MUSCLE TISSUE Larry Johnson Texas A&M University

Total Page:16

File Type:pdf, Size:1020Kb

MUSCLE TISSUE Larry Johnson Texas A&M University MUSCLE TISSUE Larry Johnson Texas A&M University Objectives • Histologically identify and functionally characterize each of the 3 types of muscle tissues. • Describe the organization of the sarcomere as seen in light and electron microscopy. • Identify the endomysium, perimysium, and epimysium CT sleeves in muscle. • Relate the functional differences of the three muscle cell types. From: Douglas P. Dohrman and TAMHSC Faculty 2012 Structure and Function of Human Organ Systems, Histology Laboratory Manual MUSCLE FUNCTION: • GENERATION OF CONTRACTILE FORCE DISTINGUISHING FEATURES: • HIGH CONCENTRATION OF CONTRACTILE PROTEINS ACTIN AND MYOSIN ARRANGED EITHER DIFFUSELY IN THE CYTOPLASM (SMOOTH MUSCLE) OR IN REGULAR REPEATING UNITS CALLED SARCOMERES (STRIATED MUSCLES, e.g., CARDIAC AND SKELETAL MUSCLES) MUSCLE • DISTRIBUTION: SKELETAL – STRIATED MUSCLES MOSTLY ASSOCIATED WITH THE SKELETON MUSCLE • DISTRIBUTION: SKELETAL – STRIATED MUSCLES MOSTLY ASSOCIATED WITH THE SKELETON CARDIAC – STRIATED MUSCLES ASSOCIATEWD WITH THE HEART MUSCLE • DISTRIBUTION: SKELETAL – STRIATED MUSCLES MOSTLY ASSOCIATED WITH THE SKELETON CARDIAC – STRIATED MUSCLES ASSOCIATEWD WITH THE HEART SMOOTH – FUSIFORM CELLS ASSOCIATED WITH THE VISCERA, RESPIRATORY TRACT, BLOOD VESSELS, UTERUS, ETC. MUSCLE • HISTOLOGICAL INDENTIFICATION: SKELETAL MUSCLE – VERY LONG CYLINDRICAL STRIATED MUSCLE CELLS WITH MULTIPLE PERIPHERAL NUCLEI MUSCLE • HISTOLOGICAL INDENTIFICATION: SKELETAL MUSCLE – VERY LONG CYLINDRICAL STRIATED MUSCLE CELLS WITH MULTIPLE PERIPHERAL NUCLEI CARDIAC MUSCLE – SHORT BRANCHING STRIATED MUSCLE CELLS WITH CENTRALLY LOCATED NUCLEI MUSCLE • HISTOLOGICAL INDENTIFICATION: SKELETAL MUSCLE – VERY LONG CYLINDRICAL STRIATED MUSCLE CELLS WITH MULTIPLE PERIPHERAL NUCLEI CARDIAC MUSCLE – SHORT BRANCHING STRIATED MUSCLE CELLS WITH CENTRALLY LOCATED NUCLEI SMOOTH MUSCLE – CLOSELY PACKED SPINDLE-SHAPED CELLS WITH A SINGLE CENTRALLY PLACED NUCLEUS AND CYTOPLASM THAT APPEARS HOMOGENEOUS BY LIGHT MICROSCOPY MUSCLE • HISTOLOGICAL INDENTIFICATION: SKELETAL MUSCLE – VERY LONG CYLINDRICAL STRIATED MUSCLE CELLS WITH MULTIPLE Myoepithelial cells PERIPHERAL NUCLEI CARDIAC MUSCLE – SHORT BRANCHING STRIATED MUSCLE CELLS WITH CENTRALLY LOCATED NUCLEI SMOOTH MUSCLE – CLOSELY PACKED SPINDLE-SHAPED CELLS WITH A SINGLE CENTRALLY PLACED NUCLEUS AND CYTOPLASM THAT APPEARS HOMOGENEOUS BY LIGHT MICROSCOPY Muscle Tissue • Muscle cells specialized for contraction with apparatus of actin and myosin proteins. • 3 types: Skeletal Muscle Smooth Muscle Cardiac Muscle Longitudinal sections Longitudinal sections Longitudinal sections - Peripheral nuclei - Central nuclei (often - Central nuclei (often - Striations fusiform) elongated) - No branching - Meshwork - Striations appearance of cells - Branching cells - No striations - Intercalated discs Cross section Cross section Cross section - Peripheral nuclei - Central nuclei - Central nuclei - Massive cytoplasm - Low cytoplasm to - High cytoplasm to nucleus ratio nucleus ratio Slide 11: Skeletal muscle (longitudinal and cross sections) Muscle fibers with peripheral Capillary Cross sections of nuclei muscle fibers with peripheral nuclei Slide 052: Skeletal muscle (longitudinal and cross sections) Muscle fibers with peripheral Cross striations nuclei Capillary (A and I bands) Slide 052: Skeletal muscle (longitudinal and cross sections) Muscle fibers with peripheral Cross striations nuclei Capillary (A and I bands) The increase in muscle mass during exercise results from stimulating formation of new myofibrils and enlargement in the diameter of individual muscle fibers (hypertrophy = increase in size). CONNECTIVE TISSUE LAYERS OF SKELETAL MUSCLE • EPIMYSIUM - COARSE CT EPIMYSIUM CONNECTIVE TISSUE LAYERS OF SKELETAL MUSCLE • EPIMYSIUM - COARSE CT • PERIMYSIUM - LESS COARSE CT PERIMYSIUM EPIMYSIUM CONNECTIVE TISSUE LAYERS OF SKELETAL MUSCLE • EPIMYSIUM - COARSE CT • PERIMYSIUM - LESS COARSE CT • ENDOMYSIUM - DELICATE CT PERIMYSIUM EPIMYSIUM ENDOMYSIUM CONNECTIVE TISSUE LAYERS OF SKELETAL MUSCLE EPIMYSIUM, PERIMYSIUM, and ENDOMYSIUM Slide 11: Skeletal muscle (longitudinal and cross sections) Epimysium Perimysium Endomysium Slide 052 Skeletal muscle (longitudinal and cross sections) Perimysium Endomysium with its capillaries CONNECTIVE TISSUE connect LAYERS OF SKELETAL MUSCLE • ENDOMYSIUM CONNECTIVE TISSUE LAYERS OF SKELETAL MUSCLE PERIMYSIUM CONNECTIVE TISSUE LAYERS OF SKELETAL MUSCLE PERIMYSIUM 052 • ENDOMYSIUM Striations in skeletal muscle 052 Skeletal muscles have striations, peripheral nuclei, same thickness throughout their length and do not branch. Specialized for powerful and rapid contraction. Voluntary. Found attached to the skeleton. Slide 12: Skeletal muscle (phosphotungstic acid/hematoxylin) Sarcomere: Z line to Z line Z line is In the I band I band A band STRIATED MUSCLE CARDIAC SKELETAL A “A” BAND = dark band ANISOTROPIC = DOES ALTER POLARIZED LIGHT (BIREFRINGENT) STRIATED MUSCLE CARDIAC SKELETAL A I “A” BAND = dark band ANISOTROPIC = DOES ALTER POLARIZED LIGHT (BIREFRINGENT) “I” BAND = light band ISOTROPIC = DOES NOT ALTER POLARIZED LIGHT STRIATED MUSCLE (SKELETAL) A I SARCOMERES ARE ORGANIZED FOR RAPID AND HIGHLY CONTROLLED CONTRACTION SKELETAL MUSCLE cell structure SKELETAL MUSCLE SKELETAL MUSCLE INTERMEDIATE FILAMENTS – FUNCTION in muscle cells • MYOFIBRIL ORGANIZATION – MUSCLE cells INTERMEDIATE FILAMENTS – FUNCTION in muscle cells • MYOFIBRIL ORGANIZATION – MUSCLE cells Cell = CONTRACTION OF THE SARCOMERE • THIN FILAMENT ACTIN (F-ACTIN) TROPOMYOSIN TROPONIN T - ATTACHES TO TROPOMYOSIN C - BINDS CALCIUM IONS I - INHIBITS ACTIN-MYOSIN INTERACTION The stoppage of the neural impulse and depletion of free calcium ends the actin- myosin crossbridge cycle in skeletal muscle. ATP is required in this process. CALCIUM REGULATION • TRANVERSE (T) TUBULE (INVAGINATION OF SARCOLEMMA) • TRANSMIT DEPOLARIZATION OF MEMBRANE DEEP INTO THE CELL • SARCOPLASMIC RETICULUM (SER OF CELL) RELEASE CA++ FOR CONTRACTION - THEN RECOVER CA++ • AFTER CONTRACTION • TRIAD = (T TUBULE AND TWO ENDS OF SER) EM 29 : Skeletal muscle 052 EM 46 and 47 : Skeletal muscle STIMULATION OF MUSCLE CELLS Slide 13: Skeletal Muscle – muscle spindles (trichrome) Intrafusal muscle fibers Muscle spindle: (stretch receptors) Nerve fibers INNERVATION OF MUSCLE MUSCLE SPINDLE MUSCLEIntracapsular SPINDLE fibers SMOOTH MUSCLE SMOOTH MUSCLE Has a PAS + basement membrane Slide 35: Urinary bladder Muscularis externa (smooth muscle) Smooth muscle fibers with central nuclei Smooth muscles are fusiform with tapered ends, single, central nuclei, and no striations. Involuntary. Found in sphincters and sheets of internal visceral organs and glands. Slide 63: Appendix Submucosa Muscularis externa Smooth muscle layer arrangement in tubular organs The layering of smooth muscle in the gut is responsible for contractions which mix and propel luminal contents forward. Actin EM 49: Smooth muscle Myosin SMOOTH MUSCLE MUSCULAR ARTERY Skeletal Smooth Muscle muscle CARDIAC MUSCLE IS STRIATED MUSCLE •INTERCALATED DISC • FASCIA ADHERENS • MACULAE ADHERENS • GAP JUNCTIONS - LATERAL PORTION CARDIAC MUSCLE INTERCALATED DISC The intercalated discs enables coordinated function via gap junctions to facilitate energy and calcium conductance between neighboring myocytes. pulmonary artery in the INTERCALATED lungs of a rat DISC pulmonary artery in the INTERCALATED lungs of a rat DISC nucleus mitochondria Slide 14: Heart & EM 48: Heart Intercalated discs CARDIAC MUSCLE – Diad located at Z line Diad = (T tubule + one end of SER) REGENERATION OF MUSCLE Which type of muscle cells can be replaced in adults? •SMOOTH – LOTS •SKELETAL – SOME •CARDIAC – NONE Clinical Correlation Ischemic heart disease is one of the most significant health problems in the US. Coronary artery thrombosis usually precedes and precipitates a myocardial infarct, resulting in the death of cardiac myocytes. Eventually scar tissue is formed and there is some loss of contractility. Image taken from adultstemcellawareness.wordpress.com Lacking muscle mesenchymal satellite cells, adult mammalian cardiac muscle has little potential to regenerate after injury. Damage is replaced by proliferating fibroblasts and connective tissue growth, forming myocardial scars. Summary of MUSCLE shapes and excitations of types Many illustrations in these VIBS Histology YouTube videos were modified from the following books and sources: Many thanks to original sources! • Bruce Alberts, et al. 1983. Molecular Biology of the Cell. Garland Publishing, Inc., New York, NY. • Bruce Alberts, et al. 1994. Molecular Biology of the Cell. Garland Publishing, Inc., New York, NY. • William J. Banks, 1981. Applied Veterinary Histology. Williams and Wilkins, Los Angeles, CA. • Hans Elias, et al. 1978. Histology and Human Microanatomy. John Wiley and Sons, New York, NY. • Don W. Fawcett. 1986. Bloom and Fawcett. A textbook of histology. W. B. Saunders Company, Philadelphia, PA. • Don W. Fawcett. 1994. Bloom and Fawcett. A textbook of histology. Chapman and Hall, New York, NY. • Arthur W. Ham and David H. Cormack. 1979. Histology. J. S. Lippincott Company, Philadelphia, PA. • Luis C. Junqueira, et al. 1983. Basic Histology. Lange Medical Publications, Los Altos, CA. • L. Carlos Junqueira, et al. 1995. Basic Histology. Appleton and Lange, Norwalk, CT. • L.L. Langley, et al. 1974. Dynamic Anatomy and Physiology. McGraw-Hill Book Company, New York, NY. • W.W. Tuttle and Byron A. Schottelius. 1969. Textbook of Physiology. The C. V. Mosby Company, St. Louis, MO. • Leon Weiss. 1977. Histology Cell and Tissue Biology. Elsevier Biomedical, New York, NY. • Leon Weiss and Roy O. Greep. 1977. Histology. McGraw-Hill Book Company, New York, NY. • Nature (http://www.nature.com), Vol. 414:88,2001. • A.L. Mescher 2013 Junqueira’s Basis Histology text and atlas, 13th ed. McGraw • Douglas P. Dohrman and TAMHSC Faculty 2012 Structure and Function of Human Organ Systems, Histology Laboratory Manual - Slide selections were largely based on this manual for first year medical students at TAMHSC The end! .
Recommended publications
  • Microanatomy of Muscles
    Microanatomy of Muscles Anatomy & Physiology Class Three Main Muscle Types Objectives: By the end of this presentation you will have the information to: 1. Describe the 3 main types of muscles. 2. Detail the functions of the muscle system. 3. Correctly label the parts of a myocyte (muscle cell) 4. Identify the levels of organization in a skeletal muscle from organ to myosin. 5. Explain how a muscle contracts utilizing the correct terminology of the sliding filament theory. 6. Contrast and compare cardiac and smooth muscle with skeletal muscle. Major Functions: Muscle System 1. Moving the skeletal system and posture. 2. Passing food through the digestive system & constriction of other internal organs. 3. Production of body heat. 4. Pumping the blood throughout the body. 5. Communication - writing and verbal Specialized Cells (Myocytes) ~ Contractile Cells Can shorten along one or more planes because of specialized cell membrane (sarcolemma) and specialized cytoskeleton. Specialized Structures found in Myocytes Sarcolemma: The cell membrane of a muscle cell Transverse tubule: a tubular invagination of the sarcolemma of skeletal or cardiac muscle fibers that surrounds myofibrils; involved in transmitting the action potential from the sarcolemma to the interior of the myofibril. Sarcoplasmic Reticulum: The special type of smooth endoplasmic Myofibrils: reticulum found in smooth and a contractile fibril of skeletal muscle, composed striated muscle fibers whose function mainly of actin and myosin is to store and release calcium ions. Multiple Nuclei (skeletal) & many mitochondria Skeletal Muscle - Microscopic Anatomy A whole skeletal muscle (such as the biceps brachii) is considered an organ of the muscular system. Each organ consists of skeletal muscle tissue, connective tissue, nerve tissue, and blood or vascular tissue.
    [Show full text]
  • VIEW Open Access Muscle Spindle Function in Healthy and Diseased Muscle Stephan Kröger* and Bridgette Watkins
    Kröger and Watkins Skeletal Muscle (2021) 11:3 https://doi.org/10.1186/s13395-020-00258-x REVIEW Open Access Muscle spindle function in healthy and diseased muscle Stephan Kröger* and Bridgette Watkins Abstract Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies. Keywords: Mechanotransduction, Sensory physiology, Proprioception, Neuromuscular diseases, Intrafusal fibers, Muscular dystrophy In its original sense, the term proprioception refers to development of head control and walking, an early im- sensory information arising in our own musculoskeletal pairment of fine motor skills, sensory ataxia with un- system itself [1–4]. Proprioceptive information informs steady gait, increased stride-to-stride variability in force us about the contractile state and movement of muscles, and step length, an inability to maintain balance with about muscle force, heaviness, stiffness, viscosity and ef- eyes closed (Romberg’s sign), a severely reduced ability fort and, thus, is required for any coordinated move- to identify the direction of joint movements, and an ab- ment, normal gait and for the maintenance of a stable sence of tendon reflexes [6–12].
    [Show full text]
  • Ultrastructural Cardiac Muscle and Cardiac Microvasculature Changes in Experimental Murine Infections Acta Scientiae Veterinariae, Vol
    Acta Scientiae Veterinariae ISSN: 1678-0345 [email protected] Universidade Federal do Rio Grande do Sul Brasil Tejero, Felix; Arias-Mota, Lourdes Lorena; Roschman-González, Antonio; Aso, Pedro María; Finol, Héctor José Trypanosoma evansi: Ultrastructural Cardiac Muscle and Cardiac Microvasculature Changes in Experimental Murine Infections Acta Scientiae Veterinariae, vol. 38, núm. 3, 2010, pp. 279-285 Universidade Federal do Rio Grande do Sul Porto Alegre, Brasil Available in: http://www.redalyc.org/articulo.oa?id=289021902008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta Scientiae Veterinariae. 38(3): 279-285, 2010. ORIGINAL ARTICLE ISSN 1679-9216 (Online) Pub. 910 Trypanosoma evansi: Ultrastructural Cardiac Muscle and Cardiac Microvasculature Changes in Experimental Murine Infections* Felix Tejero1, Lourdes Lorena Arias-Mota1, Antonio Roschman-González2, Pedro María Aso3 & Héctor José Finol2 ABSTRACT Background: Trypanosoma evansi is the etiologic agent of the equine trypanosomosis, a disease related to the detriment of the extensive bovine farming in the Venezuelan grasslands. Even though macroscopic pathologies such as anemia, pale mucosa, icteric tissues, generalized edema, splenomegaly, liver and renal hypertrophy, abortion, anoestrus, emaciation, lymphadenopathies, striated muscle atrophy as well as epicardiac and endocardiac hemorrhages have been described for infections with the agent, no reports of any heart ultrastructural change in experimental or natural infections induced by Venezuelan T. evansi isolates are available. So, a transmission electron microscopic approach to the problem was needed. This work describes cell features of the cardiac myocyte and the cardiac microvasculature ultrastructure in mice experimentally infected with an equine local isolate of T.
    [Show full text]
  • From Stem Cells to Cardiomyocytes: the Role of Forces in Cardiac Maturation, Aging, and Disease
    CHAPTER NINE From Stem Cells to Cardiomyocytes: The Role of Forces in Cardiac Maturation, Aging, and Disease Gaurav Kaushik, Adam J. Engler Department of Bioengineering, University of California, San Diego, La Jolla, California, USA Contents 1. Introduction 220 2. Cardiac Morphogenesis During the Lifespan of the Heart 221 2.1 Specification, differentiation, and heart morphogenesis 221 2.2 Cell maturation and maintenance 221 3. Mechanosensitive Compartments in Cardiomyocytes 222 4. The Sarcomere 223 4.1 Cardiac structure and mechanosignaling 223 4.2 Sarcomere mutations, microenvironmental changes, and their impact 225 5. Other Intracellular Mechanosensitive Structures 226 5.1 Actin-associated intercalated disc and costameric proteins 226 5.2 Intermediate filament and microtubule networks 228 5.3 The cardiomyocyte membrane 229 6. ECM and Mechanosensing 229 7. The Influence of Mechanotransduction on Applications of Cardiac Regeneration 230 8. Conclusion 231 References 232 Abstract Stem cell differentiation into a variety of lineages is known to involve signaling from the extracellular niche, including from the physical properties of that environment. What regulates stem cell responses to these cues is there ability to activate different mechanotransductive pathways. Here, we will review the structures and pathways that regulate stem cell commitment to a cardiomyocyte lineage, specifically examining pro- teins within muscle sarcomeres, costameres, and intercalated discs. Proteins within these structures stretch, inducing a change in their phosphorylated state or in their localization to initiate different signals. We will also put these changes in the context of stem cell differentiation into cardiomyocytes, their subsequent formation of the chambered heart, and explore negative signaling that occurs during disease.
    [Show full text]
  • Desmin- Cytoskeleton Marker Cat#: ET1606-30
    rev. 04/13/16 Desmin- Cytoskeleton Marker Cat#: ET1606-30 Prod uct Type: R ecombinant r abbit mono clonal IgG, primary antibodies Species reactivity: Human, Mouse, Rat, Zebra fish Applications: WB, ICC/IF, IHC, FC Molecular Wt.: 53 kDa Description: Cytoskeletal intermediate filaments (IFs) constitute a diverse group of proteins that are expressed in a highly tissue - specific manner. IFs are constructed from two - chain α -helical coiled-coil molecules arranged on an imperfect helical Fig1: Western blot analysis of Desmin on lattice, and have been widely used as markers for distinguishing different lysates using anti-Desmin antibody at individual cell types within a tissue and identifying the origins 1/1,000 dilution. of metastatic tumors. Vimentin is an IF general marker of cells Positive control: originating in the mesenchyme. Vimentin and Desmin, a related class III IF, are both expressed during skeletal muscle development. Lane 1: Human skeletal muscle Desmin, a 469 amino acid protein found near the Z line in sarcomeres, Lane 2: Mouse heart is expressed more frequently in adult differentiated state tissues. Desmin makes up attachments between the terminal Z-disc and membrane-associated proteins to form a force-transmitting system. Mutations in the gene encoding for Desmin are associated with adult-onset skeletal myopathy, sporadic disease and mild cardiac involvement. Immunogen: Recombinant protein. Positive control: Fig2: ICC staining Desmin in C2C12 cells (green). C2C12, human uterus tissue, mouse bladder tissue, mouse heart The nuclear counter stain is DAPI (blue). Cells tissue, mouse skeletal muscle tissue. were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.
    [Show full text]
  • The Muscular System
    THE MUSCULAR SYSTEM COMPILED BY HOWIE BAUM 1 Muscles make up the bulk of the body and account for 1/3 of its weight.!! Blood vessels and nerves run to every muscle, helping control and regulate each muscle’s function. The muscular system creates body heat and also moves the: Bones of the Skeletal system Food through Digestive system Blood through the Circulatory system Fluids through the Excretory system MUSCLE TISSUE The body has 3 main types of muscle tissue 1) Skeletal, 2) Smooth, and 3) Cardiac SKELETAL MUSCLE SMOOTH MUSCLE CARDIAC MUSCLE Skeletal muscles attach to and move bones by contracting and relaxing in response to voluntary messages from the nervous system. Skeletal muscle tissue is composed of long cells called muscle fibers that have a striated appearance. Muscle fibers are organized into bundles supplied by blood vessels and innervated by motor neurons. Muscle structure Skeletal (striated or voluntary) muscle consists of densely packed groups of hugely elongated cells known as myofibers. These are grouped into bundles (fascicles). A typical myofiber is 2–3 centimeters ( 3/4–1 1/5 in) long and 0.05millimeters (1/500 inch) in diameter and is composed of narrower structures – myofibrils. These contain thick and thin myofilaments made up mainly of the proteins actin and myosin. Numerous capillaries keep the muscle supplied with the oxygen and glucose needed to fuel contraction. Skeletal Muscles • Skeletal muscles attach to bones by tendons (connective tissue) and enable movement. • Skeletal muscles are mostly voluntary Feel the back of your ankle to feel your Achilles tendon - the largest tendon in your body.
    [Show full text]
  • 4 Muscle Tissue Smooth Muscle
    4 Muscle tissue Smooth muscle Smooth muscle cell bundle (oblique section) Loose connective tissue layer permitting movement between muscle layers Elongated centrally located nucleus of smooth muscle cell (longitudinal section) Elongated, tapering cytoplasm of a smooth muscle cell Smooth muscle, small intestine, cat. H.E. stain; x400. Perimysium composed of connective tissue with blood vessels and autonomic nerves Smooth muscle cell bundle with central nuclei and elongated cytoplasm (longitudinal section) Perimysium Oblique and cross sections of smooth muscle cells Smooth muscle, small intestine, cat. H.E. stain; x400. Smooth muscle cells (oblique and cross sections) Smooth muscle cells (cross section) Perimysium Smooth muscle, urinary bladder, cat. H.E. stain; x350. 4 Muscle tissue Smooth muscle Predominantly longitudinally oriented smooth muscle fibre bundles closely invested with endomysium (nuclei appear longitudinally oval) Perimysium Endomysium Predominantly transversely oriented smooth muscle fibre bundles (nuclei appear round) Sooth muscle, urinary bladder, cat. Golder's Masson trichrome stain; x480. Nucleus of smooth muscle cell (weakly contracted) Perimysium with fibrocytes Cytoplasm of smooth muscle cell (weakly contracted) Nuclei and cytoplasm of smooth muscle cells (relaxed) Endomysium surrounding isolated smooth muscle cell (at transition to perimysium) Perimysium with fibrocytes Smooth muscle, urinary bladder, cat. H.E. stain; Goldner's Masson trichrome stain; x480. Central nucleus and cytoplasm of weakly contracted smooth muscle cell Heterochromatic nucleus of smooth muscle cell Endomysium Perimysium with fibrocytes Euchromatic nucleus of smooth muscle cell with spindle-like elongation of cytoplasm Smooth muscle, gall bladder, ox. Goldner's stain; x600..
    [Show full text]
  • Muscle Histology
    Muscle Histology Dr. Heba Kalbouneh Functions of muscle tissue ▪ Movement ▪ Maintenance of posture ▪ Joint stabilization ▪ Heat generation Types of Muscle Tissue ▪ Skeletal muscle ▪ Cardiac muscle ▪ Smooth muscle Types of Muscle Tissue Skeletal •Attach to and move skeleton •40% of body weight •Fibers = multinucleate cells (embryonic cells fuse) •Cells with obvious striations •Contractions are voluntary Cardiac: only in the wall of the heart •Cells are striated •Contractions are involuntary (not voluntary) Smooth: walls of hollow organs •Lack striations •Contractions are involuntary (not voluntary) Similarities… ▪ Their cells are called fibers because they are elongated ▪ Contraction depends on myofilaments ▪ Actin ▪ Myosin ▪ Plasma membrane is called sarcolemma ▪ Sarcos = flesh ▪ Lemma = sheath SKELETAL MUSCLES Epimysium: surrounds whole muscle Endomysium is around each muscle fiber Perimysium is around fascicle = muscle cell= myofiber Skeletal muscle This big cylinder is a fiber: a cell ▪ Fibers (each is one cell) have striations ▪ Myofibrils are organelles of the cell: these are made -an organelle up of myofilaments ▪ Sarcomere ▪ Basic unit of contraction ▪ Myofibrils are long rows of repeating sarcomeres ▪ Boundaries: Z discs (or lines) Sarcomere M line provides an attachment to myosin filaments Z line provides an attachment to actin filaments A band is the darker band of the myofibril containing myosin filaments H band is the lighter section in the middle of the A band where only myosin is present I band is the lighter band containing
    [Show full text]
  • Muscle Lectures Danil Hammoudi.MD
    Muscle lectures Danil Hammoudi.MD Motion, as a reaction of multicellular organisms to changes in the internal and external environment, is mediated by muscle cells. The basis for motion mediated by muscle cells is the conversion of chemical energy (ATP) into mechanical energy by the contractile apparatus of muscle cells. The proteins actin and myosin are part of the contractile apparatus. The interaction of these two proteins mediates the contraction of muscle cells. Actin and myosin form myofilaments arranged parallel to the direction of cellular contraction. Muscle (from Latin musculus "little mouse" ) is contractile tissue of the body and is derived from the mesodermal layer of embryonic germ cells. Its function is to produce force and cause motion, either locomotion or movement within internal organs. Much of muscle contraction occurs without conscious thought and is necessary for survival, like the contraction of the heart, or peristalsis (which pushes food through the digestive system). Voluntary muscle contraction is used to move the body, and can be finely controlled, like movements of the finger or gross movements like the quadriceps muscle of the thigh. There are 2 types of muscle movement, slow twitch and fast twitch. Slow twitch movements act for a long time but not very fast, whilst fast twitch movements act quickly, but not for a very long time. MUSCLE TISSUE - Capable of Contraction - Composition = Muscle cells + CT (carries blood vessels and nerves, each muscle cell is supplied with capillaries and nerve fiber) - Muscle cells are elongate (therefore they are termed fibers) and lie in parallel arrays (with the longitudinal axis of the muscle).
    [Show full text]
  • (7E) Powerpoint Lecture Outline Chapter 8: Control of Movement
    Carlson (7e) PowerPoint Lecture Outline Chapter 8: Control of Movement This multimedia product and its contents are protected under copyright law. The following are prohibited by law: •any public performance or display, including transmission of any image over a network; •preparation of any derivative work, including extraction, in whole or in part, of any images; •any rental, lease, or lending of the program. Copyright 2001 by Allyn & Bacon Skeletal Muscle n Movements of our body are accomplished by contraction of the skeletal muscles l Flexion: contraction of a flexor muscle draws in a limb l Extension: contraction of extensor muscle n Skeletal muscle fibers have a striated appearance n Skeletal muscle is composed of two fiber types: l Extrafusal: innervated by alpha-motoneurons from the spinal cord: exert force l Intrafusal: sensory fibers that detect stretch of the muscle u Afferent fibers: report length of intrafusal: when stretched, the fibers stimulate the alpha-neuron that innervates the muscle fiber: maintains muscle tone u Efferent fibers: contraction adjusts sensitivity of afferent fibers. 8.2 Copyright 2001 by Allyn & Bacon Skeletal Muscle Anatomy n Each muscle fiber consists of a bundle of myofibrils l Each myofibril is made up of overlapping strands of actin and myosin l During a muscle twitch, the myosin filaments move relative to the actin filaments, thereby shortening the muscle fiber 8.3 Copyright 2001 by Allyn & Bacon Neuromuscular Junction n The neuromuscular junction is the synapse formed between an alpha motor neuron
    [Show full text]
  • Back-To-Basics: the Intricacies of Muscle Contraction
    Back-to- MIOTA Basics: The CONFERENCE OCTOBER 11, Intricacies 2019 CHERI RAMIREZ, MS, of Muscle OTRL Contraction OBJECTIVES: 1.Review the anatomical structure of a skeletal muscle. 2.Review and understand the process and relationship between skeletal muscle contraction with the vital components of the nervous system, endocrine system, and skeletal system. 3.Review the basic similarities and differences between skeletal muscle tissue, smooth muscle tissue, and cardiac muscle tissue. 4.Review the names, locations, origins, and insertions of the skeletal muscles found in the human body. 5.Apply the information learned to enhance clinical practice and understanding of the intricacies and complexity of the skeletal muscle system. 6.Apply the information learned to further educate clients on the importance of skeletal muscle movement, posture, and coordination in the process of rehabilitation, healing, and functional return. 1. Epithelial Four Basic Tissue Categories 2. Muscle 3. Nervous 4. Connective A. Loose Connective B. Bone C. Cartilage D. Blood Introduction There are 3 types of muscle tissue in the muscular system: . Skeletal muscle: Attached to bones of skeleton. Voluntary. Striated. Tubular shape. Cardiac muscle: Makes up most of the wall of the heart. Involuntary. Striated with intercalated discs. Branched shape. Smooth muscle: Found in walls of internal organs and walls of vascular system. Involuntary. Non-striated. Spindle shape. 4 Structure of a Skeletal Muscle Skeletal Muscles: Skeletal muscles are composed of: • Skeletal muscle tissue • Nervous tissue • Blood • Connective tissues 5 Connective Tissue Coverings Connective tissue coverings over skeletal muscles: .Fascia .Tendons .Aponeuroses 6 Fascia: Definition: Layers of dense connective tissue that separates muscle from adjacent muscles, by surrounding each muscle belly.
    [Show full text]
  • Acute Slowing of Cardiac Conduction in Response to Myofibroblast Coupling
    Journal of Molecular and Cellular Cardiology 68 (2014) 29–37 Contents lists available at ScienceDirect Journal of Molecular and Cellular Cardiology journal homepage: www.elsevier.com/locate/yjmcc Original article Acute slowing of cardiac conduction in response to myofibroblast coupling to cardiomyocytes through N-cadherin Susan A. Thompson a, Adriana Blazeski a, Craig R. Copeland b,DanielM.Cohenc, Christopher S. Chen c, Daniel M. Reich b,LeslieTunga,⁎ a Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA b Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD, USA c Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA article info abstract Article history: The electrophysiological consequences of cardiomyocyte and myofibroblast interactions remain unclear, and the Received 14 July 2013 contribution of mechanical coupling between these two cell types is still poorly understood. In this study, we ex- Received in revised form 24 December 2013 amined the time course and mechanisms by which addition of myofibroblasts activated by transforming growth Accepted 31 December 2013 factor-beta (TGF-β)influence the conduction velocity (CV) of neonatal rat ventricular cell monolayers. We ob- Available online 9 January 2014 served that myofibroblasts affected CV within 30 min of contact and that these effects were temporally correlat- fi Keywords: ed with membrane deformation of cardiomyocytes by the myo broblasts. Expression of dominant negative RhoA fi fi fi Cardiomyocyte in the myo broblasts impaired both myo broblast contraction and myo broblast-induced slowing of cardiac Myofibroblast conduction, whereas overexpression of constitutive RhoA had little effect. To determine the importance of me- Electrophysiology chanical coupling between these cell types, we examined the expression of the two primary cadherins in the Mechanobiology heart (N- and OB-cadherin) at cell–cell contacts formed between myofibroblasts and cardiomyocytes.
    [Show full text]