The Equivalence Principle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fotonica Ed Elettronica Quantistica
Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A. -
The Invention of the Transistor
The invention of the transistor Michael Riordan Department of Physics, University of California, Santa Cruz, California 95064 Lillian Hoddeson Department of History, University of Illinois, Urbana, Illinois 61801 Conyers Herring Department of Applied Physics, Stanford University, Stanford, California 94305 [S0034-6861(99)00302-5] Arguably the most important invention of the past standing of solid-state physics. We conclude with an century, the transistor is often cited as the exemplar of analysis of the impact of this breakthrough upon the how scientific research can lead to useful commercial discipline itself. products. Emerging in 1947 from a Bell Telephone Laboratories program of basic research on the physics I. PRELIMINARY INVESTIGATIONS of solids, it began to replace vacuum tubes in the 1950s and eventually spawned the integrated circuit and The quantum theory of solids was fairly well estab- microprocessor—the heart of a semiconductor industry lished by the mid-1930s, when semiconductors began to now generating annual sales of more than $150 billion. be of interest to industrial scientists seeking solid-state These solid-state electronic devices are what have put alternatives to vacuum-tube amplifiers and electrome- computers in our laps and on desktops and permitted chanical relays. Based on the work of Felix Bloch, Ru- them to communicate with each other over telephone dolf Peierls, and Alan Wilson, there was an established networks around the globe. The transistor has aptly understanding of the band structure of electron energies been called the ‘‘nerve cell’’ of the Information Age. in ideal crystals (Hoddeson, Baym, and Eckert, 1987; Actually the history of this invention is far more in- Hoddeson et al., 1992). -
A Time of Great Growth
Newsletter | Spring 2019 A Time of Great Growth Heartfelt greetings from the UC Riverside Department of Physics and Astronomy. This is our annual newsletter, sent out each Spring to stay connected with our former students, retired faculty, and friends in the wider community. The Department continues to grow, not merely in size but also in stature and reputation. For the 2018-2019 academic year, we were pleased to welcome two new faculty: Professors Thomas Kuhlman and Barry Barish. Professor Kuhlman was previously on the faculty at the University of Illinois at Urbana-Champaign. He joins our efforts in the emerging field of biophysics. His research lies in the quantitative imaging and theoretical modeling of biological systems. He works on genome dynamics, quantification of the activity of transposable elements in living cells, and applications to the engineering of genome editing. Professor Barry Barish, who joins us from Caltech, is the winner of the 2017 Nobel Prize in Physics. He brings great prestige to our Department. Along with Professor Richard Schrock of the Department of Chemistry, who also joined UCR in 2018, UCR now has two Nobel Prize winners on its faculty. Professor Barish is an expert on the detection and physics of gravitational waves. He has been one of the key figures in the conception, construction, and operation of the LIGO detector, where gravitational waves were first discovered in 2015, and which led to his Nobel Prize. He is a member of the National Academy of Sciences and the winner of many other prestigious awards. The discovery of gravitational waves is one of the most exciting developments in physics so far this century. -
Nobel Laureates Endorse Joe Biden
Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S. -
Ripples in Spacetime
editorial Ripples in spacetime The 2017 Nobel prize in Physics has been awarded to Rainer Weiss, Barry C. Barish and Kip S. Thorne “for decisive contributions to the LIGO detector and the observation of gravitational waves”. It is, frankly, difficult to find something original to say about the detection of gravitational waves that hasn’t been said already. The technological feat of measuring fluctuations in the fabric of spacetime less than one-thousandth the width of an atomic nucleus is quite simply astonishing. The scientific achievement represented by the confirmation of a century-old prediction by Albert Einstein is unique. And the collaborative effort that made the discovery possible — the Laser Interferometer Gravitational-Wave Observatory (LIGO) — is inspiring. Adapted from Phys. Rev. Lett. 116, 061102 (2016), under Creative Commons Licence. Rainer Weiss and Kip Thorne were, along with the late Ronald Drever, founders of the project that eventually became known Barry Barish, who was the director Last month we received a spectacular as LIGO. In the 1960s, Thorne, a black hole of LIGO from 1997 to 2005, is widely demonstration that talk of a new era expert, had come to believe that his objects of credited with transforming it into a ‘big of gravitational astronomy was no interest should be detectable as gravitational physics’ collaboration, and providing the exaggeration. Cued by detections at LIGO waves. Separately, and inspired by previous organizational structure required to ensure and Virgo, an interferometer based in Pisa, proposals, Weiss came up with the first it worked. Of course, the passion, skill and Italy, more than 70 teams of researchers calculations detailing how an interferometer dedication of the thousand or so scientists working at different telescopes around could be used to detect them in 1972. -
Having a Good Time: a Triumph of Science & Technology
UDC’s Office of Research & Graduate Studies, SEAS, LSAMP, & STEM Center Invite You to a Seminar on Having a Good Time: A Triumph of Science & Technology Presented by Dr. William D. Phillips, NIST Nobel Laureate in Physics, 1997 © Robert Rathe © Robert Rathe Date: Tuesday, March 13, 2012 Time: 12:30 PM Location: Building 41-A03 Abstract: People have long been interested in timekeeping. In the 18th century, this interest became particularly keen because of technological demands: the need for accurate navigation on the high seas. While many people believed that the answer to sufficiently good timekeeping at sea would be found in astronomical measurements, it was earthbound engineering that literally won the prize. The construction of accurate seagoing clocks revolutionized navigation in the 18th and 19th centuries. The advent of even more accurate clocks—atomic clocks—in the 20th century gave birth to a new revolution in navigation—the Global Positioning System. This ever-more advanced system for satellite navigation owes its success both to excellent engineering and to seemingly arcane science. Dr. William D. Phillips is a Senior Fellow at the National Institute of Standards and Technology (NIST), where he leads the Laser Cooling and Trapping Group. He shared the 1997 Nobel Prize in physics with Dr. Steven Chu, now Secretary of Energy, and with Dr. Claude Cohen-Tannoudji, an Algerian-born French physicist, “for development of methods to cool and trap atoms with laser light.” With a physics bachelor’s degree from Juniata College in Pennsylvania and a Ph.D. from MIT, Phillips started his career at NIST only a few years after it left UDC’s Van Ness campus for its location in Gaithersburg. -
The History of Lasers at Stanford Group
Lasers at 50: Byer The History of Lasers at Stanford Group Robert L. Byer Applied Physics Stanford University [email protected] Abstract In the fifty years since the demonstration of the laser, coherent light has changed the way we work, communicate and play. The generation and control of light is critical for meeting important challenges of the 21st century from fundamental science to the generation of energy. A look back at the early days of the laser at Stanford will be contrasted to the recent breakthroughs in solid state lasers and the applications to fundamental science of gravitational wave detection, remote sensing, and laser induced fusion for energy production. Stanford Historical Society 34th Annual Meeting & Reception May 25, 2010 The History of Lasers at Stanford May 25 2010 Cubberley Auditorium, Staford Byer California – Leader in advanced telescopes for astronomy Group Lick 36 inch refractor The Mount Wilson 100 inch The Palomar 200 inch 1888 1917 1948 The History of Lasers at Stanford May 25 2010 Cubberley Auditorium, Staford From Maser to Laser – stimulated emission at optical frequencies Byer proposed in 1958 – A. Schawlow and C. H. Townes Group The History of Lasers at Stanford May 25 2010 Cubberley Auditorium, Staford Early advances in lasers --- Byer 2009 a Special Year Group Concept of Optical Maser Schawlow & Townes 1958 Ruby Laser Ted Maiman 1960 Nobel Prize awarded in 1964 Townes, Prokhorov and Basov Hg+ Ion Laser Earl Bell 1965 Argon Ion Laser Bill Bridges Tunable cw parametric Laser Harris 1968 Diode bar 1Watt -
Equivalence Principle (WEP) of General Relativity Using a New Quantum Gravity Theory Proposed by the Authors Called Electro-Magnetic Quantum Gravity Or EMQG (Ref
WHAT ARE THE HIDDEN QUANTUM PROCESSES IN EINSTEIN’S WEAK PRINCIPLE OF EQUIVALENCE? Tom Ostoma and Mike Trushyk 48 O’HARA PLACE, Brampton, Ontario, L6Y 3R8 [email protected] Monday April 12, 2000 ACKNOWLEDGMENTS We wish to thank R. Mongrain (P.Eng) for our lengthy conversations on the nature of space, time, light, matter, and CA theory. ABSTRACT We provide a quantum derivation of Einstein’s Weak Equivalence Principle (WEP) of general relativity using a new quantum gravity theory proposed by the authors called Electro-Magnetic Quantum Gravity or EMQG (ref. 1). EMQG is manifestly compatible with Cellular Automata (CA) theory (ref. 2 and 4), and is also based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia, QI). QI states that classical Newtonian Inertia is a property of matter due to the strictly local electrical force interactions contributed by each of the (electrically charged) elementary particles of the mass with the surrounding (electrically charged) virtual particles (virtual masseons) of the quantum vacuum. The sum of all the tiny electrical forces (photon exchanges with the vacuum particles) originating in each charged elementary particle of the accelerated mass is the source of the total inertial force of a mass which opposes accelerated motion in Newton’s law ‘F = MA’. The well known paradoxes that arise from considerations of accelerated motion (Mach’s principle) are resolved, and Newton’s laws of motion are now understood at the deeper quantum level. We found that gravity also involves the same ‘inertial’ electromagnetic force component that exists in inertial mass. -
PHILIP W. ANDERSON Bell Telephone Laboratories, Inc, Murray Hill, New Jersey, and Princeton University, Princeton, New Jersey, USA
LOCAL MOMENTS AND LOCALIZED STATES Nobel Lecture, 8 December, 1977 by PHILIP W. ANDERSON Bell Telephone Laboratories, Inc, Murray Hill, New Jersey, and Princeton University, Princeton, New Jersey, USA I was cited for work both. in the field of magnetism and in that of disordered systems, and I would like to describe here one development in each held which was specifically mentioned in that citation. The two theories I will discuss differed sharply in some ways. The theory of local moments in metals was, in a sense, easy: it was the condensation into a simple mathematical model of ideas which. were very much in the air at the time, and it had rapid and permanent acceptance because of its timeliness and its relative simplicity. What mathematical difficulty it contained has been almost fully- cleared up within the past few years. Localization was a different matter: very few believed it at the time, and even fewer saw its importance; among those who failed to fully understand it at first was certainly its author. It has yet to receive adequate mathematical treatment, and one has to resort to the indignity of numerical simulations to settle even the simplest questions about it. Only now, and through primarily Sir Nevill Mott’s efforts, is it beginning to gain general acceptance. Yet these two finally successful brainchildren have also much in common: first, they flew in the face of the overwhelming ascendancy. at the time of the band theory of solids, in emphasizing locality : how a magnetic moment, or an eigenstate, could be permanently pinned down in a given region. -
Nobel Lectures™ 2001-2005
World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of -
Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate
Giving to the Department of Physics by Erin McGrath RAINER WEISS ’55, PHD ’62 Bryce Vickmark Rai Weiss has established a fellowship in the Physics Department because he is eternally grateful to his advisor, the late Jerrold Zacharias, for all that he did for Rai, so he knows firsthand the importance of supporting graduate students. Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate. Rainer “Rai” Weiss was born in Berlin, Germany in 1932. His father was a physician and his mother was an actress. His family was forced out of Germany by the Nazis since his father was Jewish and a Communist. Rai, his mother and father fled to Prague, Czecho- slovakia. In 1937 a sister was born in Prague. In 1938, after Chamberlain appeased Hitler by effectively giving him Czechoslovakia, the family was able to obtain visas to enter the United States through the Stix Family in St. Louis, who were giving bond to professional Jewish emigrants. When Rai was 21 years-old, he visited Mrs. Stix and thanked her for what she had done for his family. The family immigrated to New York City. Rai’s father had a hard time passing the medi- cal boards because of his inability to answer multiple choice exams. His mother, who Rai says “held the family together,” worked in a number of retail stores. Through the services of an immigrant relief organization Rai received a scholarship to attend the prestigious Columbia Grammar School. At the end of 1945, when Rai was 13 years old, he became fascinated with electronics and music. -
A Joint Fermilab/SLAC Publication Dimensions of Particle Physics Issue
dimensions volume 03 of particle physics symmetryA joint Fermilab/SLAC publication issue 05 june/july 06 Cover Physicists at Fermilab ponder the physics of the proposed International Linear Collider, as outlined in the report Discovering the Quantum Universe. Photos: Reidar Hahn, Fermilab Office of Science U.S. Department of Energy volume 03 | issue 05 | june/july 06 symmetryA joint Fermilab/SLAC publication 3 Commentary: John Beacom “In a global fi eld, keeping up with all the literature is impossible. Personal contact is essential, and I always urge students and postdocs to go to meetings and talk to strangers.” 4 Signal to Background An industrial waterfall; education by placemats; a super-clean surface; horned owls; Garden Club for particle physicists; Nobel banners; US Congress meets Quantum Universe. 8 Voices: Milestones vs. History Celebrating a milestone is always enjoyable, but a complete and accurate historical record is invalu- able for the past to inform the future. 10 A Report Like No Other Can the unique EPP2010 panel steer US particle physics away from a looming crisis? Physicists and policy makers are depending on it. 14 SNS: Neutrons for ‘molecular movies’ A new research facility at Oak Ridge National Laboratory has produced its fi rst neutrons, presenting new opportunities for studying materials from semiconductors to human enzymes. 20 Battling the Clouds Electron clouds could reduce the brightness—and discovery potential—of the proposed International Linear Collider. Innovative solutions are on the way and might reduce the cost of the machine, too. 24 A (Magnus) Force on the Mound Professional baseball player Jeff Francis of the Colorado Rockies brings a strong arm and a physics background to the playing fi eld: “I bet Einstein couldn’t throw a curveball.” 26 Deconstruction: Spallation Neutron Source Accelerator-based neutron sources such as the SNS can provide pulses of neutrons to probe superconductors, aluminum bridges, lighter and stronger plastic products, and pharmaceuticals.