Fibroblast-Cardiomyocyte Cross-Talk in Heart Muscle Formation and Function

Total Page:16

File Type:pdf, Size:1020Kb

Fibroblast-Cardiomyocyte Cross-Talk in Heart Muscle Formation and Function Fibroblast-Cardiomyocyte Cross-Talk in Heart Muscle Formation and Function Doctoral Thesis In partial fulfillment of the requirements for the degree “Doctor rerum naturalium (Dr. rer. nat.)“ in the Molecular Medicine Study Program at the Georg-August University Göttingen submitted by Susanne Franziska Schlick born in Filderstadt, Germany Göttingen, November 2018 Members of the thesis committee Prof. Wolfram Hubertus Institute of Pharmacology and Toxicology Zimmermann (supervisor) University Medical Center Göttingen 1. Referee Robert-Koch-Str. 40 37075 Göttingen [email protected] Prof. Ralf Dressel Department of Cellular and Molecular Immunology 2. Referee Humboldtallee 34 37073 Göttingen, Germany [email protected] Prof. Stefan Luther Biomedical Physics MPI for Dynamics and Self-Organization Am Faßberg 17 37077 Göttingen, Germany Institute of Pharmacology and Toxicology University Medical Center Göttingen/Heart research building (DZHK) Robert-Koch-Str. 40 37075 Göttingen [email protected] II Members of the extended thesis committee Prof. Rüdiger Behr German Primate Center (Deutsches Primatenzentrum -DPZ) Kellnerweg 4 37077 Göttingen [email protected] Prof. Thomas Meyer Molecular Psychocardiology (Molekulare Psychokardiologie) Waldweg 33 37075 Göttingen [email protected] Dr. rer. nat. Antje Ebert Cardiovascular Cell Biology and Systems Medicine University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen [email protected] Date of submission of the Doctoral thesis: 06.11.2018 Date of disputation: 19.12.2018 III Affidavit Here I declare that my doctoral thesis entitled “Fibroblast-Cardiomyocyte Cross-Talk in Heart Muscle Formation and Function” has been written independently with no other sources and aids than quoted. Susanne F. Schlick Göttingen, November, 2018. IV List of publications Title Type of publication Date and location Agonistic and antagonistic roles of fibroblasts and Research article Prog Biophys Mol cardiomyocytes on viscoelastic stiffening of Biol. 2018 Dec 12. engineered human myocardium pii: S0079- 6107(18)30159-7 Susanne F. Schlick*, Florian Spreckelsen*, Malte Tiburcy, Lavanya M. Iyer, Laura Zelarayan, Stefan Luther, Ulrich Parlitz, Wolfram H. Zimmermann, and Florian Rehfeldt *These authors contributed equally to this work X-ray diffraction imaging of cardiac cells and tissue Research article Prog Biophys Mol Biol. 2018 Jun 15.: Jan-David Nicolas, Marten Bernhardt, Susanne F. S0079-6107(18) Schlick, Malte Tiburcy, Wolfram-H. Zimmermann, 30064-6 Amara Khan, Andrea Markus, Frauke Alves, Karl Toischer, Tim Salditt Defined Engineered Human Myocardium With Research article Circulation. 2017 Advanced Maturation for Applications in Heart May Failure Modeling and Repair 9;135(19):1832- Tiburcy M, Hudson J, Balfanz P,Schlick S, Meyer T, 1847. Chang Liao ML, Levent E, Raad F, Zeidler S, Wingender E, Riegler J, Wang M, Gold JD, Kehat I, Wettwer E, Ravens U, Dierickx P, van Laake LW, Goumans MJ, Khadjeh S, Toischer K, Hasenfuss G, Couture LA, Unger A, Linke WA, Araki T, Neel B, Keller G, Gepstein L, Wu JC1, Zimmermann WH. Calcitriol enhances EHM contractile function Poster DGPT 2/2018, Göttingen Effects of Vitamin D- binding protein on engineered heart Talk Meeting foundation muscle development and function Leducq 8/2017 Fibroblast origin determines engineered heart muscle Poster and talk Young DZHK development and function (Poster prize) Retreat 9/2016, Bad Aibling Effects of Vitamin D binding protein on engineered heart Talk Meeting foundation muscle development and function Leducq 6/2016 Tuning hyaluronic acid deposition to enhance engineered Invited talk Dutch German heart muscle function Meeting 3/2016, Leiden, Holland Hyaluronic acid deposition determines engineered heart Invited talk DGPT 3/2016, muscle characteristics and can be pharmacologically Berlin targeted to enhance function Soft matter guided self-assembly of oscillating heart cells Poster and talk SFB937 Retreat into functional macro-myocardium 2015/2016 V Table of contents Table of contents Table of contents ............................................................................................................... I Acknowledgements ........................................................................................................ VI Abstract ............................................................................................................................ IX List of figures .................................................................................................................... X List of tables ................................................................................................................... XII Abbreviations ............................................................................................................... XIII 1 Introduction ........................................................................................................... 1 1.1 Cardiovascular diseases .......................................................................................... 1 1.1.1 The failing heart .............................................................................................. 2 1.1.2 Regenerative approaches in cardiovascular medicine .................................... 2 1.2 The cellular components of the myocardium .......................................................... 4 1.2.1 Cardiomyocytes ............................................................................................... 4 1.2.2 Non-myocytes .................................................................................................. 5 1.2.3 Cardiac fibroblasts .......................................................................................... 6 1.3 Crosstalk between cardiac fibroblasts and cardiomyocytes ................................... 8 1.3.1 Direct cell-cell contacts .................................................................................... 9 1.3.2 Paracrine mediators .......................................................................................10 1.3.3 Communication via the extracellular matrix ................................................11 1.4 Viscoelasticity in cardiomyocyte development and function ................................ 12 1.4.1 Viscoelasticity during physiological development of cardiomyocytes ...........12 1.4.2 (Myo)fibroblasts affect myocardial viscoelasticity .........................................13 1.5 Towards better in vitro models of the myocardium .............................................. 15 1.5.1 Limitations of 2D in vitro models for the study of fibroblasts ......................16 1.5.2 Engineered Heart Muscle (EHM) ..................................................................17 I Table of contents 1.6 Hypotheses to be tested......................................................................................... 20 2 Materials and methods ...................................................................................... 21 2.1 Cells ....................................................................................................................... 21 2.1.1 Ventricular cardiac fibroblasts from Lonza ...................................................21 2.1.2 Dilated cardiomyopathy modeling study .......................................................22 2.1.3 Standard cell culture conditions ....................................................................22 2.1.4 Human embryonic kidney SV40 transformed cells .......................................22 2.1.5 Ethics statement ............................................................................................22 2.1.6 Cell culture, maintenance and stock preparation .........................................22 2.1.7 Derivation of human gingiva fibroblasts from biopsies .................................23 2.1.8 Standard cell culture techniques ...................................................................24 2.1.9 Standard culture and passaging of TSA ........................................................25 2.1.10 Human feeder cells .........................................................................................25 2.1.11 Culture of human embryonic stem cells ........................................................25 2.1.12 Derivation of stroma cells from embryonic stem cells ...................................26 2.2 Engineered heart muscle (EHM) .......................................................................... 27 2.2.1 Cell dissociation and casting ..........................................................................27 2.2.2 EHM culture ...................................................................................................28 2.2.3 Generation of engineered connective tissues .................................................28 2.2.4 Collagen I hydrogels for rheology measurements..........................................28 2.2.5 Replacement of B27 ........................................................................................29 2.2.6 EHM dissociation ...........................................................................................30 2.2.7 Irradiation of EHM .........................................................................................30 2.3 Genetic modification of cells ................................................................................. 30 2.3.1 Transfection of TSA cells ................................................................................30
Recommended publications
  • VIEW Open Access Muscle Spindle Function in Healthy and Diseased Muscle Stephan Kröger* and Bridgette Watkins
    Kröger and Watkins Skeletal Muscle (2021) 11:3 https://doi.org/10.1186/s13395-020-00258-x REVIEW Open Access Muscle spindle function in healthy and diseased muscle Stephan Kröger* and Bridgette Watkins Abstract Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies. Keywords: Mechanotransduction, Sensory physiology, Proprioception, Neuromuscular diseases, Intrafusal fibers, Muscular dystrophy In its original sense, the term proprioception refers to development of head control and walking, an early im- sensory information arising in our own musculoskeletal pairment of fine motor skills, sensory ataxia with un- system itself [1–4]. Proprioceptive information informs steady gait, increased stride-to-stride variability in force us about the contractile state and movement of muscles, and step length, an inability to maintain balance with about muscle force, heaviness, stiffness, viscosity and ef- eyes closed (Romberg’s sign), a severely reduced ability fort and, thus, is required for any coordinated move- to identify the direction of joint movements, and an ab- ment, normal gait and for the maintenance of a stable sence of tendon reflexes [6–12].
    [Show full text]
  • Ultrastructural Cardiac Muscle and Cardiac Microvasculature Changes in Experimental Murine Infections Acta Scientiae Veterinariae, Vol
    Acta Scientiae Veterinariae ISSN: 1678-0345 [email protected] Universidade Federal do Rio Grande do Sul Brasil Tejero, Felix; Arias-Mota, Lourdes Lorena; Roschman-González, Antonio; Aso, Pedro María; Finol, Héctor José Trypanosoma evansi: Ultrastructural Cardiac Muscle and Cardiac Microvasculature Changes in Experimental Murine Infections Acta Scientiae Veterinariae, vol. 38, núm. 3, 2010, pp. 279-285 Universidade Federal do Rio Grande do Sul Porto Alegre, Brasil Available in: http://www.redalyc.org/articulo.oa?id=289021902008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta Scientiae Veterinariae. 38(3): 279-285, 2010. ORIGINAL ARTICLE ISSN 1679-9216 (Online) Pub. 910 Trypanosoma evansi: Ultrastructural Cardiac Muscle and Cardiac Microvasculature Changes in Experimental Murine Infections* Felix Tejero1, Lourdes Lorena Arias-Mota1, Antonio Roschman-González2, Pedro María Aso3 & Héctor José Finol2 ABSTRACT Background: Trypanosoma evansi is the etiologic agent of the equine trypanosomosis, a disease related to the detriment of the extensive bovine farming in the Venezuelan grasslands. Even though macroscopic pathologies such as anemia, pale mucosa, icteric tissues, generalized edema, splenomegaly, liver and renal hypertrophy, abortion, anoestrus, emaciation, lymphadenopathies, striated muscle atrophy as well as epicardiac and endocardiac hemorrhages have been described for infections with the agent, no reports of any heart ultrastructural change in experimental or natural infections induced by Venezuelan T. evansi isolates are available. So, a transmission electron microscopic approach to the problem was needed. This work describes cell features of the cardiac myocyte and the cardiac microvasculature ultrastructure in mice experimentally infected with an equine local isolate of T.
    [Show full text]
  • (7E) Powerpoint Lecture Outline Chapter 8: Control of Movement
    Carlson (7e) PowerPoint Lecture Outline Chapter 8: Control of Movement This multimedia product and its contents are protected under copyright law. The following are prohibited by law: •any public performance or display, including transmission of any image over a network; •preparation of any derivative work, including extraction, in whole or in part, of any images; •any rental, lease, or lending of the program. Copyright 2001 by Allyn & Bacon Skeletal Muscle n Movements of our body are accomplished by contraction of the skeletal muscles l Flexion: contraction of a flexor muscle draws in a limb l Extension: contraction of extensor muscle n Skeletal muscle fibers have a striated appearance n Skeletal muscle is composed of two fiber types: l Extrafusal: innervated by alpha-motoneurons from the spinal cord: exert force l Intrafusal: sensory fibers that detect stretch of the muscle u Afferent fibers: report length of intrafusal: when stretched, the fibers stimulate the alpha-neuron that innervates the muscle fiber: maintains muscle tone u Efferent fibers: contraction adjusts sensitivity of afferent fibers. 8.2 Copyright 2001 by Allyn & Bacon Skeletal Muscle Anatomy n Each muscle fiber consists of a bundle of myofibrils l Each myofibril is made up of overlapping strands of actin and myosin l During a muscle twitch, the myosin filaments move relative to the actin filaments, thereby shortening the muscle fiber 8.3 Copyright 2001 by Allyn & Bacon Neuromuscular Junction n The neuromuscular junction is the synapse formed between an alpha motor neuron
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Skeletal and Cardiac Muscle Pericytes: Functions and Therapeutic Potential
    UCLA UCLA Previously Published Works Title Skeletal and cardiac muscle pericytes: Functions and therapeutic potential. Permalink https://escholarship.org/uc/item/99p1707r Authors Murray, Iain R Baily, James E Chen, William CW et al. Publication Date 2017-03-01 DOI 10.1016/j.pharmthera.2016.09.005 Peer reviewed eScholarship.org Powered by the California Digital Library University of California JPT-06957; No of Pages 10 Pharmacology & Therapeutics xxx (2016) xxx–xxx Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Associate editor: P. Madeddu Skeletal and cardiac muscle pericytes: Functions and therapeutic potential Iain R. Murray a,b, James E. Baily a, William C.W. Chen c,AyeletDard, Zaniah N. Gonzalez a, Andrew R. Jensen d, Frank A. Petrigliano d, Arjun Deb e,⁎, Neil C. Henderson f,⁎⁎ a BHF Center for Vascular Regeneration and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK b Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, UK c Reseach Laboratory of Electronics and Department of Biological Engineering, Massachusetts Institute of Technology, Boston, MA, USA d Orthopedic Hospital Research Center, University of California, Los Angeles, CA, USA e Division of Cardiology, Department of Medicine & Molecular Cell and Developmental Biology, and Eli and Edythe Broad Institute of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, CA, USA f MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK article info abstract Keywords: Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and car- Perivascular stem cell diac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, in- Mesenchymal stem cell cluding contributing to microvascular function by maintaining vessel stability and regulating capillary flow.
    [Show full text]
  • Cardiac Muscle: Structure and Properties
    CARDIOVASCULAR SYSTEM: CARDIAC MUSCLE: STRUCTURE AND PROPERTIES For: Semester II CC2TH/ GEN 2TH Prepared and Compiled By: OLIVIA CHOWDHURY DEPARTMENT OF PHYSIOLOGY SURENDRANATH COLLEGE April 29, 2020 OLIVIA CHOWDHURY •Anatomy of The Heart April 29, 2020 OLIVIA CHOWDHURY •The Layers Of The Heart Three layers: • Epicardium . Pericardium – a double serous membrane . Visceral pericardium (Next to heart) . Parietal pericardium (Outside layer) . Serous fluid fills the space between the layers of pericardium . Connective tissue layer • Myocardium . Middle layer . Mostly cardiac muscle • Endocardium . Inner layer . Endothelium April 29, 2020 OLIVIA CHOWDHURY • The Heart Valves Allows blood to flow in only one direction Four valves: Atrioventricular valves– between atria and ventricles Bicuspid/ Mitral valve between LA and LV Tricuspid valve between RA and RV Semilunar valves between ventricles and arteries Pulmonary semilunar valve Aortic semilunar valve April 29, 2020 OLIVIA CHOWDHURY •Direction Of Blood Flow In The Heart April 29, 2020 OLIVIA CHOWDHURY Right side of the heart: • receives venous blood from systemic circulation via superior and inferior vena cava into right atrium • pumps blood to pulmonary circulation from right ventricle Left side of the Heart: • receives oxygenated blood from pulmonary veins • pumps blood into systemic circulation April 29, 2020 OLIVIA CHOWDHURY •The Cardiac Muscle Myocardium has three types of muscle fibers: Muscle fibers which form contractile unit of heart Muscle fibers which form the pacemaker Muscle fibers which form conductive system April 29, 2020 OLIVIA CHOWDHURY •The Cardiac Muscle Striated and resemble the skeletal muscle fibre Sarcomere is the functional unit Sarcomere of the cardiac muscle has all the contractile proteins, namely actin, myosin, troponin tropomyosin.
    [Show full text]
  • MUSCLE TISSUE Larry Johnson Texas A&M University
    MUSCLE TISSUE Larry Johnson Texas A&M University Objectives • Histologically identify and functionally characterize each of the 3 types of muscle tissues. • Describe the organization of the sarcomere as seen in light and electron microscopy. • Identify the endomysium, perimysium, and epimysium CT sleeves in muscle. • Relate the functional differences of the three muscle cell types. From: Douglas P. Dohrman and TAMHSC Faculty 2012 Structure and Function of Human Organ Systems, Histology Laboratory Manual MUSCLE FUNCTION: • GENERATION OF CONTRACTILE FORCE DISTINGUISHING FEATURES: • HIGH CONCENTRATION OF CONTRACTILE PROTEINS ACTIN AND MYOSIN ARRANGED EITHER DIFFUSELY IN THE CYTOPLASM (SMOOTH MUSCLE) OR IN REGULAR REPEATING UNITS CALLED SARCOMERES (STRIATED MUSCLES, e.g., CARDIAC AND SKELETAL MUSCLES) MUSCLE • DISTRIBUTION: SKELETAL – STRIATED MUSCLES MOSTLY ASSOCIATED WITH THE SKELETON MUSCLE • DISTRIBUTION: SKELETAL – STRIATED MUSCLES MOSTLY ASSOCIATED WITH THE SKELETON CARDIAC – STRIATED MUSCLES ASSOCIATEWD WITH THE HEART MUSCLE • DISTRIBUTION: SKELETAL – STRIATED MUSCLES MOSTLY ASSOCIATED WITH THE SKELETON CARDIAC – STRIATED MUSCLES ASSOCIATEWD WITH THE HEART SMOOTH – FUSIFORM CELLS ASSOCIATED WITH THE VISCERA, RESPIRATORY TRACT, BLOOD VESSELS, UTERUS, ETC. MUSCLE • HISTOLOGICAL INDENTIFICATION: SKELETAL MUSCLE – VERY LONG CYLINDRICAL STRIATED MUSCLE CELLS WITH MULTIPLE PERIPHERAL NUCLEI MUSCLE • HISTOLOGICAL INDENTIFICATION: SKELETAL MUSCLE – VERY LONG CYLINDRICAL STRIATED MUSCLE CELLS WITH MULTIPLE PERIPHERAL NUCLEI CARDIAC MUSCLE –
    [Show full text]
  • Stretch-Induced Contraction of Intrafusal Muscle in Cat Muscle Spindle1
    0270~6474/81/0110-1069$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 1, No. 10, pp. 1069-1074 Printed in U.S.A. October 1981 STRETCH-INDUCED CONTRACTION OF INTRAFUSAL MUSCLE IN CAT MUSCLE SPINDLE1 R. E. POPPELE*x ’ AND D. C. QUICK+ *Laboratory of Neurophysiology and *Departments of Neurology and Anatomy, University of Minnesota, Minneapolis, Minnesota 55455 Abstract Measurements of tension, stiffness, and sarcomere length of intrafusal muscle during ramp stretch of isolated muscle spindles have revealed a stretch-induced contraction of the bag1 fiber. This behavior can account for the very high sensitivity of primary endings to stretch as well as the enhanced sensitivity evoked by dynamic fusimotor stimulation. An intriguing aspect of mammalian muscle spindle Materials and Methods behavior is the very high sensitivity of the primary ending Spindle afferent discharge was recorded from dorsal compared to that of the secondary ending in the same root filaments of anesthetized cats (pentobarbital so- receptor. There are at least two morphological differ- dium, Nembutal, Abbott Laboratories, 35 mg/kg). The ences between primary and secondary endings that might hindlimb was denervated except for the medial gas- account for this difference. The primary ending is formed trocnemius, and ventral roots’L5 through Sl were cut. on the intrafusal bundle in a region called the equator Activity of single muscle spindle receptors was identified where there are very few myofilaments. The secondary in the usual manner (e.g., Poppele, 1981). Mechanical endings are formed in the juxtaequatorial region where measurements were made on isolated spindles obtained there are abundant myofilaments.
    [Show full text]
  • Research Article Histological, Histochemical
    Egypt. J. Exp. Biol. (Zool.), 8(2): 273 – 285 (2012) © The Egyptian Society of Experimental Biology RESEARCH ARTICLE Nabila I. El-Desouki* Amal I. El-Refaiy** Dalia F. A. Abou-Zaid* Amira A. Abdel - Kader* HISTOLOGICAL, HISTOCHEMICAL, AND IMMUNOHISTOCHEMICAL STUDIES OF THE CARDIAC MUSCLE OF THE ALBINO RAT UNDER IMMOBILIZATION STRESS AND THE CURATIVE ROLE OF DIAZEPAM ABSTRACT: The present study is planned to study the effect CORRESPONDENCE: of immobilization stress on the cardiac muscle Nabila Ibrahim El-Desouki of adult male albino rats and the curative role of Department of Zoology, Faculty of Science, diazepam. The study was carried out on 80 Tanta University, Egypt. albino rats; the animals were divided into eight groups: group 1 served as control rats; group 2 E-mail: [email protected] unstressed rats injected intraperitoneally daily with 0.1 mg/kg b.w. diazepam for 30 days; groups 3, 4, and 5 served as immobilized Amal I. El-Refaiy** stressed-rats for 30 days (by restricting Dalia F. A. Abou-Zaid* movement for 2 hr daily at different durations Amira A. Abdel - Kader* 5, 15, and 30 days, respectively); groups 6, 7, and 8 stressed rats treated daily with 0.1 mg/kg *Dept. of Zoology, Faculty of Science, Tanta b.w. diazepam for 30 days. The histological University study of the cardiac myofibres of the stressed- **Dept. of Biological & Environmental rats revealed disorganization of the muscle Science, Faculty of Home Economic, Al-Azhar fibres, vacuolation of the sarcoplasm, pyknosis Univ. of the nuclei, congestion and dilatation of blood vessels in endomysium. The thickness of collagen fibres gradually increased and became ARTICLE CODE: 35.01.12 compact dense in the stressed rats till 30 days, and they were more obvious around the blood vessels.
    [Show full text]
  • The Somatic Nervous System Mimi Jakoi, Phd Jennifer Carbrey, Phd
    Introductory Human Physiology ©copyright Jennifer Carbrey & Emma Jakoi The Somatic Nervous System Mimi Jakoi, PhD Jennifer Carbrey, PhD The underlined headings correspond to the two Somatic Nervous system videos. 1. Introduction and structure The efferent portion of the peripheral nervous system consists of the somatic nervous system and the autonomic nervous system. The autonomic nervous system controls the function of glands, smooth muscle, cardiac muscle, and the neurons of the GI tract. It is composed of two neurons in series that can either excite or inhibit the target organ. In contrast, the somatic nervous system contains single neurons that excite skeletal muscles. The movements controlled by the somatic nervous system can be voluntary or involuntary (reflexes). Motor Unit The axons of motor neurons are myelinated and have large diameters for fast conduction of action potentials. As the axon approaches a skeletal muscle fiber (muscle cell) it usually branches to form synapses with anywhere from three to one thousand muscle fibers. However, each muscle fiber is usually innervated by only a single neuron. A motor unit consists of a neuron and all of the muscle fibers it innervates. A single neuron innervates fibers from only one muscle and the innervated muscle fibers are usually spread throughout the muscle. The portion of the skeletal muscle fiber plasma membrane that synapses with the motor neuron axon is called the motor end plate. Once an action potential arrives at the axon terminal, the depolarization of the membrane opens voltage-gated calcium channels (Fig. 1). An increase in intracellular calcium at the terminal causes release of acetylcholine vesicles into the neuromuscular junction.
    [Show full text]
  • Histology of Muscle Tissue
    HISTOLOGY OF MUSCLE TISSUE Dr. Sangeeta Kotrannavar Assistant Professor Dept. of Anatomy, USM-KLE IMP, Belagavi Objectives Distinguish the microscopic features of • Skeletal • Cardiac • Smooth muscles Muscle • Latin musculus =little mouse (mus) • Muscle cells are known as MYOCYTES. • Myocytes are elongated so referred as muscle fibers Fleshy • Definition • Muscle is a contractile tissue which brings about movements Tendons Muscle makes up 30-35% (in women) & 40-45% (in men) of body mass Type of muscles BASED ON BASED ON BASED ON LOCATION STRIATIONS CONTROL Skeletal / Somatic STRIATED / STRIPED VOLUNTARY Smooth / Visceral UN-STRIATED / IN-VOLUNTARY UNSTRIPED Cardiac STRIATED / STRIPED IN-VOLUNTARY SKELETAL MUSCLE Skeletal muscle organization Muscles are complex structures: arranged in fascicles Muscle bundles / fascicles • Epimysium surrounds entire muscle – Dense CT that merges with tendon – Epi = outer, Mys = muscle • Perimysium surrounds muscle fascicles – Peri = around – Within a muscle fascicle are many muscle fibers • Endomysium surrounds muscle fiber – Endo = within SKELETAL MUSCLE • Each bundles contains many muscle fiber Structure of a skeletal muscle fiber • Elongated, unbranched cylindrical fibers • Length- 1 mm – 5 cm, Width – 10 mm - 100μm • Fibers have striations of dark & light bands • Many flat nuclei beneath sarcolemma • Plasma membrane = sarcolemma • Smooth endoplsmic reticulum = sarcoplasmic reticulum (SR) • Cytoplasm = sarcoplasm • Mitochondria = sarcosomes • Each muscle fiber made of long cylindrical myofibrils Structure
    [Show full text]
  • Bsc-Zoology-Syllabus
    CMS COLLEGE KOTTAYAM (AUTONOMOUS) Affiliated to the Mahatma Gandhi University, Kottayam, Kerala CURRICULUM FOR UNDER GRADUATE PROGRAMME BACHELOR OF SCIENCE IN ZOOLOGY UNDER CHOICE BASED CREDIT SYSTEM 2018 (With effect from 2018) Approved by the Board of Studies on 26-03-2018 CONTENTS 1. Acknowledgement 2. Preface 3. Curriculum a. Graduate Programme Outcome b. Programme Specific Outcome 4. Programme Design 5. Programme Structure Semester wise 6. Programme structure category wise a. Core Courses b. Complementary Courses c. Open Courses d. Extra Credit Courses e. Add on Courses 7. Detailed Syllabus of the Courses Offered by the Department 2 BOARD OF STUDIES IN ZOOLOGY CMS College (Autonomous), Kottayam Dr. Johnson Baby (Chairman) Associate Professor and Head Department of Zoology Christian College, Chengannur Dr. A.P Thomas (Subject Expert) Director, ACESSD M G University, Kottayam Dr. C.A Jayaprakash (Industry Representative) Principal Scientist and Head Division of crop protection, CTCRI Thiruvananthapuram Dr. Reethamma O.V (Member) Associate professor Dept. of Zoology, Assumption College, Changanasserry Dr. Maya B Nair (Alumni Representative) Assistant professor Dept. of Zoology SD College, Alleppey Dr. Abraham Samuel. K (Member) Head, Division of survey TIES. Kottayam Dr. Sosamma Oommen (Member) HOD, Dept. of Zoology CMS College, Kottayam Dr. Jobin Mathew (Member) Assistant Professor Dept. of Zoology CMS College, Kottayam Dr. Nisha P Aravind (Member Secretary) Assistant Professor Dept. of Zoology CMS College, Kottayam Dr. Pushpa Geetha S (Member) Assistant Professor Dept. of Zoology CMS College, Kottayam 3 ACKNOWLEDGEMENT The Board of Studies in Zoology (Under Graduate), CMS College takes this opportunity to express our deep appreciation to all academicians and representatives from the industry who participated in the various meetings that were arranged during the year, held at CMS College.
    [Show full text]