The Molluscan Fauna of the Alum Bluff Group of Florida Part Vi

Total Page:16

File Type:pdf, Size:1020Kb

The Molluscan Fauna of the Alum Bluff Group of Florida Part Vi UNITED STATES DEPARTMENT OF THE INTERIOR THE MOLLUSCAN FAUNA OF THE ALUM BLUFF GROUP OF FLORIDA PART VI. PTEROPODA, OPISTHOBRANCHIA AND CTENOBRANCHIA (IN PART) GEOLOGICAL SURVEY PROFESSIONAL PAPER 142-F UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Professional Paper 142 F THE MOLLUSCAN FAUNA OF THE ALUM BLUFF GROUP OF FLORIDA BY JULIA GARDNER PART VI. PTEROPODA, OPISTHOBRANCHIA, AND CTENOBRANCHIA (IN PART) Published November 1, 1937 (Pages 251 435) UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1937 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, I). C. CONTENTS Page List of localities_____________________________________________________________________________________________ in Introduction _________________________________________________________________________________________________ 251 S3Tstematic descriptions.______________________________________________________________________________________ 257 Class Gastropoda------_--_--_-_-_---._______________________________________________________________--__ 257 Subclass Euthyneura_________________________________________________________________________________ 257 Order Pteropoda.________________________________________________________________________________ 257 Suborder Thecosomata.______________________________________________________________________ 257 Family Cavolinidae._____________________________________________________________________ 257 Order Opisthobranchia___________________________________________________________________________ 258 Suborder Tectibranchiata.____________________________________________________________________ 258 Family Acteonidae_____________________________________________________________________ 258 Family Acteocinidae_____________________________________________________________________ 261 Family Scaphandridae__-____-_-___________----__-_______-_-_________-____________-__-__ 268 Family Bullidae.___ -.____--.___._.._._..--___._____.._._._____._._.__.._____._..__.__. 272 Family Akeratidae________________________________________________________________________ 273 Family Ringiculidae._____________________________________________________________________ 274 Family Aplysidae._______________________________________________________________________ 276 Subclass Streptoneura._______________________________________________________________________________ 277 Order Ctenobranchia_._______.__________________________________________._________________ _.____ 277 Suborder Stenoglossa._________________________________________________________________________ 277 Superfamily Toxoglossa___.__-__-____-_______________-.-________.__________-_____.--_.__ 277 Family Terebridae.--.------__--_-__-_._--__---_____--_-__.-____._-__-___.--.__--.--- 277 FamflyTurritidae-.-_-_.--..___._..-_..-_._..__...__..___........_._..._...-.. _ 287 Family Conidae._____.__________.__._____._._._.___________________..__.____..___.._ 357 Family Cancellaridae_______________________________________________________________ 364 Superfamily Rhachiglossa.________________________________________________________________ 378 Family Olividae._..____..____._.___ _.....___._.________________..______. 378 Family Marginellidae________________________________________________________________ 386 Family Volutidae___.-_____________________________________________________________ 403 Family Mitridae_____________________________________________________________________ 405 ILLUSTRATIONS Page PLATE XXXVII. Pteropoda and Tectibranchiata_-_______________-_____-___________--_-__-___-______l__-_-_---__ 424 XXXVIII. Terebridae and Turritidae.___________________________________________________________________ 425 XXXIX-XLII. Turritidae-_____________________________________________________________________________ 426-429 XLIII. Conidae._________________________________________________________________________________ 430 XLIV, XLV. Cancellaridae.______--______________.__________________________________._____________--._ 431, 432 XLVI. Olividae and Marginellidae..._______________.__________.___.___________.____ 433 XLVII. Marginellidae___..._--___________.________________.......__________________________ 434 XLVIIL Volutidae and Mitridae......_._..._..._____.__-_-______..._________._____....___ 435 ii LIST OF LOCALITIES The following list shows the localities cited by num­ 5080. First ravine below Shell Bluff, Shoal River, Walton Coun­ ber in the text and tables: ty, Fla. 5184. First ravine below Shell Bluff, Shoal River, Walton 2211. Lower bed, Alum Bluflf, Liberty County, Fla. County, Fla. 2212. Tenmile Creek, 1 mile west of Baileys Ferry, Calhoun 5193. Crowder's Crossing, \% miles below Shell Bluff, Shoal County, Fla. River, Walton County, Fla. 2213. 1 mile below Baileys Ferry, Chipola River, Calhoun 5195. First ravine below Shell Bluff, Shoal River, Walton County, Fla. County, Fla. 2214. Tenmile Creek, 1 mile west of Baileys Ferry, Calhoun 5618. B/zl miles southwest of De Funiak Springs, Walton County, County, Fla. Fla. 2238. Flournoy's millrace, 2 miles east of Argyle, Walton 5630. 100 yards below Oak Grove Bridge, Yellow River, Oka­ County, Fla. loosa County, Fla. 2564. McClelland farm, 1 mile below Baileys Ferry, Calhoun 5631. Oak Grove Bridge, Yellow River, Okaloosa County, Fla. County, Fla. 5632. Oak Grove, Yellow River, Okaloosa County, Fla. 2645. McClellan farm, Shoal River, 5 miles northwest of Mossy- 5633. Oak Grove, Yellow River, Okaloosa County, Fla. head, Walton County, Fla. 6175. Left bank of Suwannee River three-fourths mile above 2646. Oak Grove, Yellow River, Okaloosa County, Fla. White Springs, Columbia County, Fla. 2652. Horse Creek, 1}4 miles south of Oak Grove, Okaloosa 6776. Spring on left bank of Suwannee River about 100 yards County, Fla. above Rock Island and about half a mile above White 3417. Alum Bluff, 35 miles below railroad bridge over Apalachi- Springs, Columbia County, Fla. cola River, Liberty County, Fla. 7054. 400 feet below bridge, Oak Grove, Okaloosa County, Fla. 3419. McClelland farm, 1 mile below Baileys Ferry, Calhoun 7055. Old Senterfeit mill, 4}^ miles southwest of Laurel Hill, County, Fla. Okaloosa County, Fla. 3731. Near Mossyhead, sec. 6, T. 3 N., R. 21 W., Walton County, 7148. Gastropod Gulch, 5% miles southeast of Bainbridge, Fla. Decatur County, Ga. 3732. Dave Adams Mill Creek, sec. 2, T. 3 N., R. 21 W., Walton 7151. Tenmile Creek, Calhoun County, Fla. County, Fla. 7183. Alum Bluff (lower bed), Liberty County, Fla. 3733. Three-fourths mile west of Shell Bluff, Shoal River, 7256. Look and Tremble Shoals, Chipola River, Calhoun Walton County, Fla. County, Fla. 3742. Shell Bluff, Shoal River, Walton County, Fla. 7257. Sexton's marl bed, sec. 11, T. 1 N., R. 10 W., Tenmile 3747. 8 miles southwest of Lake De Funiak, Walton County, Fla. Creek, Calhoun County, Fla. 3748. Summerville millrace, 1 mile east of Argyle, Walton 7261. Upper Alaqua Lethu (?) Bluff, near De Funiak Springs, County, Fla. Walton County, Fla. 3749. Alien Senterfeit's mill, 3 or 4 miles north of Campton, 7264. De Funiak Cardium beds, Alaqua, Walton County, Fla. Okaloosa County, Fla. 7468. Sopchoppy, Wakulla County, Fla. 3856. 6 miles west-northwest of Mossyhead, Walton County, Fla. 7893. Boynton Landing, Choctawhatchee River, Washington 5079. One-half mile below Shell Bluff, Shoal River, Walton County, Fla. County, Fla. m THE MOLLUSCAN FAUNA OF THE ALUM BLUFF GROUP OF FLORIDA By JULIA GARDNER PART VI. PTEROPODA, OPISTHOBRANCHIA, AND CTENOBRANCHIA (IN PART) INTRODUCTION of this chapter. Two hundred and forty-one species and subspecies have been discriminated, but less than Part VI (F) of Professional Paper 142, the first part 10 percent of these are conspicuous in the number of of the Gastropoda of the Alum Bluff group, covers all individuals. The Terebras in the Shoal River forma­ of the opisthobranchs and eight large families of the tion, the turritids of the old Turns and Surcula types ctenobranchs. No land shells have been reported and in the Chipola and Shoal River, and Conus and Can- only 2 pteropods, so that the order of the opisthobranchs cellaria in the Shoal River stand out by reason of their is represented chiefly by the 36 species and subspecies abundance. The turritids are representatives of groups of tectibranchs. widespread and prolific in the mid-American Tertiary, In the molluscan fauna of the Alum Bluff group the and the common Terebras, cones, and Cancellarias in bivalves are by far the more numerous in individuals, the Shoal River are of unusual interest because they but the univalve fauna is more varied and includes a are so closely related to mid-American species. The greater number of species. Possibly for the reason relatively slight representation in the Oak Grove sand that many of the gastropods are carnivorous or subsist is doubtless a reflection of the cooler water during that in part on a meat diet witness the "drill shells" stage. The opisthobranehs are many of them inhabit­ they range more widely and are able to maintain them­ ants of the deeper waters, and some of them are selves in an unfavorable environment but meet with pelagic, so that as a group they are not good indicators stronger competition, which reduces their numbers. of early Tertiary shore conditions or of relationships to The bivalves are more restricted in their diet and by contemporary faunas. The Terebras and turritids, their diet, and though they are more rigidly excluded cones,
Recommended publications
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Exhibit Specimen List FLORIDA SUBMERGED the Cretaceous, Paleocene, and Eocene (145 to 34 Million Years Ago) PARADISE ISLAND
    Exhibit Specimen List FLORIDA SUBMERGED The Cretaceous, Paleocene, and Eocene (145 to 34 million years ago) FLORIDA FORMATIONS Avon Park Formation, Dolostone from Eocene time; Citrus County, Florida; with echinoid sand dollar fossil (Periarchus lyelli); specimen from Florida Geological Survey Avon Park Formation, Limestone from Eocene time; Citrus County, Florida; with organic layers containing seagrass remains from formation in shallow marine environment; specimen from Florida Geological Survey Ocala Limestone (Upper), Limestone from Eocene time; Jackson County, Florida; with foraminifera; specimen from Florida Geological Survey Ocala Limestone (Lower), Limestone from Eocene time; Citrus County, Florida; specimens from Tanner Collection OTHER Anhydrite, Evaporite from early Cenozoic time; Unknown location, Florida; from subsurface core, showing evaporite sequence, older than Avon Park Formation; specimen from Florida Geological Survey FOSSILS Tethyan Gastropod Fossil, (Velates floridanus); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimen from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimens from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Mouth of Withlacoochee River, Levy County, Florida; specimens from John Sacha Collection PARADISE ISLAND The Oligocene (34 to 23 million years ago) FLORIDA FORMATIONS Suwannee
    [Show full text]
  • Nmr General (NODE87)
    MANGELIIDAE Andonia transsylvanica (Hörnes & Auinger, 1890) NMR993000067233 Netherlands, Gelderland, Winterswijk, Miste ex coll. J.G.B. Nieuwenhuis 2 ex. FOSSIL Antiguraleus adcocki (G.B. Sowerby III, 1896) NMR993000094246 Australia, South Australia, Yorke Peninsula, Wattle Bay 1989-09-00 ex coll. H.H.M. Vermeij 33800101 1 ex. Bela antwerpiensis Marquet, 1997 NMR993000026200 Belgium, Antwerpen, Antwerpen, 6e Havendok ex coll. W.F.A. Guilonard 2 ex. FOSSIL Bela belgica (van Regteren Altena, 1959) NMR993000029020 Belgium, Antwerpen, Antwerpen ex coll. A.J. Dogterom 88263 ex. FOSSIL NMR993000026406 Belgium, Antwerpen, Antwerpen, 6e Havendok ex coll. W.F.A. Guilonard 1 ex. FOSSIL NMR993000002513 Belgium, Antwerpen, Antwerpen, raised site near Ford plant 1961-00-00 ex coll. A.W. Janssen 3 ex. FOSSIL NMR993000025608 Belgium, Antwerpen, Antwerpen, raised site near Ford plant ex coll. F.J. Janssen 20 ex. FOSSIL NMR993000002092 Belgium, Oost-Vlaanderen, Tielrode, Groeve N.V. Tielrode & Stekene ex coll. Maarten van den Bos 1 ex. FOSSIL NMR993000028678 Netherlands, Zeeland, Westerschelde, shell bank off Ellewoutsdijk at 5-10 m depth 1939-00-00 ex coll. A.J. Dogterom 51 ex. FOSSIL Bela consimilis Harmer, 1915 NMR993000025704 Netherlands, Zeeland, Walcheren, Veere, Domburg 1951-09-00 ex coll. N.P.W. Balke 2 ex. FOSSIL NMR993000025633 Netherlands, Zeeland, Westerschelde, shell bank off Ellewoutsdijk at 5-10 m depth ex coll. W.F.A. Guilonard 166b1 ex. FOSSIL NMR993000025658 Netherlands, Zeeland, Westerschelde, shell bank off Ellewoutsdijk at 5-10 m depth 1949-06-00 ex coll. N.P.W. Balke 1 ex. FOSSIL Bela cycladensis (Reeve, 1845) NMR993000075371 Cyprus, Famagusta, Famagusta Bay, Ayios Seryios 2012-11-00 ex coll.
    [Show full text]
  • Moluscos Del Perú
    Rev. Biol. Trop. 51 (Suppl. 3): 225-284, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Moluscos del Perú Rina Ramírez1, Carlos Paredes1, 2 y José Arenas3 1 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos. Avenida Arenales 1256, Jesús María. Apartado 14-0434, Lima-14, Perú. 2 Laboratorio de Invertebrados Acuáticos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Apartado 11-0058, Lima-11, Perú. 3 Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma. Av. Benavides 5400, Surco. P.O. Box 18-131. Lima, Perú. Abstract: Peru is an ecologically diverse country, with 84 life zones in the Holdridge system and 18 ecological regions (including two marine). 1910 molluscan species have been recorded. The highest number corresponds to the sea: 570 gastropods, 370 bivalves, 36 cephalopods, 34 polyplacoforans, 3 monoplacophorans, 3 scaphopods and 2 aplacophorans (total 1018 species). The most diverse families are Veneridae (57spp.), Muricidae (47spp.), Collumbellidae (40 spp.) and Tellinidae (37 spp.). Biogeographically, 56 % of marine species are Panamic, 11 % Peruvian and the rest occurs in both provinces; 73 marine species are endemic to Peru. Land molluscs include 763 species, 2.54 % of the global estimate and 38 % of the South American esti- mate. The most biodiverse families are Bulimulidae with 424 spp., Clausiliidae with 75 spp. and Systrophiidae with 55 spp. In contrast, only 129 freshwater species have been reported, 35 endemics (mainly hydrobiids with 14 spp. The paper includes an overview of biogeography, ecology, use, history of research efforts and conser- vation; as well as indication of areas and species that are in greater need of study.
    [Show full text]
  • On the Raphitoma Pupoides (Monterosato, 1884) Complex, with the Description of a New Species (Mollusca Gastropoda)
    Biodiversity Journal , 2016, 7 (1): 103–115 MONOGRAPH A revision of the Mediterranean Raphitomidae, 3: on the Raphitoma pupoides (Monterosato, 1884) complex, with the description of a new species (Mollusca Gastropoda) Francesco Pusateri 1, Riccardo Giannuzzi-Savelli 2* & Stefano Bartolini 3 1via Castellana 64, 90135 Palermo, Italy; e-mail: [email protected] 2via Mater Dolorosa 54, 90146 Palermo, Italy; e-mail: [email protected] 3via e. Zacconi 16, 50137 Firenze, Italy; e-mail: [email protected] *Corresponding author ABSTRACT In the present work we present a complex of species of the family Raphitomidae (Mollusca Gastropoda) comprising three entities: two have multispiral protoconchs, Raphitoma pupoides (Monterosato, 1884), the less known R. radula (Monterosato, 1884) and a new species with paucispiral protoconch. KEY WORDS Mollusca; Conoidea; Raphitomidae; new species; Mediterranean Sea. Received 02.03.2016; accepted 24.03.2016; printed 30.03.2016 Proceedings of the Ninth Malacological Pontine Meeting, October 3rd-4th, 2015 - San Felice Circeo, Italy INTRODUCTION related species among different genera only based on their larval development (Bouchet, 1990). the family of Raphitomidae is a well supported In the present work we present the results on clade of the Conoidea (Bouchet et al., 2011). the a complex of species comprising three entities: genus Raphitoma Bellardi, 1847 as currently two have multispiral protoconchs, R. pupoides conceived includes, based on our estimates, ca. 40 (Monterosato, 1884), and the less known R. radula Mediterranean species, some of which are still (Monterosato, 1884); the other was discovered undescribed. Propaedeutic to the general revision while revising the materials in the Monterosato of the Mediterranean Raphitoma s.l., we have collection, where a lot (MCZR 16905) included focused on several pairs of species, differing only some specimens with paucispiral protoconch, la- or mostly in the size and shape of the protoconch belled by Monterosato himself “ V.
    [Show full text]
  • Jutland, Denmark
    Contr. Tert. Geol. 7 fig'., 4 tab., 3 pis. Leiden, September 1990 Quatern. 27(2-3) 3981 A Late Oligocene (Chattian B) molluscan fauna from the coastal cliff at Mogenstrup, North of Skive, Jutland, Denmark K.I. Schnetler LANGA, DENMARK and C. Beyer STAVANGER, NORWAY Schnetler, K.I., & C. Beyer. A Late Oligocene (Chattian B) molluscan fauna from the coastal cliff at Mogenstrup, North of Skive, Jutland, Denmark. — Contr. Tert. Quatern. Geol., 27(2-3): 39-82, 7 figs, 3 tabs, 3 pis. Leiden, September 1990. rich Late molluscan fauna from coastal cliff North of Skive, was studied. A very Oligocene a at Mogenstrup, Jutland, Denmark, A of the Late in NW is the and the section are des- summary Palaeogene sedimentary sequence Jutland given, locality exposed cribed. Lithostratigraphical, magnetostratigraphical and biostratigraphical correlations are suggested. A list of the molluscan species is given, comparisons with other Danish and German Late Oligocene localities are made, and palaeoecological interpreta- the Andersondrillia is introduced within the Microdrillia. tions are suggested. In the systematic part subgenus subgen. nov. genus Several taxa are discussed and the followingnew species and subspecies are described: Limopsis (Pectunculina) lamellata chattica subsp. vonderhochti Collonia troelsi nov., Limopsis (Pectunculina) sp. nov., (Collonia) sp. nov., Lepetella helgae sp. nov., Lepetellajytteae sp. nov., Laiocochlis Tubiola subangulata sp. nov., Cerithiopsis (s. lat.) antonjansei sp. nov., (Laiocochlis) supraoligocaenica sp. nov., Triforis (Trituba) Cirsotrema Searlesia ravni brueckneri danica Clavatula sorgenfreii sp. nov., (Opaliopsis) subglabrum sp. nov., sp. nov., Angistoma subsp. nov., Microdrillia Pleurotomella mogenstrupensis sp. nov., Microdrillia (Microdrillia) ingerae sp. nov., (Andersondrillia) brejningensis sp. nov., rasmusseni and ? nov.
    [Show full text]
  • Acanthochitona Pygmea (Pilsbry, 1893)
    Lista de especies del phylum Mollusca registradas para el Caribe colombiano Abra aequalis (Say, 1822) Abra longicallis (Sacchi, 1837) Abralia veranyi (Rüppell, 1844) Acanthochitona pygmea (Pilsbry, 1893) Acanthochitona rodea (Pilsbry, 1893) Acanthochitona spiculosa (Reeve, 1847) Acanthochitona venezuelana Lyons, 1888 Acanthopleura granulata (Gmelin, 1791) Acar domingensis (Lamarck, 1819) Acesta colombiana (H.E. Vokes, 1970) Acmaea antillarum (Sowerby, 1831) Acmaea leucopleura (Gmelin, 1791) Acmaea pustulata (Helbling, 1779) Acteocina candei (d'Orbigny, 1842) Acteocina recta (d'Orbigny, 1841) Acteon danaida Dall, 1881 Acteon punctostriatus (C.B. Adams, 1840) Actinotrophon actinophorus (Dall, 1889) Adrana gloriosa (A. Adams, 1855) Adrana patagonica (d'Orbigny, 1846) Adrana scaphoides Rehder, 1939 Adrana tellinoides (Sowerby, 1823) Aesopus obesus (Hinds, 1843) Aesopus stearnsi (Tryon, 1883) Agathotoma badia (Reeve, 1846) Agathotoma candidísima (C.B. Adams, 1850) Agatrix smithi (Dall, 1888) Agladrillia rhodochroa (Dautzenberg, 1900) Akera bayeri Marcus y Marcus, 1967 Alaba incerta (d'Orbigny, 1842) Alvania avernas (C.B. Adams, 1850) Alvania auberiana (d'Orbigny, 1842) Alvania colombiana Romer y Moore, 1988 Amaea mitchelli (Dall, 1889) Amaea retiñera (Dall, 1889) Americardia media (Linné, 1758) Amusium laurenti (Gmelin, 1791) Amusium payraceum (Gabb, 1873) Amygdalum politum (Verrill y Smith, 1880) Amygdalum sagittatum Rehder, 1934 Anachis cf. fraudans Jung, 1969 Anachis coseli Díaz y Mittnacht, 1991 Anachis hotessieriana (d'Orbigny, 1842)
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1990 The Bailey-Matthews Shell Museum. This author manuscript appears courtesy of The Nautilus, a peer-reviewed, not-for-profit quarterly published by the non-profit organization The Bailey-Matthews Shell Museum. The published version is available at http://shellmuseum.org/nautilus/index.html and may be cited as: Harasewyeh, M. G. (1990). Studies on bathyal and abyssal buccinidae (Gastropoda: Neogastropoda): 1. Metula fusiformis Clench and Aguayo, 1941. The Nautilus, 104(4), 120-129. o THE NAUTI LUS 104(4):120-129, 1990 Page 120 Studies on Bathyal and Abyssal Buccinidae (Gastropoda: Neogastropoda): 1. Metula fusiformis Clench and Aguayo, 1941 M. G. Harasewych Department of Invertebrate Zoology National Museum of Natura l History Smithsonian Institution Washington , DC 20560, USA ABSTRACT fact that the vast majority of taxa are based exclusively on features of the shell and operculum, supplemented Based on the morphology of the radu la and shell, Metula [u­ occasionally by observations on radu lar morphology. sifo rmis Clench & Aguayo, 1941 is transferred to the predom­ inantl y Indo-w estern Pacific genus Manaria . This species occurs Shells of Buccinid ae tend to be simple, and offer few in upper continental slope communities (183- 578 m) of the readily discernible morphological characters. These are Caribbean Sea and the northern coast of South America . The subject to convergence, especia lly in polar regions and holotype was collected dead in 2,633 rn, well below the depth the deep sea, where effects of habitat on shell form are inhabited by this species.
    [Show full text]
  • Portadas 22 (1)
    © Sociedad Española de Malacología Iberus , 22 (1): 43-75, 2004 Gastropods collected along the continental slope of the Colombian Caribbean during the INVEMAR-Macrofauna campaigns (1998-2001) Gasterópodos colectados en el talud continental del Caribe colom - biano durante las campañas INVEMAR-Macrofauna (1998-2001) Adriana GRACIA C. , Néstor E. ARDILA and Juan Manuel DÍAZ* Recibido el 26-III-2003. Aceptado el 5-VII-2003 ABSTRACT Among the biological material collected during the 1998-2001 “INVEMAR-Macrofauna” campaigns aboard the R/V Ancón along the upper zone of the continental slope of the Colombian Caribbean, at depths ranging from 200 to 520 m, a total of 104 gastropod species were obtained. Besides 18 not yet identified species, but including one recently described new species ( Armina juliana Ardila and Díaz, 2002), 48 species were not pre - viously known from Colombia, 18 of which were also unknown from the Caribbean Sea. Of the 36 families represented, Turridae was by far the richest in species (26 species). An annotated list of the taxa recorded is provided, as well as illustrations of those recorded for the first time in the area. RESUMEN Entre el material biológico colectado en 1998-2001 durante las campañas “INVEMAR- Macrofauna” a bordo del B/I Ancón , a profundidades entre 200 y 520 m, se obtuvo un total de 104 especies de gasterópodos. Aparte de 18 especies cuya identificación no ha sido completada, pero incluyendo una especie recientemente descrita ( Armina juliana Ardila y Díaz, 2002), 48 especies no habían sido registradas antes en aguas colombia - nas y 18 de ellas tampoco en el mar Caribe.
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • Darwin Landsnail Diversity Guides
    AN ILLUSTRATED GUIDE TO THE LAND SNAILS OF THE WESTERN GHATS OF INDIA Exotic snails and slugs can be a serious problem because they are often difficult to control and can be locally about 35 Ma. The land-snail fauna of the Western Ghats and Sri Lanka reflects this complex geological history. Gandhinagar Small-scale, casual collecting of empty snail shells is unlikely to have a harmful impact on the environment highly abundant. Many of this region's snail genera and most of the approximately 700 species are endemic to it, indicating that GUJARAT because it involves the removal of only tiny amounts of calcium carbonate from a few highly-localized places. Dinarzarde C. Raheem1, Fred Naggs1, N.A. Aravind2 & Richard C. Preece3 there has been substantial evolutionary diversification within this part of South Asia. Several snail genera such as The collection and preservation of live snails is essential for serious and systematic scientific research, but Next to being asked how to kill garden snails, the question we are most often asked is 'what use are they'? This Photography and image editing Harold Taylor1 Corilla and Acavus are thought to have a history that pre-dates the break-up of Gondwana, but are now largely or should only be carried out as part of such work. implies that the existence of organisms needs to be justified in terms of human values and human exploitation; it entirely restricted to the Western Ghats and/or Sri Lanka. A number of other groups (e.g. the genus Glessula, and is not a view we share.
    [Show full text]
  • Comparative Anatomy of Four Primitive Muricacean Gastropods: Implications for Trophonine Phylogeny
    ^/ -S/ COMPARATIVE ANATOMY OF FOUR PRIMITIVE MURICACEAN GASTROPODS: IMPLICATIONS FOR TROPHONINE PHYLOGENY M. G. HARASEWYCH DEPARTMENT OF INVERTEBRATE ZOOLOGY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C. 20560, U.S.A. ABSTRACT The main features of the shell, head-foot, palliai complex, alimentary and reproductive systems of Trophon geversianus (Pallas), Boreotrophon aculeatus (Watson), Paziella pazi (Crosse), and Nucella lamellosa (Gmelin) are described, and phonetic and cladistic analyses based on subsets of these data presented. Similarities in shell morphology revealed by phenetic studies are interpreted as being due to convergence, and are indicative of similar habitats rather than of close phylogenetic relationships. Convergences are also noted in radular and stomach characters. Cladistic analyses of anatomical data support the following conclusions: 1 ) Thaididae are a primitive and ancient family of muricaceans forming a clade equal in taxonomic rank with Muncidae; 2) Within Muricidae, P. pazi more closely resembles the ancestral muricid phenotype than any trophonine; 3) Trophoninae comprise a comparatively recent monophyletic group with differences due to a subsequent austral adaptive radiation. The Muricidae are considered to be the most primitive and D'Attilio, 1976:13) a personal communication from E. H. family within Neogastropoda according to most (Thiele, Vokes "it appears likely that the most northern trophons are 1929; Wenz, 1941; Taylor and Sohl, 1962; Boss, 1982) but derived from the Paziella-Poiheha line, and that the several not all (Golikov and Starobogatov, 1975) recent classifica- austral forms that are unquestionably "trophonine" are prob- tions. Of the five subfamilies of Muricidae, the Trophoninae, ably derived from the Thaididae". proposed by Cossmann (1903) on the basis of shell and Thus, according to most published work, the Tropho- opercular characters to include a number of boreal and ninae are in a position to shed light on the systematics and austral species, are the most poorly understood.
    [Show full text]