Celebrating Applied Physics, Featuring Stephen Chu the Rudder Forum Texas A&M University January 19, 2018

Total Page:16

File Type:pdf, Size:1020Kb

Celebrating Applied Physics, Featuring Stephen Chu the Rudder Forum Texas A&M University January 19, 2018 The Hagler Institute for Advanced Studies and The Institute for Quantum Science and Engineering Celebrating Applied Physics, Featuring Stephen Chu The Rudder Forum Texas A&M University January 19, 2018 Prof. Steven Chu is the William R. Kenan, Jr., Professor of Physics and Professor of Molecular & Cellular Physiology at Stanford University. He has published over 280 papers in atomic and polymer physics, biophysics, biology, batteries and other energy technologies. He holds 14 patents, and an additional 6 patent applications have been filed in the past 2 years. Dr. Chu was the 12th U.S. Secretary of Energy from January 2009 until the end of April 2013. As the first scientist to hold a Cabinet position and the longest serving Energy Secretary, he recruited outstanding scientists and engineers into the Department of Energy. He began several initiatives including ARPA‐E (Advanced Research Projects Agency – Energy), the Energy Innovation Hubs and was personally tasked by President Obama to assist BP in stopping the Deepwater Horizon oil leak. Prior to his cabinet post, he was director of the Lawrence Berkeley National Laboratory where he was active in the pursuit of alternative and renewable energy technologies and Professor of Physics and Applied Physics at Stanford University where he helped launch Bio‐X a multi‐disciplinary institute combining the physical and biological sciences with medicine and engineering. Previously he was head of the Quantum Electronics Research Department at AT&T Bell Laboratories. Dr. Chu is the co‐recipient of the Nobel Prize for Physics (1997) for his contributions to laser cooling and atom trapping and has received numerous other awards. He is a member of the National Academy of Sciences, the American Philosophical Society, the American Academy of Arts and Sciences, the Academia Sinica, and is a foreign member of the Royal Society, the Royal Academy of Engineering, the Chinese Academy of Sciences, and the Korean Academy of Sciences and Technology. He received an A.B. degree in mathematics, a B.S. degree in physics from the University of Rochester, and a Ph.D. in physics from the University of California, Berkeley, as well as 31 honorary degrees. 9:30 AM Presentation: Science and Technology Challenges in Mitigating Climate Change Risks In order to keep the global increase in temperature well below 2 degrees C above pre‐industrial levels, deep decarbonization of the world energy supply will be required. The technical challenges and potential solutions will be discussed, including novel approaches we are exploring for the hydrolysis of water and the reduction of carbon dioxide. 4:10 PM Presentation: Nanotechnology Applications in Biological Imaging, Air Filtration Our current applications nanotechnology to biological and biomedical imaging will be discussed. If time permits, optical microscopy studies of the super‐cooling of sulfur in lithium ion‐sulfur batteries will be included. The Hagler Institute for Advanced Studies and The Institute for Quantum Science and Engineering Celebrating Applied Physics, Featuring Stephen Chu The Rudder Forum, Texas A&M University January 19, 2018 9:00 AM Coffee/Light Breakfast Rudder Exhibition Hall 2 9:20 AM Welcome John Junkins (HIAS Director) and Marlan Scully (IQSE Director) 9:30 AM Science and Technology Challenges in Mitigating Climate Change Risks Steven Chu, Stanford University 10:30 AM Affordable Isotope Production at the Pointsman Foundation Mark Raizen, University of Texas 11:00 AM H atoms in solid H2: To BEC or not to BEC David Lee, TAMU 11:30 AM Lunch 12:30 PM Dynamical Control of the Resonant Interaction: Towards new x‐ray sources Olga Kocharovskaya, TAMU 1:00 PM TERS in biology and electrochemistry Dmitry Kurouski, TAMU 1:30 PM Biosensing with Nanodiamonds and Other Nonbleaching Particles Philip Hemmer, TAMU 2:00 PM Laser Thermogenetic Stimulation and Quantum Thermometry of Single Neurons Aleksei Zheltikov, TAMU 2:30 PM Break, Rudder Exhibition Hall 2 3:00 PM Applying Molecular Coherence to Biophotonics Alexei Sokolov, TAMU 3:30 PM Whispering‐gallery‐mode Microresonators and Their Applications Lan Yang, Washington University, St. Louis 4:00 PM Welcome and Comments on Bio‐Physical Engineering Michael K. Young, President, TAMU 4:10 PM Nanotechnology Applications in Biological Imaging, Air Filtration Steven Chu, Stanford University Prof. Mark G. Raizen received his undergraduate degree in mathematics with honors from Tel‐Aviv University in 1980. He continued his graduate education at The University of Texas at Austin, under the guidance of Steven Weinberg (Nobel Prize in Physics, 1979) and Jeff Kimble (California Institute of Technology). Raizen completed his Ph.D. in 1989. He then was awarded a National Research Council Postdoctoral Fellowship at the National Institute of Standards and Technology in Boulder where he worked with Dr. David Wineland (Nobel Prize in Physics, 2012). Dr. Raizen returned to The University of Texas at Austin as an Assistant Professor of Physics in 1991. Dr. Raizen is now a tenured Full Professor of Physics at The University of Texas at Austin, and holds the Sid W. Richardson Foundation Regents Chair in Physics. He also holds a joint appointment as Professor of Medicine at the Dell Pediatric Research Institute. He is the recipient of the I. I. Rabi Prize (1999), the Max Planck Prize (2002), and the Lamb Medal (2008), and a research award from the W.M. Keck Foundation (2015). Dr. Raizen is a Fellow of the American Physical Society and the Optical Society of America. Dr. Raizen directs an experimental research program, and in recent years developed general methods for cooling almost any atom in the periodic table near the absolute zero of temperature. Beyond basic physics, these same methods will transform the way that isotopes are separated, providing crucial isotopes for humanity. 10:30 AM Presentation: Affordable Isotope Production at the Pointsman Foundation Isotopes of the elements offer great promise in medicine, basic science, and industry, but widespread use has been held back by their extreme cost. We have developed a new and efficient method for isotope separation, as an unexpected offshoot of basic physics research. The application of this work towards affordable isotope production is being pursued at the Pointsman Foundation, a non‐profit entity with the mission of bringing advances in the physical sciences to benefit humanity. Prof. David M. Lee was born in Rye, N.Y. USA on January 20, 1931. He attended Harvard University (Physics B.A., 1952), University of Connecticut (Physics M.S., 1955), and Yale University (Physics Ph.D., 1959). He served in the U.S. Army 1952‐1954. In early 1959, he joined the Physics Department at Cornell University where he remained until 2009, when he joined the Department of Physics and Astronomy and the IQSE at Texas A&M University. Throughout his career, he has been active in low temperature physics. Along with his graduate student Douglas D. Osheroff and Cornell colleague Robert C. Richardson, he was awarded the 1996 Nobel Prize in Physics for the discovery of superfluidity in helium‐3. 11:00 AM Presentation: H atoms in solid H2: To BEC or not to BEC Electron spin resonance experiments at temperatures between 1.5 K and 0.09 K in a magnetic field of 4.6 Tesla in thin films (of order 0.1 microns) containing atomic and molecular hydrogen have been performed . The electron spins of the H atoms are already highly polarized in this temperature and field range. Evidence is provided to show that a phase separation occurs into phases with high and low concentrations of H atoms, respectively. The high atom concentration phase shows large nuclear polarizations (far in excess of that by the Boltzmann distribution) possibly attributable to strong Bose‐ Einstein correlations. If the H atom concentration is high enough, this might lead to a liquid phase which may therefore exhibit superfluid behavior or a topologically ordered phase such as that discussed by Kosterlitz and Thouless. Prof. Olga A. Kocharovskaya’s research is focused on Quantum, Coherent and Nonlinear Optics, Quantum Information Science, Attosecond Physics and X‐ray Optics. She has made pioneering and seminal contributions in Electromagnetically Induced Transparency, Lasing Without Inversion and Coherent Control of the Nuclear Transitions. Before joining the Physics Department at TAMU in 1998, she held the Leading Scientist position at the Institute of Applied Physics at the Russian Academy of Sciences and held an adjunct Independent Researcher position at the Free University of Brussels. She is a Fellow of both the American Physical Society and the Optical Society of America. She has received the Distinguished Scientist Award of the Texas A&M University Chapter of Sigma Xi, University Distinguished Professor Award, Association of Former Students and Texas A&M University Distinguished Achievement Award in Research, as well as the Willis Lamb Award for achievements in laser science and quantum electronics and the Outstanding Young Professor of the Russian Federation Award of the Russian Academy of Science. 12:30 PM Presentation: Dynamical Control of the Resonant Interaction: Towards new x‐ray sources The possibilities to dynamically control an interaction of high‐frequency radiation with a resonant medium (atomic and nuclear transitions in gases, plasmas or solids) by variation in time and in space of the parameters of such interaction under the action of the sufficiently strong far‐off‐resonant low‐ frequency field will be discussed. Recent advantage on the way to coherent intense attosecond sources in the soft ‐ ray range and suggest two paths towards intense coherent sub‐femtosecond pulses in the soft x‐ray range, namely: (i) time‐compression of ps radiation of the x‐ray plasma lasers without essential loss of the energy; (ii) amplification of the high‐harmonic radiation, will be reviewed. It will be shown that both paths can be implemented using essentially the same technique, namely, modulation of the resonantly absorbing/amplifying medium by a moderately strong IR/optical field.
Recommended publications
  • Fotonica Ed Elettronica Quantistica
    Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A.
    [Show full text]
  • Natural Cures and Complex Technologies PVAMU Microbiologist Raul Cuero’S Latest Target: Skin Cancer
    Excellence in education, research and service FEBRUARY 2010 VOL. 2, ISSUE 1 Natural Cures and Complex Technologies PVAMU Microbiologist Raul Cuero’s Latest Target: Skin Cancer By Bryce Hairston Kennard The hard streets of Buenaventura, Colombia, didn’t provide Raul Cuero with the usual range of toys available to children from more prosperous families—but there were plenty of lizards, cockroaches and insects. Humble as those amusements were, they ignited a lifelong interest in biology and NEW DISCOVERIES Dr. Theresa Fossum (left) and Dr. Matthew Miller review images in the cardiac nature that led to extensive research with Martian soil, plant catheterization laboratory at the new TIPS facility in College Station. organisms and cancer. If you have heard of Cuero recently, it is likely in connection with developing a breakthrough discovery in the labs at Prairie View A&M University that could lead to the prevention of skin cancer in humans and animals. Aided by funding from NASA, the professor of microbiology Building TIPS for Texas in the College of Agriculture and Human Sciences is seeking a patent for a natural compound that blocks cancer-inducing How Terry Fossum Advanced Texas A&M’s Leadership in Biotech Innovation ultra-violet radiation. He describes the discovery as a way to help researchers and scientists “elucidate an important scientific By Melissa Chessher quest about the way organisms were able to survive at the beginning of earth, when there was a great UV presence in the Terry Fossum’s journey to create the Texas A&M Institute for Preclinical Studies began in 1997 during a atmosphere.
    [Show full text]
  • Douglas Dean Osheroff Papers
    http://oac.cdlib.org/findaid/ark:/13030/c8v40ww2 No online items Guide to the Douglas Dean Osheroff Papers Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California November 2013 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Guide to the Douglas Dean SC1181 1 Osheroff Papers Overview Call Number: SC1181 Creator: Osheroff, Douglas D. Title: Douglas Dean Osheroff papers Dates: 1969-2003 Physical Description: 5 Linear feet Summary: Laboratory notebooks. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Information about Access The materials are open for research use. Audio-visual materials are not available in original format, and must be reformatted to a digital use copy. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94305-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/spc/using-collections/permission-publish. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes. Cite As [identification of item], Douglas D.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • 2015 Annual Report
    2015 AMERICAN PHYSICAL SOCIETY ANNUAL TM ADVANCING PHYSICS REPORT TM THE AMERICAN PHYSICAL SOCIETY STRIVES TO Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity Collaborate with national scientific societies for the advancement of science, science education, and the science community Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration Have an active, engaged, and diverse membership, and support the activities of its units and members © 2016 American Physical Society During 2015, APS worked to institute the governance objective: “the advancement and diffusion of the knowledge changes approved by the membership in late 2014. In of physics.” APS is fully committed to the principles of OA accordance with the new Constitution & Bylaws, in to the extent that we can continue to support the production February the Board appointed our first Chief Executive of high-quality peer-reviewed journals. For many years APS Officer—Kate Kirby, the former Executive Officer—to has supported “green” OA and we have been fully compliant head the APS. Kate’s major task has been to transition with the 2013 directive from the Office of Science and the management of APS to a CEO model with a Senior Technology Policy that the publications resulting from Management Team. She appointed Mark Doyle as Chief U.S. federally funded research be accessible to the public 12 Information Officer, James Taylor as Chief Operating months after publication. Since APS is a major international Officer, and Matthew Salter as the new Publisher.
    [Show full text]
  • Having a Good Time: a Triumph of Science & Technology
    UDC’s Office of Research & Graduate Studies, SEAS, LSAMP, & STEM Center Invite You to a Seminar on Having a Good Time: A Triumph of Science & Technology Presented by Dr. William D. Phillips, NIST Nobel Laureate in Physics, 1997 © Robert Rathe © Robert Rathe Date: Tuesday, March 13, 2012 Time: 12:30 PM Location: Building 41-A03 Abstract: People have long been interested in timekeeping. In the 18th century, this interest became particularly keen because of technological demands: the need for accurate navigation on the high seas. While many people believed that the answer to sufficiently good timekeeping at sea would be found in astronomical measurements, it was earthbound engineering that literally won the prize. The construction of accurate seagoing clocks revolutionized navigation in the 18th and 19th centuries. The advent of even more accurate clocks—atomic clocks—in the 20th century gave birth to a new revolution in navigation—the Global Positioning System. This ever-more advanced system for satellite navigation owes its success both to excellent engineering and to seemingly arcane science. Dr. William D. Phillips is a Senior Fellow at the National Institute of Standards and Technology (NIST), where he leads the Laser Cooling and Trapping Group. He shared the 1997 Nobel Prize in physics with Dr. Steven Chu, now Secretary of Energy, and with Dr. Claude Cohen-Tannoudji, an Algerian-born French physicist, “for development of methods to cool and trap atoms with laser light.” With a physics bachelor’s degree from Juniata College in Pennsylvania and a Ph.D. from MIT, Phillips started his career at NIST only a few years after it left UDC’s Van Ness campus for its location in Gaithersburg.
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]
  • Robert Richardson (1937-2013) Discoverer of Superfluidity in Helium-3
    COMMENT OBITUARY Robert Richardson (1937-2013) Discoverer of superfluidity in helium-3. obert Richardson, along with physicist his PhD, he and his young family moved we compressed liquid helium-3 until it David Lee and myself, discovered that to Ithaca, New York, where he became a began to solidify, causing the mixture helium-3, a rare but stable isotope of postdoctoral researcher for David Lee in of liquid and solid to cool. We initially Rhelium, becomes a superfluid when cooled to the low-temperature group at Cornell Univer- (mistakenly) believed that we had pro- a minuscule fraction of a degree above abso- sity. Richardson joined the Cornell faculty in duced magnetic order in the solid helium-3, lute zero. Until that discovery, in the early at about 0.002 Kelvins. In fact, 1970s, the superfluidity effect — in which we had observed a new physical state: a liquid flows without friction — had been superfluidity in liquid helium-3. The seen only in helium-4, whose atoms are three of us shared the 1996 Nobel Prize bosons. No one had been able to produce in Physics for this discovery. the phenomenon with fermions, whose Richardson won or shared many nuclei have spin properties different from awards and honours apart from the Nobel those seen in bosons. prize, including the Sir Francis Simon The discovery astounded the physics Memorial Prize in 1976 and the Oliver E. CORNELL UNIVERSITY PHOTOGRAPHY community, which had all but given up Buckley Condensed Matter Prize in 1981. trying to produce the phenomenon in That year, he was also made a fellow of the helium-3.
    [Show full text]
  • Reversed out (White) Reversed
    Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments.
    [Show full text]
  • The Election—IV Steven Weinberg
    3/26/13 The Election—IV by Steven Weinberg, Garry Wills, and Jeffrey D. Sachs | The New York Review of Books The Election—IV NOVEMBER 8, 2012 Steven Weinberg, Garry Wills, and Jeffrey D. Sachs Barack Obama; drawing by John Springs Steven Weinberg The presidency of Barack Obama began to fail on January 6, 2009, a fortnight before the president was inaugurated. Only on that day, the first day of a new Congress, the rules of the Senate could have been changed by a simple majority vote. That was the last opportunity to revise the rule that requires sixty votes to limit a filibuster. Of course, no president-elect or president has authority to change the Senate rules, but this president- elect had ample means to exert pressure on senators. For instance, he could have confronted Harry Reid of Nevada, the Senate majority leader, with the prospect of administration support for the nuclear waste disposal facility at Yucca Mountain, whose worst drawback was its unpopularity in Nevada. Alas, Barack Obama proved himself to be no Lyndon Johnson. Even though Democrats would have a majority in both houses of Congress for the next www.nybooks.com/articles/archives/2012/nov/08/election-4/?pagination=false 1/10 3/26/13 The Election—IV by Steven Weinberg, Garry Wills, and Jeffrey D. Sachs | The New York Review of Books two years, the Republican ability to filibuster in the Senate meant that bipartisan compromise would be needed to pass any legislation or approve any appointments. This sort of compromise may have been congenial to President Obama anyway, but after January 6 it was unavoidable.
    [Show full text]
  • Steven Chu William R
    Steven Chu William R. Kenan Jr. Professor and Professor of Molecular and Cellular Physiology Physics CONTACT INFORMATION • Administrative Contact Donna Fung Email [email protected] Tel 6504979039 Bio BIO Steven Chu is the William R. Kenan, Jr., Professor of Physics and Professor of Molecular & Cellular Physiology in the Medical School at Stanford University. He has published over 280 papers in atomic and polymer physics, biophysics, biology, bio-imaging, batteries, and other energy technologies. He holds 15 patents, and an additional 9 patent disclosures or filings since 2015. Dr. Chu was the 12th U.S. Secretary of Energy from January 2009 until the end of April 2013. As the first scientist to hold a Cabinet position and the longest serving Energy Secretary, he recruited outstanding scientists and engineers into the Department of Energy. He began several initiatives including ARPA-E (Advanced Research Projects Agency – Energy), the Energy Innovation Hubs, and was personally tasked by President Obama to assist BP in stopping the Deepwater Horizon oil leak. Prior to his cabinet post, he was director of the Lawrence Berkeley National Laboratory, where he was active in pursuit of alternative and renewable energy technologies, and Professor of Physics and Applied Physics at Stanford University, where he helped launch Bio-X, a multi-disciplinary institute combining the physical and biological sciences with medicine and engineering. Previously he was head of the Quantum Electronics Research Department at AT&T Bell Laboratories. Dr. Chu is the co-recipient of the 1997 Nobel Prize in Physics for his contributions to laser cooling and atom trapping, and has received numerous other awards.
    [Show full text]
  • Programme 70Th Lindau Nobel Laureate Meeting 27 June - 2 July 2021
    70 Programme 70th Lindau Nobel Laureate Meeting 27 June - 2 July 2021 Sessions Speakers Access Background Scientific sessions, Nobel Laureates, Clear guidance Everything else social functions, young scientists, to all viewing there is to know partner events, invited experts, and participation for a successful networking breaks moderators options meeting 2 Welcome Two months ago, everything was well on course to celebrate And yet: this interdisciplinary our 70th anniversary with you, in Lindau. anniversary meeting will feature But with the safety and health of all our participants being the most rich and versatile programme ever. of paramount importance, we were left with only one choice: It will provide plenty of opportunity to educate, inspire, go online. connect – and to celebrate! Join us. 4 PARTICIPATING LAUREATES 4 PARTICIPATING LAUREATES 5 Henry A. Joachim Donna George P. Hartmut Michael M. Adam Hiroshi Kissinger Frank Strickland Smith Michel Rosbash Riess Amano Jeffrey A. Peter Richard R. James P. Randy W. Brian K. Barry C. Dean Agre Schrock Allison Schekman Kobilka Barish John L. Harvey J. Robert H. J. Michael Martin J. Hall Alter Grubbs Kosterlitz Evans F. Duncan David J. Ben L. Edmond H. Carlo Brian P. Kailash Elizabeth Haldane Gross Feringa Fischer Rubbia Schmidt Satyarthi Blackburn Robert B. Reinhard Aaron Walter Barry J. Harald Takaaki Laughlin Genzel Ciechanover Gilbert Marshall zur Hausen Kajita Christiane Serge Steven Françoise Didier Martin Nüsslein- Haroche Chu Barré-Sinoussi Queloz Chalfie Volhard Anthony J. Gregg L. Robert J. Saul Klaus William G. Leggett Semenza Lefkowitz Perlmutter von Klitzing Kaelin Jr. Stefan W. Thomas C. Emmanuelle Kurt Ada Konstantin S.
    [Show full text]