823) Aesopus obesus (Hinds, 1843) Aesopus stearnsi (Tryon, 1883) Agathotoma badia (Reeve, 1846) Agathotoma candidísima (C.B. Adams, 1850) Agatrix smithi (Dall, 1888) Agladrillia rhodochroa (Dautzenberg, 1900) Akera bayeri Marcus y Marcus, 1967 Alaba incerta (d'Orbigny, 1842) Alvania avernas (C.B. Adams, 1850) Alvania auberiana (d'Orbigny, 1842) Alvania colombiana Romer y Moore, 1988 Amaea mitchelli (Dall, 1889) Amaea retiñera (Dall, 1889) Americardia media (Linné, 1758) Amusium laurenti (Gmelin, 1791) Amusium payraceum (Gabb, 1873) Amygdalum politum (Verrill y Smith, 1880) Amygdalum sagittatum Rehder, 1934 Anachis cf. fraudans Jung, 1969 Anachis coseli Díaz y Mittnacht, 1991 Anachis hotessieriana (d'Orbigny, 1842)
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • A Revision of Australian Architectonicidae (Gastropoda
    A REVISION OF AUSTRALIAN ARCHITECTONICIDAE 506 (GASTROPODA: MOLLUSCA) T. A. GARRARD Associate, The Australian Museum, Sydney SUMMARY The family Architectonicidae consists of three subfamilies, Architectonicinae, Heliacinae and Pseudomalaxinae. In the subfamily Architectonicinae five Recent species are included in the subgenus Architectonica (Architectonica); two Recent, three fossil (one new but unnamed) in the subgenus A. (Discotectonica); two Recent species in the subgenus A. (So/atisonax); one Recent species in the subgenus Philippia (Phi/ippia); two Recent and one new fossil species (Philippia (Psi/axis) mitchellana Garrard) in the subgenus Phi/ippia (Psi/axis); one Recent species is included as Architectonicinae sp. In the subfamily Heliacinae, six Recent species, one of which (He/iacus (Heliacus) hed/eyi Garrard) is new, and one new Recent subspecies (He/iacus (He/iacus) cerda/eus ponderi Garrard) are included in the subgenus He/iacus (Heliacus); 10 Recent species, one of which (Heliacus (Torinista) corallin us Garrard) is new, and one new fossil species (He/iacus (Torinista) darraghi Garrard) are included in the subgenus H. (Torinista); one Recent and two fossil species, one of which (He/iacus (Awarua) otwayanus Garrard) is described as new, and the other un-named, are included in the subgenus H. (Awarua); seven Recent species, one of which (Heliacus (C/araxis) colmani Garrard) is new, two unnamed and three fossil species, one of which (He/iacus (C1araxis) morningtonensis Garrard) is new and one unnamed, are included in the subgenus H. (C1araxis). In the subfamily Pseudomalaxinae, two Recent species, including one new species (Pseudoma/axis (Pseudoma/axis) thetidis Garrard) and two fossil species are included in the subgenus P.
    [Show full text]
  • Three Alien Molluscs from Iskenderun Bay (SE Turkey)
    Aquatic Invasions (2006) Volume 1, Issue 2: 76-79 DOI 10.3391/ai.2006.1.2.4 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Research article Three alien molluscs from Iskenderun Bay (SE Turkey) Doğan Çeviker1 and Serhat Albayrak2* 1Itri Sokak No:2 34349 Balmumcu-Istanbul, Turkey E-mail: [email protected] 2Istanbul University, Faculty of Science, Department of Biology 34118 Vezneciler-Istanbul, Turkey E-mail: [email protected] *Corresponding author Received 26 April 2006; accepted in revised form 4 May 2006 Abstract This study reports the presence of three alien molluscs from Iskenderun Bay (SE Turkey). Amathina tricarinata (Linnaeus, 1767) and Petricola hemprichi Issel, 1869 have prior records from other regions of Mediterranean, but, Cardites akabana (Sturany, 1899) first recorded in this paper. Since all of them are present in the Red Sea or Suez Canal, they can be considered as Lessepsian immigrants. Key words: Mollusca, alien species, Mediterranean, Turkey Introduction that 88 % of the exotic molluscs are Lessepsian immigrants in the eastern Mediterranean (Galil The Mediterranean Sea hosts about 8500 species and Zenetos 2002). Detailed data about these species of macroscopic animals. This rich biodiversity, are available on the Internet (www.ciesm.org/atlas). representing 8-9 % of total species number of the Either Lessepsian or non-Lessepsian, many world’s seas, comprises temperate and sub- new non-indigenous species continue to enter the tropical elements together with endemic and Mediterranean. alien species (Zenetos et al. 2002). The eastern Mediterranean is most vulnerable The introduction of alien species (also known to invasion and should be continuously as exotic, introduced or non-native species) into monitored.
    [Show full text]