Members Elect Barry Barish As Next APS Vice-President

Total Page:16

File Type:pdf, Size:1020Kb

Members Elect Barry Barish As Next APS Vice-President October 2008 Volume 17, No. 9 www.aps.org/publications/apsnews 21st Century Campaign Nears Goal APS NEWS and Needs Your Support! A PublicAtion of the AmericAn PhysicAl society • www.APs.org/PublicAtions/APsnews (See insert) Energy Efficiency Crucial to Achieving Energy Security Members Elect Barry Barish and Reducing Global Warming, States APS Report as next APS Vice-President Tapping wasted energy from miles per gallon mileage for cars needs because they require sig- APS members have elected in physics from the University of inefficient automobiles, homes and and other light-duty vehicles by nificant scientific and engineering Barry Barish, Linde Professor of California, Berkeley. He joined businesses is equivalent to discov- 2030 and the elimination of energy breakthroughs in several critical Physics Emeritus at Caltech, as the faculty at Caltech in 1963. ering a hidden energy reserve that from fossil fuels in new residential areas. the Society’s next vice president. Among his noteworthy experi- will help the United States improve buildings by 2020. The study also calls on Congress Barish will assume the office in ments were those performed at its energy security and reduce glob- and the White House to increase January 2009. At the same time, Fermilab using high-energy neu- al warming, an APS study panel has spending on research and develop- Curtis Callan of trino collisions to concluded. ment of next-generation building Princeton Univer- reveal the quark Their report, Energy Future: technologies, training scientists sity will become substructure of Think Efficiency, states that the key who work on building technologies president-elect, and the nucleon. In the to unlocking the efficiency poten- and supporting associated national Cherry Murray of 1980s, Barish initi- tial is developing policies that will laboratory, university and private- Lawrence Liver- ated an internation- put technology into the marketplace sector research programs. Addition- more National Lab- al effort to build a and developing new technologies ally, it recommends that lawmak- oratory will serve sophisticated un- through applied and basic research ers develop policies that address a as APS president derground detector in the public and private sectors. HOWAMERICA CANLOOK WITHIN TO wide-array of market barriers that for 2009, succeed- (MACRO) in Italy ACHIEVEENERGYSECURITYAND REDUCE GLOBAL WARMING The study panel concluded that discourage consumers from adopt- ing 2008 APS pres- in the emerging increased energy efficiency, par- ing investment in energy-efficient ident Arthur Bien- field of particle as- Barry Barish ticularly in the transportation and technologies, especially in the high- enstock of Stanford trophysics. Barish building sectors, will help eliminate ly fragmented building sector. University. Barish became Principal US reliance on foreign oil and re- It also states that the federal The American people need lead- will be president-elect in 2010, Investigator of the Laser Inter- duce greenhouse gas emissions that government should broaden its re- ership from the Congress and the and will serve as APS president ferometer Gravitational Wave contribute to global warming. search, development and demon- next president on this issue, said in 2011. Observatory (LIGO) project in Most recommendations address- stration programs, particularly in Nobel Laureate Burton Richter, In other election results, Kate 1994 and served as Director of ing high fuel costs focus on either the areas of batteries for conven- chair of the study committee and Kirby of the Harvard-Smithso- the LIGO Laboratory from 1997 increasing the supply of oil or find- tional hybrid vehicles, plug-in hy- director emeritus of the Stanford nian Center for Astrophysics was to 2005. He is currently the Di- ing a substitute fuel, but the APS re- brids and battery electric vehicles. Linear Accelerator Center. Both selected as the new chair-elect of rector of the Global Design Ef- port offers a practical roadmap with The report credits automakers for Senators McCain and Obama have the APS Nominating Commit- fort for the International Linear short-term and longer-term solu- devoting resources to the devel- outlined plans for improving en- tee, which has the responsibility Collider (ILC). In October 2002, tions for reducing demand through opment of hydrogen fuel cell and ergy efficiency and defining the im- of selecting a slate of candidates Barish was nominated to the cost-effective efficiencies that find plug-in hybrid vehicles, but con- portant role new technologies will each year to run for APS office. National Science Board, which public and political acceptance. cludes that they are not a solution play in our energy future. The next Nergis Mavalvala, a professor of oversees the National Science The report provides a path to 50 to the nation’s short-term energy REPORT continued on page 5 physics at MIT, and Jorge Pullin, Foundation (NSF) and advises Horace Hearne Chair in Theo- the President and the Congress retical Physics at the Louisiana on policy issues related to sci- LHC Start Up was a Long Time Coming State University, were elected as ence, engineering, and educa- By Kate McAlpine the accelerator ring on general councilors. tion. September 10th, and Barish earned his PhD in 1963 ELECTIONS continued on page 7 Kate McAlpine is a science collisions are expected writer with the ATLAS collabora- before the year is out. Three Women Receive Blewett tion at CERN and a former sci- If you think of the ence writing intern at APS. She project as a mara- Scholarships in 2008 has recently received a lot of thon, I’ve been run- By Nadia Ramlagan attention for her video, “Large ning alongside for the Hadron Rap” (Check it out on last mile. Work on the Three women have been se- YouTube). Here she gives her LHC started in the lected by the APS Committee on impressions of the startup of the early 1980s, and of- the Status of Women in Physics LHC and the months leading up ficial planning began as the recipients of this year’s M. to it. in 1984–five years be- Hildred Blewett Scholarship: Ya After more than two decades fore its predecessor in Li of Hampton University, Fir- of planning, over a decade of the tunnel, the Large Courtesy of CERN ouzeh Sabri of the University of digging and building, the Large Electron-Positron col- lowering of the final element YE( -1) of the compact Memphis, and Janice Guikema Hadron Collider and its detec- lider, had even start- muon solenoid (CMS) detector into its underground of Johns Hopkins University. The experimental cavern tors are finally complete. The ed up. But from late Blewett scholarship is a one year first beam of protons ran through October last year, I LHC continued on page 4 award of up to $45,000 that is in- Ya Li tended to enable women scientists love reading all kinds of scientific to return to physics research after articles. Being a scientist has al- Four APS Members Receive National Medal of Science having to interrupt their careers ways been my dream, ever since I Four APS members are among vania, Charles Slichter of the Uni- energy generation from fusion, for family reasons. Recipients can was a child,” Li says. the recipients of the 2007 Na- versity of Illinois, Urbana-Cham- dating of artifacts, and nuclear use the funds for expenses related In 2003 she moved to Jeffer- tional Medal of Science, and one paign, and David Wineland of the medicine.” to child care, salary, and travel, son Lab in Virginia to work on APS member is among the recipi- National Institute of Standards Slichter was cited “for estab- equipment, and tuition fees. her dissertation, studying dual- ents of the 2007 National Medal and Technology received the 2007 lishing nuclear magnetic reso- Born in Wenzhou, China, Ya ity in meson electroproduction. of Technology. The awards honor National Medal of Science. nance as a powerful tool to reveal Li received her undergraduate “The most exciting thing about the nation’s top scientists and in- El-Sayed was cited “for his the fundamental properties of degree in physics and masters de- Jefferson Lab is that they have a novators. contributions to our understand- molecules, liquids and solids, en- gree in condensed matter physics high luminosity electron beam, President Bush presented the ing of the electronic and catalytic abling the development of numer- from Tongji University in Shang- which is great for studying the medals in a ceremony at the properties of nanostructures and ous modern technologies.” hai. She then came to the United structure of matter on the nucleon White House on September 29. nanomaterials.” Wineland was cited “for his States and received another mas- scale,” Li explains. After stopping APS members Mostafa El- Ajzenberg-Selove was cited outstanding leadership in the sci- ters degree from the University of her career for a few years, she is Sayed of Georgia Institute of “for her contributions in nuclear ence of laser cooling and manipu- Houston. currently resuming her graduate Technology, Fay Ajzenberg-Sel- physics that have advanced re- lation of ions, that have had mul- “I have always been good at studies at the nearby Hampton ove of the University of Pennsyl- search into applications including MEDAL continued on page 7 mathematics and physics, and I BLEWETT continued on page 6 2 • October 2008 APS NEWS Members This Month in Physics History in the Media “It’s not a stable black hole that “If all the molecules of air in the could swallow the universe. It’s un- room where you’re sitting would October 1958: Physicist Invents First Video Game stable, so it explodes right away.” suddenly cross to one side, you n October 1958, Physicist William Higinboth- represented by just two lines, one representing the Yongsheng Gao, California would not have any air to breathe.
Recommended publications
  • Emergence and Phenomenology in Quantum Gravity
    Emergence and Phenomenology in Quantum Gravity by Isabeau Premont-Schwarz´ A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics Waterloo, Ontario, Canada, 2010 © Isabeau Premont-Schwarz´ 2010 AUTHOR’S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii AUTHORSHIP STATEMENT This thesis is based on the following five articles: • A. Hamma, F. Markopoulou, I. Pr´emont-Schwarz and S. Severini, “Lieb-Robinson bounds and the speed of light from topological order,” Phys. Rev. Lett. 102 (2009) 017204 [arXiv:0808.2495 [quant-ph]]. • I. Pr´emont-Schwarz ,A. Hamma, I. Klich and F. Markopoulou, “Lieb-Robinson bounds for commutator-bounded operators ,” Phys. Rev. A 81, 040102(R) (2010) .[arXiv:0912.4544 [quant-ph]]. • I. Pr´emont-Schwarz and J. Hnybida, “Lieb-Robinson bounds with dependence on interaction strengths, ” [arXiv:1002.4190 [math-ph]]. • L. Modesto and I. Pr´emont-Schwarz, “Self-dual Black Holes in LQG: Theory and Phenomenology,” Phys. Rev. D 80, 064041 (2009) [arXiv:0905.3170 [hep-th]]. • S. Hossenfelder, L. Modesto and I. Pr´emont-Schwarz, “A model for non-singular black hole collapse and evaporation ,” Phys. Rev. D 81, 044036 (2010) [arXiv:0912.1823 [gr-qc]]. I did the majority of the work in the first article, but the project was initiated by Fotini Markopoulou-Kalamara and Alioscia Hamma and the manuscript was mostly written by Alioscia Hamma.
    [Show full text]
  • A Time of Great Growth
    Newsletter | Spring 2019 A Time of Great Growth Heartfelt greetings from the UC Riverside Department of Physics and Astronomy. This is our annual newsletter, sent out each Spring to stay connected with our former students, retired faculty, and friends in the wider community. The Department continues to grow, not merely in size but also in stature and reputation. For the 2018-2019 academic year, we were pleased to welcome two new faculty: Professors Thomas Kuhlman and Barry Barish. Professor Kuhlman was previously on the faculty at the University of Illinois at Urbana-Champaign. He joins our efforts in the emerging field of biophysics. His research lies in the quantitative imaging and theoretical modeling of biological systems. He works on genome dynamics, quantification of the activity of transposable elements in living cells, and applications to the engineering of genome editing. Professor Barry Barish, who joins us from Caltech, is the winner of the 2017 Nobel Prize in Physics. He brings great prestige to our Department. Along with Professor Richard Schrock of the Department of Chemistry, who also joined UCR in 2018, UCR now has two Nobel Prize winners on its faculty. Professor Barish is an expert on the detection and physics of gravitational waves. He has been one of the key figures in the conception, construction, and operation of the LIGO detector, where gravitational waves were first discovered in 2015, and which led to his Nobel Prize. He is a member of the National Academy of Sciences and the winner of many other prestigious awards. The discovery of gravitational waves is one of the most exciting developments in physics so far this century.
    [Show full text]
  • Ripples in Spacetime
    editorial Ripples in spacetime The 2017 Nobel prize in Physics has been awarded to Rainer Weiss, Barry C. Barish and Kip S. Thorne “for decisive contributions to the LIGO detector and the observation of gravitational waves”. It is, frankly, difficult to find something original to say about the detection of gravitational waves that hasn’t been said already. The technological feat of measuring fluctuations in the fabric of spacetime less than one-thousandth the width of an atomic nucleus is quite simply astonishing. The scientific achievement represented by the confirmation of a century-old prediction by Albert Einstein is unique. And the collaborative effort that made the discovery possible — the Laser Interferometer Gravitational-Wave Observatory (LIGO) — is inspiring. Adapted from Phys. Rev. Lett. 116, 061102 (2016), under Creative Commons Licence. Rainer Weiss and Kip Thorne were, along with the late Ronald Drever, founders of the project that eventually became known Barry Barish, who was the director Last month we received a spectacular as LIGO. In the 1960s, Thorne, a black hole of LIGO from 1997 to 2005, is widely demonstration that talk of a new era expert, had come to believe that his objects of credited with transforming it into a ‘big of gravitational astronomy was no interest should be detectable as gravitational physics’ collaboration, and providing the exaggeration. Cued by detections at LIGO waves. Separately, and inspired by previous organizational structure required to ensure and Virgo, an interferometer based in Pisa, proposals, Weiss came up with the first it worked. Of course, the passion, skill and Italy, more than 70 teams of researchers calculations detailing how an interferometer dedication of the thousand or so scientists working at different telescopes around could be used to detect them in 1972.
    [Show full text]
  • The History of Lasers at Stanford Group
    Lasers at 50: Byer The History of Lasers at Stanford Group Robert L. Byer Applied Physics Stanford University [email protected] Abstract In the fifty years since the demonstration of the laser, coherent light has changed the way we work, communicate and play. The generation and control of light is critical for meeting important challenges of the 21st century from fundamental science to the generation of energy. A look back at the early days of the laser at Stanford will be contrasted to the recent breakthroughs in solid state lasers and the applications to fundamental science of gravitational wave detection, remote sensing, and laser induced fusion for energy production. Stanford Historical Society 34th Annual Meeting & Reception May 25, 2010 The History of Lasers at Stanford May 25 2010 Cubberley Auditorium, Staford Byer California – Leader in advanced telescopes for astronomy Group Lick 36 inch refractor The Mount Wilson 100 inch The Palomar 200 inch 1888 1917 1948 The History of Lasers at Stanford May 25 2010 Cubberley Auditorium, Staford From Maser to Laser – stimulated emission at optical frequencies Byer proposed in 1958 – A. Schawlow and C. H. Townes Group The History of Lasers at Stanford May 25 2010 Cubberley Auditorium, Staford Early advances in lasers --- Byer 2009 a Special Year Group Concept of Optical Maser Schawlow & Townes 1958 Ruby Laser Ted Maiman 1960 Nobel Prize awarded in 1964 Townes, Prokhorov and Basov Hg+ Ion Laser Earl Bell 1965 Argon Ion Laser Bill Bridges Tunable cw parametric Laser Harris 1968 Diode bar 1Watt
    [Show full text]
  • Sabine Hossenfelder on “The Case Against Beauty in Physics” Julia
    Rationally Speaking #211: Sabine Hossenfelder on “The case against beauty in physics” Julia: Welcome to Rationally Speaking, the podcast where we explore the borderlands between reason and nonsense. I'm your host, Julia Galef, and I'm here with today's guest, Sabine Hossenfelder. Sabine is a theoretical physicist, focusing on quantum gravity. She's a research fellow at the Frankfurt Institute for Advanced Studies, and blogs at Back Reaction. She just published the book, "Lost in Math: How Beauty Leads Physics Astray." "Lost in Math” argues that physicists, in at least certain sub-fields, evaluate theories based heavily on aesthetics, like is this theory beautiful? Instead of simply, what does the evidence suggest is true? The book is full of interviews Sabine did with top physicists, where she tries to ask them: what's the justification for this? Why should we expect beauty to be a good guide to truth? And, spoiler alert, ultimately, she comes away rather unsatisfied with the answers. So, we're going to talk about "Lost in Math" and the case for and against beauty in physics. Sabine, welcome to the show. Sabine: Hello. Julia: So, probably best to start with: what do you mean by beauty, in this context? And is it closer to a kind of “beauty is in the eye of the beholder” thing, like, every physicist has their own sort of aesthetic sense? Or is more like there's a consensus among physicists about what constitutes a beautiful theory? Sabine: Interestingly enough, there's mostly consensus about it. Let me put ahead that I will not try to tell anyone what beauty means, I am just trying to summarize what physicists seem to mean when they speak of beauty, when they say “that theory is beautiful.” There are several ingredients to this sense of beauty.
    [Show full text]
  • Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate
    Giving to the Department of Physics by Erin McGrath RAINER WEISS ’55, PHD ’62 Bryce Vickmark Rai Weiss has established a fellowship in the Physics Department because he is eternally grateful to his advisor, the late Jerrold Zacharias, for all that he did for Rai, so he knows firsthand the importance of supporting graduate students. Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate. Rainer “Rai” Weiss was born in Berlin, Germany in 1932. His father was a physician and his mother was an actress. His family was forced out of Germany by the Nazis since his father was Jewish and a Communist. Rai, his mother and father fled to Prague, Czecho- slovakia. In 1937 a sister was born in Prague. In 1938, after Chamberlain appeased Hitler by effectively giving him Czechoslovakia, the family was able to obtain visas to enter the United States through the Stix Family in St. Louis, who were giving bond to professional Jewish emigrants. When Rai was 21 years-old, he visited Mrs. Stix and thanked her for what she had done for his family. The family immigrated to New York City. Rai’s father had a hard time passing the medi- cal boards because of his inability to answer multiple choice exams. His mother, who Rai says “held the family together,” worked in a number of retail stores. Through the services of an immigrant relief organization Rai received a scholarship to attend the prestigious Columbia Grammar School. At the end of 1945, when Rai was 13 years old, he became fascinated with electronics and music.
    [Show full text]
  • A Natural Introduction to Fine-Tuning
    A Natural Introduction to Fine-Tuning Julian De Vuyst ∗ Department of Physics & Astronomy, Ghent University, Krijgslaan, S9, 9000 Ghent, Belgium Abstract A well-known topic within the philosophy of physics is the problem of fine-tuning: the fact that the universal constants seem to take non-arbitrary values in order for live to thrive in our Universe. In this paper we will talk about this problem in general, giving some examples from physics. We will review some solutions like the design argument, logical probability, cosmological natural selection, etc. Moreover, we will also discuss why it's dangerous to uphold the Principle of Naturalness as a scientific principle. After going through this paper, the reader should have a general idea what this problem exactly entails whenever it is mentioned in other sources and we recommend the reader to think critically about these concepts. arXiv:2012.05617v1 [physics.hist-ph] 10 Dec 2020 ∗[email protected] 1 Contents 1 Introduction3 2 A Take on Constants3 2.I The Role of Units . .4 2.II Derived vs Fundamental Constants . .5 3 The Concept of Naturalness6 3.I Technical Naturalness . .6 3.I.a A Wilsonian Perspective . .6 3.I.b A Brief History . .8 3.II Numerical/General Naturalness . .9 4 The Fine-Tuning Problem9 5 Some Examples from Physics 10 5.I The Cosmological Constant Problem . 10 5.II The Flatness Problem . 11 5.III The Higgs Mass . 12 5.IV The Strong CP Problem . 13 6 Resolutions to Fine-Tuning 14 6.I We are here, full stop . 14 6.II Designed like Clockwork .
    [Show full text]
  • A Joint Fermilab/SLAC Publication Dimensions of Particle Physics Issue
    dimensions volume 03 of particle physics symmetryA joint Fermilab/SLAC publication issue 05 june/july 06 Cover Physicists at Fermilab ponder the physics of the proposed International Linear Collider, as outlined in the report Discovering the Quantum Universe. Photos: Reidar Hahn, Fermilab Office of Science U.S. Department of Energy volume 03 | issue 05 | june/july 06 symmetryA joint Fermilab/SLAC publication 3 Commentary: John Beacom “In a global fi eld, keeping up with all the literature is impossible. Personal contact is essential, and I always urge students and postdocs to go to meetings and talk to strangers.” 4 Signal to Background An industrial waterfall; education by placemats; a super-clean surface; horned owls; Garden Club for particle physicists; Nobel banners; US Congress meets Quantum Universe. 8 Voices: Milestones vs. History Celebrating a milestone is always enjoyable, but a complete and accurate historical record is invalu- able for the past to inform the future. 10 A Report Like No Other Can the unique EPP2010 panel steer US particle physics away from a looming crisis? Physicists and policy makers are depending on it. 14 SNS: Neutrons for ‘molecular movies’ A new research facility at Oak Ridge National Laboratory has produced its fi rst neutrons, presenting new opportunities for studying materials from semiconductors to human enzymes. 20 Battling the Clouds Electron clouds could reduce the brightness—and discovery potential—of the proposed International Linear Collider. Innovative solutions are on the way and might reduce the cost of the machine, too. 24 A (Magnus) Force on the Mound Professional baseball player Jeff Francis of the Colorado Rockies brings a strong arm and a physics background to the playing fi eld: “I bet Einstein couldn’t throw a curveball.” 26 Deconstruction: Spallation Neutron Source Accelerator-based neutron sources such as the SNS can provide pulses of neutrons to probe superconductors, aluminum bridges, lighter and stronger plastic products, and pharmaceuticals.
    [Show full text]
  • The Strong and Weak Senses of Theory-Ladenness of Experimentation: Theory-Driven Versus Exploratory Experiments in the History of High-Energy Particle Physics
    [Accepted for Publication in Science in Context] The Strong and Weak Senses of Theory-Ladenness of Experimentation: Theory-Driven versus Exploratory Experiments in the History of High-Energy Particle Physics Koray Karaca University of Wuppertal Interdisciplinary Centre for Science and Technology Studies (IZWT) University of Wuppertal Gaußstr. 20 42119 Wuppertal, Germany [email protected] Argument In the theory-dominated view of scientific experimentation, all relations of theory and experiment are taken on a par; namely, that experiments are performed solely to ascertain the conclusions of scientific theories. As a result, different aspects of experimentation and of the relation of theory to experiment remain undifferentiated. This in turn fosters a notion of theory- ladenness of experimentation (TLE) that is too coarse-grained to accurately describe the relations of theory and experiment in scientific practice. By contrast, in this article, I suggest that TLE should be understood as an umbrella concept that has different senses. To this end, I introduce a three-fold distinction among the theories of high-energy particle physics (HEP) as background theories, model theories and phenomenological models. Drawing on this categorization, I contrast two types of experimentation, namely, “theory-driven” and “exploratory” experiments, and I distinguish between the “weak” and “strong” senses of TLE in the context of scattering experiments from the history of HEP. This distinction enables to identify the exploratory character of the deep-inelastic electron-proton scattering experiments— performed at the Stanford Linear Accelerator Center (SLAC) between the years 1967 and 1973—thereby shedding light on a crucial phase of the history of HEP, namely, the discovery of “scaling”, which was the decisive step towards the construction of quantum chromo-dynamics (QCD) as a gauge theory of strong interactions.
    [Show full text]
  • Laser Interferometry Gravitational Wave Detection
    Quantum Noise Limited Lasers and Byer The Search for Gravitational Waves Group Robert L. Byer Department of Applied Physics Stanford University Abstract Einstein formulated the general theory of relativity near 100 years ago and showed that gravity is curvature in space-time and further that ripples in space-time, gravitational waves, travel at the speed of light. Today the Laser Interferometer Gravitational Wave Observatory, LIGO, project is using ground based 4km long interferometers to search for gravitational waves. The progress for LIGO and other earth based gravitational wave interferometers will be reviewed. This summer the Laser Interferometer in Space Antenna, LISA, project, joint between NASA and ESA, will hold its 8th International meeting at Stanford. The design of the space-based 5 million kilometer path length LISA interferometer, scheduled for launch in 2020, will be discussed. The detection of gravitational waves requires the ultimate in precision measurement. The ‘ruler’ used to detect oscillations in space-time is the constant; the speed of light. The light source is a very stable diode-pumped Nd:YAG solid state laser oscillator-amplifier that operates reliably at the quantum limit in phase and amplitude. AAAS 2010 Annual Meeting San Diego, CA February 21, 2010 AAAS 2010 Annual Meeting February 21, 2010 Extreme Optical Tools and Applications Outline Byer Group Prelude: California – a leader in science and technology LIGO & LISA: Early History and Concepts LIGO and LISA at the beginning Gravitational Waves and Sources
    [Show full text]
  • Quantized Vortices in Superfluid Dark Matter
    Quantized Vortices in Superfluid Dark Matter Renate Mauland Master’s Thesis, Spring 2019 ii Copyright c 2019, Renate Mauland This work, entitled “Quantized Vortices in Superfluid Dark Matter” is distributed under the terms of the Public Library of Science Open Access License, a copy of which can be found at https://journals.plos.org/plosone/s/licenses-and-copyright. Cover Photo: Open Source Image from www.pexels.com. Abstract In a recent paper by Berezhiani and Khoury [1], a superfluid dark matter (DM) model was presented. The model consists of light axion-like DM particles (m ∼ eV), which condense and form a superfluid at galactic scales. The superfluid exhibits collective excitations known as phonons, which interact with baryons and mediate a force similar to that of Modified Newtonian Dynamics (MOND). The superfluid DM model therefore combines the success of MOND at small scales with that of the ΛCDM model at large scales. By analogy with superfluids studied in the lab, we expect a grid of vortices with quantized circulation to form in a rotating galaxy containing superfluid DM. In this thesis, we explore the properties of the superfluid DM vortices and their impact on the surroundings. We find that the vortex cores are small, 10−4 − 10−3 m, and that the vortices are separated by vast distances, ∼ 0:002 AU. The viable parameter space of the model is found to be substantial, and a reduction in the DM particle mass results in larger vortices with a higher energy. Yet, no combination of parameters explored here give vortices energetic enough to have a noticeable effect on the galaxy as a whole.
    [Show full text]
  • KITCHEN CHEMISTRY Bijeta Roynath & Prasanta Kumar Sahoo
    Test Your Knowledge KITCHEN CHEMISTRY Bijeta Roynath & Prasanta Kumar Sahoo 1. The common cooking fuel, Liquefied Petroleum Gas 10. Which of the following could be produced by the gas (LPG), is a mixture of two hydrocarbons. These are: stove? (a) Methane and Butane (b) Propane and Butane (a) Nitrogen Oxides (b) Sulphur dioxides (c) Oxygen and Hydrogen (d) Hexane and Propane (c) Carbon monoxide (d) Dihydrogen oxide 2. Hydrocarbons in LPG are colourless and odourless. 11. Which of the following chemical is found in dish- Therefore, a strong smelling agent added to LPG washing detergent? cylinders to detect leakage is: (a) Carbon monoxide (b) Chlorine (a) Ethyl mercaptan (b) Nitrous oxide (c) Sulphur dioxide (d) Lithium (c) Hydrogen sulfide (d) Chloroform 12. Proteins help build our body and carbohydrates 3. Chemical irritant produced during chopping an provide energy to the body. The protein and onion (Allium cepa) which makes our eye weepy is: carbohydrate found in milk are: (a) Allinase (b) Sulfoxide (a) Albumin and maltose (b) Pepsin and sucrose (c) Syn-propanethial-S-oxide (d) Allyl mercaptan (c) Collagen and fructose (d) Casein and lactose 4. The powerful anti-inflammatory and antioxidant 13. Salt readily absorbs water from the surroundings. properties of haldi or turmeric (Curcuma longa) are Sprinkling salt on salad releases water from it after due to presence of: few seconds. The process is: (a) Curcumin (b) Gingerol (a) Osmosis (b) Adsorption (c) Cymene (d) Capsaicin (c) Dehydration (d) Oxidation 5. The active ingredient in chilli peppers (Capsicum) 14. Washing hands before eating prevents illness which produces heat and burning sensation in the by killing germs.
    [Show full text]