Technical Report: an Overview of Emerging Diseases in the Salmonid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts. -
Eelgrass Sediment Microbiome As a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan
Microbes Environ. Vol. 34, No. 1, 13-22, 2019 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18103 Eelgrass Sediment Microbiome as a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan TATSUNORI NAKAGAWA1*, YUKI TSUCHIYA1, SHINGO UEDA1, MANABU FUKUI2, and REIJI TAKAHASHI1 1College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252–0880, Japan; and 2Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060–0819, Japan (Received July 16, 2018—Accepted October 22, 2018—Published online December 1, 2018) Nitrous oxide (N2O) is a powerful greenhouse gas; however, limited information is currently available on the microbiomes involved in its sink and source in seagrass meadow sediments. Using laboratory incubations, a quantitative PCR (qPCR) analysis of N2O reductase (nosZ) and ammonia monooxygenase subunit A (amoA) genes, and a metagenome analysis based on the nosZ gene, we investigated the abundance of N2O-reducing microorganisms and ammonia-oxidizing prokaryotes as well as the community compositions of N2O-reducing microorganisms in in situ and cultivated sediments in the non-eelgrass and eelgrass zones of Lake Akkeshi, Japan. Laboratory incubations showed that N2O was reduced by eelgrass sediments and emitted by non-eelgrass sediments. qPCR analyses revealed that the abundance of nosZ gene clade II in both sediments before and after the incubation as higher in the eelgrass zone than in the non-eelgrass zone. In contrast, the abundance of ammonia-oxidizing archaeal amoA genes increased after incubations in the non-eelgrass zone only. Metagenome analyses of nosZ genes revealed that the lineages Dechloromonas-Magnetospirillum-Thiocapsa and Bacteroidetes (Flavobacteriia) within nosZ gene clade II were the main populations in the N2O-reducing microbiome in the in situ sediments of eelgrass zones. -
Working Group on Pathology and Diseases of Marine Organisms (WGPDMO)
ICES WGPDMO REPORT 2018 AQUACULTURE STEERING GROUP ICES CM 2018/ASG:01 REF. ACOM, SCICOM Report of the Working Group on Pathology and Diseases of Marine Organisms (WGPDMO) 13-17 February 2018 Riga, Latvia International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H.C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2018. Report of the Working Group on Pathology and Diseases of Marine Or- ganisms (WGPDMO), 13-17 February 2018, Riga, Latvia. ICES CM 2018/ASG:01. 42 pp. https://doi.org/10.17895/ices.pub.8134 The material in this report may be reused using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has own- ership. For other third-party material cited in this report, you must contact the origi- nal copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2018 International Council for the Exploration of the Sea ICES WGPDMO REPORT 2018 | i Contents Executive summary ............................................................................................................... -
Detection of Paramoeba Perurans in Scotish Marine Wild Fish Populations
Bull. Eur. Ass. Fish Pathol., 35(6) 2015, 217 NOTE ȱȱParamoeba perurans in Ĵȱȱ ȱęȱ H. E. B. Stagg*, M. Hall, I. S. Wallace, C. C. Pert, S. Garcia Perez and C. Collins Marine Scotland Science, Marine Laboratory, Aberdeen, AB11 9DB Abstract ȱȱParamoeba perurans, ȱȱȱȱȱȱ ȱȱ¢ȱȱ ȱ ȱęȱȱĴȱȱ ȱǻȱƽȱŘǰřŚŞǼǯȱOverall, the apparent prevalence was low. A ȱęǰȱȱȱȱTrachurus trachurus, ȱǯȱȱȱȱęȱȱȱȱ ȱP. perurans in horse mackerel. Paramoeba perurans is an amoeba parasite and the Salmo salar and rainbow trout Oncorhynchus ȱȱȱȱȱȱǻ Ǽȱ mykiss (Munday et al., 1990); coho salmon O. (Young et al., 2007, Crosbie et al., 2012). The kisutchȱǻ ȱȱǯǰȱŗşŞŞǼDzȱ Scophthalmus ȱ ȱęȱȱȱȱȱŘŖŖŜȱ maximus ǻ¢ȱȱǯǰȱŗşşŞǼDzȱȱȱDicen- with additional outbreaks occurring since 2011 trarchus labrax (Dykova et al., 2000); chinook ȱȱȱ¢ȱ ȱȱȱęȱ salmon O. tshawytscha ǻȱȱǯǰȱŘŖŖŞǼDzȱ ȱȱȱĴȱȱ¢ȱ ayu Plecoglossus altivelis (Crosbie et al., 2010); (Marine Scotland Science unpublished data). ballan wrasse Labrus bergylta (Karlsbakk et al., ȱȱȱȱęȱȱȱ 2013); blue warehou Seriolella brama (Adams (Shinn et al., 2014) especially in the Australian ȱǯǰȱŘŖŖŞǼDzȱȱȱȱDiplodus puntazzo ȱȱ¢ȱȱȱ (Dykova and Novoa, 2001). ȱȱȱȱȱęȱȱȱ ŗşŞŚȱǻ¢ǰȱŗşŞŜǼǯȱȱȱȱȱȱ ȱȱȱ ȱęȱȱȱȱȱȱ reported in the USA (Kent et al., ŗşŞŞǼǰȱ ȱ P. peruransȱȱȱȱȱȱȱȱ (Rodger and McArdle, 1996), the Mediterranean ȱ¢ȱȱȱȱȱȱȱ ǻ¢ȱȱǯǰȱŗşşŞǼǰȱ ȱȱǻȱȱ ȱȱȱ ȱȱȱȱ ǯǰȱŘŖŖŞǼǰȱ ¢ȱǻȱȱǯǰȱŘŖŖŞǼǰȱ ȱ ȱȱęǯȱȱǰȱP. perurans has only (Crosbie et al., 2010), Chile (Bustos et al., 2011) ȱȱȱęȱȱȱ- ȱȱȱȱǻȱȱǯǰȱŘŖŗŚǼǯȱ- ǯȱȱȱȱȱȱ¢ȱȱ ceptible species to AGD include: Atlantic salmon ȱȱ ȱParamoeba ǯȱȱ ȱęȱ * Corresponding author’s e-mail: [email protected] ŘŗŞǰȱǯȱǯȱǯȱȱǯǰȱřśǻŜǼȱŘŖŗś ǻȱȱǯǰȱŘŖŖŞǼȱ ȱȱȱ ȱ ȱȱȱȱȱ¢ȱȱȱ ȱȱȱȱ¢ȱȱȱȱ ȱ ȱȱęȱȱȱ¢ȱǻ ȱ ȱȱ in Tasmania and tested ȱǯǰȱŘŖŖŗǼǯȱ¢ȱęȱ ȱȱ ȱ using histological and immunohistochemical each haul based on the approximate proportion techniques however, the amoeba species was ȱȱȱȱȱȱǰȱȱ ȱȱȱȱȱȱȱȱȱ ȱ ȱȱȱȱȱ ȱȱP. -
Comparative Proteomic Profiling of Newly Acquired, Virulent And
www.nature.com/scientificreports OPEN Comparative proteomic profling of newly acquired, virulent and attenuated Neoparamoeba perurans proteins associated with amoebic gill disease Kerrie Ní Dhufaigh1*, Eugene Dillon2, Natasha Botwright3, Anita Talbot1, Ian O’Connor1, Eugene MacCarthy1 & Orla Slattery4 The causative agent of amoebic gill disease, Neoparamoeba perurans is reported to lose virulence during prolonged in vitro maintenance. In this study, the impact of prolonged culture on N. perurans virulence and its proteome was investigated. Two isolates, attenuated and virulent, had their virulence assessed in an experimental trial using Atlantic salmon smolts and their bacterial community composition was evaluated by 16S rRNA Illumina MiSeq sequencing. Soluble proteins were isolated from three isolates: a newly acquired, virulent and attenuated N. perurans culture. Proteins were analysed using two-dimensional electrophoresis coupled with liquid chromatography tandem mass spectrometry (LC–MS/MS). The challenge trial using naïve smolts confrmed a loss in virulence in the attenuated N. perurans culture. A greater diversity of bacterial communities was found in the microbiome of the virulent isolate in contrast to a reduction in microbial community richness in the attenuated microbiome. A collated proteome database of N. perurans, Amoebozoa and four bacterial genera resulted in 24 proteins diferentially expressed between the three cultures. The present LC–MS/ MS results indicate protein synthesis, oxidative stress and immunomodulation are upregulated in a newly acquired N. perurans culture and future studies may exploit these protein identifcations for therapeutic purposes in infected farmed fsh. Neoparamoeba perurans is an ectoparasitic protozoan responsible for the hyperplastic gill infection of marine cultured fnfsh referred to as amoebic gill disease (AGD)1. -
First Isolation of Virulent Tenacibaculum Maritimum Strains
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435441; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 First isolation of virulent Tenacibaculum maritimum 2 strains from diseased orbicular batfish (Platax orbicularis) 3 farmed in Tahiti Island 4 Pierre Lopez 1¶, Denis Saulnier 1¶*, Shital Swarup-Gaucher 2, Rarahu David 2, Christophe Lau 2, 5 Revahere Taputuarai 2, Corinne Belliard 1, Caline Basset 1, Victor Labrune 1, Arnaud Marie 3, Jean 6 François Bernardet 4, Eric Duchaud 4 7 8 9 1 Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, Labex Corail, F‐98719 10 Taravao, Tahiti, Polynésie française, France 11 2 DRM, Direction des ressources marines, Fare Ute Immeuble Le caill, BP 20 – 98713 Papeete, Tahiti, 12 Polynésie française 13 3 Labofarm Finalab Veterinary Laboratory Group, 4 rue Théodore Botrel, 22600 Loudéac, France 14 4 Unité VIM, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France 15 * Corresponding author 16 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435441; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 17 Abstract 18 The orbicular batfish (Platax orbicularis), also called 'Paraha peue' in Tahitian, is the most important 19 marine fish species reared in French Polynesia. -
Disease of Aquatic Organisms 73:43
DISEASES OF AQUATIC ORGANISMS Vol. 73: 43–47, 2006 Published November 21 Dis Aquat Org Concentration effects of Winogradskyella sp. on the incidence and severity of amoebic gill disease Sridevi Embar-Gopinath*, Philip Crosbie, Barbara F. Nowak School of Aquaculture and Aquafin CRC, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia ABSTRACT: To study the concentration effects of the bacterium Winogradskyella sp. on amoebic gill disease (AGD), Atlantic salmon Salmo salar were pre-exposed to 2 different doses (108 or 1010 cells l–1) of Winogradskyella sp. before being challenged with Neoparamoeba spp. Exposure of fish to Winogradskyella sp. caused a significant increase in the percentage of AGD-affected filaments com- pared with controls challenged with Neoparamoeba only; however, these percentages did not increase significantly with an increase in bacterial concentration. The results show that the presence of Winogradskyella sp. on salmonid gills can increase the severity of AGD. KEY WORDS: Neoparamoeba · Winogradskyella · Amoebic gill disease · AGD · Gill bacteria · Bacteria dose · Salmon disease Resale or republication not permitted without written consent of the publisher INTRODUCTION Winogradskyella is a recently established genus within the family Flavobacteriaceae, and currently Amoebic gill disease (AGD) in Atlantic salmon contains 4 recognised members: W. thalassicola, W. Salmo salar L. is one of the significant problems faced epiphytica and W. eximia isolated from algal frond sur- by the south-eastern aquaculture industries in Tasma- faces in the Sea of Japan (Nedashkovskaya et al. 2005), nia. The causative agent of AGD is Neoparamoeba and W. poriferorum isolated from the surface of a spp. (reviewed by Munday et al. -
Report: 19Th Annual Workshop of the National Reference Laboratories for Fish Diseases
Report: 19th Annual Workshop of the National Reference Laboratories for Fish Diseases Copenhagen, Denmark May 27th-28th 2015 FISH positive staining for Rickettsia like Gill necrosis in Koi Carp SVCV CPE on EPC cell culture organism in sea bass brain Organised by the European Union Reference Laboratory for Fish Diseases National Veterinary Institute, Technical University of Denmark 1 Contents INTRODUCTION AND SHORT SUMMARY ..................................................................................................................4 PROGRAM .................................................................................................................................................................8 Welcome ................................................................................................................................................................ 12 SESSION I: .............................................................................................................................................................. 13 UPDATE ON IMPORTANT FISH DISEASES IN EUROPE AND THEIR CONTROL ......................................................... 13 OVERVIEW OF THE DISEASE SITUATION AND SURVEILLANCE IN EUROPE IN 2014 .......................................... 14 UPDATE ON FISH DISEASE SITUATION IN NORWAY .......................................................................................... 17 UPDATE ON FISH DISEASE SITUATION IN THE MEDITERRANEAN BASIN .......................................................... 18 PAST -
Effects of Temperature on Amoebic Gill Disease Development: Does It Play A
1 Effects of temperature on amoebic gill disease 2 development: does it play a role? 3 Ottavia Benedicenti *a,b, Tom G. Pottinger c, Catherine Collins b,d, 4 Christopher J. Secombes *a 5 6 a Scottish Fish Immunology Research Centre, Institute of Biological and Environmental 7 Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK 8 b Marine Scotland Science Marine Laboratory, 375 Victoria Rd, Aberdeen AB11 9DB, UK 9 c Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, 10 Lancaster LA1 4AP, UK 11 d Museum National d’Histoire Naturelle (MNHN), Unité Mixte de Recherche UMR Biologie 12 des Organismes et Ecosystèmes Aquatiques (BOREA), 7 rue Cuvier 75231 Paris Cedex 05 13 14 *Corresponding authors: 15 Ottavia Benedicenti 16 Centro de Investigación en Sanidad Animal, 17 Instituto Nacional De Investigaciones Agrarias, 18 Carretera Algete-El Casar de Talamanca, Km. 8,1, 19 28130 Valdeolmos, Madrid, Spain 20 E-mail: [email protected] 21 Tel: +34 916202300 22 23 Chris Secombes 24 Scottish Fish Immunology Research Centre, 25 Institute of Biological and Environmental Sciences, 26 University of Aberdeen, 27 Tillydrone Avenue, 28 Aberdeen AB24 2TZ, UK 29 E-mail: [email protected] 30 1 31 Acknowledgements 32 This work was supported by a PhD studentship from the Marine Collaboration Research 33 Forum (MarCRF), which is a collaboration between the University of Aberdeen and Marine 34 Scotland Science (MSS), Marine Laboratory, UK, and by Scottish Government project grant 35 AQ0080. Thanks go to Dr. Una McCarthy for invaluable advice regarding the in vivo 36 experiment, to Dr. -
Thogens in European Seabass and Gilthead Seabream Aquaculture
Diagnostic Manual for the main pa- thogens in European seabass and Gilthead seabream aquaculture ^ Edited^ by: Snjezana Zrncic´ méditerranéennes OPTIONS OPTIONS méditerranéennes SERIES B: Studies and Research 2020 - Number 75 CIHEAM Centre International de Hautes Etudes Agronomiques Méditerranéennes International Centre for Advanced Mediterranean Agronomic Studies Président / President: Mohammed SADIKI Secretariat General / General Secretariat: Plácido PLAZA 11, rue Newton 75116 Paris, France Tél.: +33 (0) 1 53 23 91 00 - Fax: +33 (0) 1 53 23 91 01 et 02 [email protected] www.ciheam.org Le Centre International de Hautes Etudes Agronomiques Founded in 1962 at the joint initiative of the OECD and the Méditerranéennes (CIHEAM) a été créé, à l'initiative conjointe de Council of Europe, the International Centre for Advanced l'OCDE et du Conseil de l'Europe, le 21 mai 1962. C'est une Mediterranean Agronomic Studies (CIHEAM) is an organisation intergouvernementale qui réunit aujourd'hui treize intergovernmental organisation comprising thirteen member Etats membres du bassin méditerranéen (Albanie, Algérie, Egypte, countries from the Mediterranean Basin (Albania, Algeria, Egypt, Espagne, France, Grèce, Italie, Liban, Malte, Maroc, Portugal, Spain, France, Greece, Italy, Lebanon, Malta, Morocco, Portugal, Tunisie et Turquie). Tunisia and Turkey). Le CIHEAM se structure autour d'un Secrétariat général situé à CIHEAM is made up of a General Secretariat based in Paris and Paris et de quatre Instituts Agronomiques Méditerranéens (IAM), four Mediterranean -
In Common Carp: a Pilot Study
pathogens Article Natural Feed Additives Modulate Immunity and Mitigate Infection with Sphaerospora molnari (Myxozoa: Cnidaria) in Common Carp: A Pilot Study Vyara O. Ganeva 1, Tomáš Korytáˇr 1,2, Hana Pecková 1, Charles McGurk 3, Julia Mullins 3, Carlos Yanes-Roca 2, David Gela 2, Pavel Lepiˇc 2, Tomáš Policar 2 and Astrid S. Holzer 1,* 1 Biology Center of the Czech Academy of Sciences, Institute of Parasitology, 37005 Ceskˇ é Budˇejovice, Czech Republic; [email protected] (V.O.G.); [email protected] (T.K.); [email protected] (H.P.) 2 South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia, 37005 Ceskˇ é Budˇejovice,Czech Republic; [email protected] (C.Y.-R.); [email protected] (D.G.); [email protected] (P.L.); [email protected] (T.P.) 3 Skretting Aquaculture Research Centre, 4016 Stavanger, Norway; [email protected] (C.M.); [email protected] (J.M.) * Correspondence: [email protected]; Tel.: +420-38777-5452 Received: 26 October 2020; Accepted: 28 November 2020; Published: 2 December 2020 Abstract: Myxozoans are a diverse group of cnidarian parasites, including important pathogens in different aquaculture species, without effective legalized treatments for fish destined for human consumption. We tested the effect of natural feed additives on immune parameters of common carp and in the course of a controlled laboratory infection with the myxozoan Sphaerospora molnari. Carp were fed a base diet enriched with 0.5% curcumin or 0.12% of a multi-strain yeast fraction, before intraperitoneal injection with blood stages of S. -
(Salmo Salar) with Amoebic Gill Disease (AGD) Chlo
The diversity and pathogenicity of amoebae on the gills of Atlantic salmon (Salmo salar) with amoebic gill disease (AGD) Chloe Jessica English BMarSt (Hons I) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2019 i Abstract Amoebic gill disease (AGD) is an ectoparasitic condition affecting many teleost fish globally, and it is one of the main health issues impacting farmed Atlantic salmon, Salmo salar in Tasmania’s expanding aquaculture industry. To date, Neoparamoeba perurans is considered the only aetiological agent of AGD, based on laboratory trials that confirmed its pathogenicity, and its frequent presence on the gills of farmed Atlantic salmon with branchitis. However, the development of gill disease in salmonid aquaculture is complex and multifactorial and is not always closely associated with the presence and abundance of N. perurans. Moreover, multiple other amoeba species colonise the gills and their role in AGD is unknown. In this study we profiled the Amoebozoa community on the gills of AGD-affected and healthy farmed Atlantic salmon and performed in vivo challenge trials to investigate the possible role these accompanying amoebae play alongside N. perurans in AGD onset and severity. Significantly, it was shown that despite N. perurans being the primary aetiological agent, it is possible AGD has a multi-amoeba aetiology. Specifically, the diversity of amoebae colonising the gills of AGD-affected farmed Atlantic salmon was documented by culturing the gill community in vitro, then identifying amoebae using a combination of morphological and sequence-based taxonomic methods. In addition to N. perurans, 11 other Amoebozoa were isolated from the gills, and were classified within the genera Neoparamoeba, Paramoeba, Vexillifera, Pseudoparamoeba, Vannella and Nolandella.