The Role of the Actin Cytoskeleton During Muscle Development In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IQSEC2 Antibody Cat
IQSEC2 Antibody Cat. No.: 8011 Western blot analysis of IQSEC2 in SK-N-SH cell lysate with IQSEC2 antibody at 1 μg/ml. Immunohistochemistry of IQSEC2 in mouse brain tissue with IQSEC2 antibody at 5 μg/ml. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat IQSEC2 antibody was raised against an 18 amino acid peptide near the carboxy terminus of human IQSEC2. IMMUNOGEN: The immunogen is located within amino acids 1380 - 1430 of IQSEC2. TESTED APPLICATIONS: ELISA, IHC-P, WB IQSEC2 antibody can be used for detection of IQSEC2 by Western blot at 1 - 2 μg/ml. Antibody can also be used for immunohistochemistry starting at 5 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples and Immunohistochemistry in mouse samples. All other applications and species not yet tested. September 27, 2021 1 https://www.prosci-inc.com/iqsec2-antibody-8011.html IQSEC2 antibody is human, mouse and rat reactive. At least two isoforms of IQSEC2 are SPECIFICITY: known to exist; this antibody will only detect the larger isoform. IQSEC2 antibody is predicted to not cross-react with IQSEC1. POSITIVE CONTROL: 1) Cat. No. 1220 - SK-N-SH Cell Lysate Predicted: 104, 133, 141, 164 kDa PREDICTED MOLECULAR WEIGHT: Observed: 140 kDa Properties PURIFICATION: IQSEC2 antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: IQSEC2 antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL IQSEC2 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. -
Microanatomy of Muscles
Microanatomy of Muscles Anatomy & Physiology Class Three Main Muscle Types Objectives: By the end of this presentation you will have the information to: 1. Describe the 3 main types of muscles. 2. Detail the functions of the muscle system. 3. Correctly label the parts of a myocyte (muscle cell) 4. Identify the levels of organization in a skeletal muscle from organ to myosin. 5. Explain how a muscle contracts utilizing the correct terminology of the sliding filament theory. 6. Contrast and compare cardiac and smooth muscle with skeletal muscle. Major Functions: Muscle System 1. Moving the skeletal system and posture. 2. Passing food through the digestive system & constriction of other internal organs. 3. Production of body heat. 4. Pumping the blood throughout the body. 5. Communication - writing and verbal Specialized Cells (Myocytes) ~ Contractile Cells Can shorten along one or more planes because of specialized cell membrane (sarcolemma) and specialized cytoskeleton. Specialized Structures found in Myocytes Sarcolemma: The cell membrane of a muscle cell Transverse tubule: a tubular invagination of the sarcolemma of skeletal or cardiac muscle fibers that surrounds myofibrils; involved in transmitting the action potential from the sarcolemma to the interior of the myofibril. Sarcoplasmic Reticulum: The special type of smooth endoplasmic Myofibrils: reticulum found in smooth and a contractile fibril of skeletal muscle, composed striated muscle fibers whose function mainly of actin and myosin is to store and release calcium ions. Multiple Nuclei (skeletal) & many mitochondria Skeletal Muscle - Microscopic Anatomy A whole skeletal muscle (such as the biceps brachii) is considered an organ of the muscular system. Each organ consists of skeletal muscle tissue, connective tissue, nerve tissue, and blood or vascular tissue. -
Loss of At-Catenin Alters the Hybrid Adhering Junctions in the Heart and Leads to Dilated Cardiomyopathy and Ventricular Arrhythmia Following Acute Ischemia
1058 Research Article Loss of aT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia Jifen Li1,*, Steven Goossens2,3,`, Jolanda van Hengel2,3,`, Erhe Gao1, Lan Cheng1, Koen Tyberghein2,3, Xiying Shang1, Riet De Rycke2, Frans van Roy2,3,* and Glenn L. Radice1 1Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA 2Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium 3Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium *Authors for correspondence ([email protected]; [email protected]) `These authors contributed equally to this work Accepted 4 October 2011 Journal of Cell Science 125, 1058–1067 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.098640 Summary It is generally accepted that the intercalated disc (ICD) required for mechano-electrical coupling in the heart consists of three distinct junctional complexes: adherens junctions, desmosomes and gap junctions. However, recent morphological and molecular data indicate a mixing of adherens junctional and desmosomal components, resulting in a ‘hybrid adhering junction’ or ‘area composita’. The a-catenin family member aT-catenin, part of the N-cadherin–catenin adhesion complex in the heart, is the only a-catenin that interacts with the desmosomal protein plakophilin-2 (PKP2). Thus, it has been postulated that aT-catenin might serve as a molecular integrator of the two adhesion complexes in the area composita. To investigate the role of aT-catenin in the heart, gene targeting technology was used to delete the Ctnna3 gene, encoding aT-catenin, in the mouse. -
VIEW Open Access Muscle Spindle Function in Healthy and Diseased Muscle Stephan Kröger* and Bridgette Watkins
Kröger and Watkins Skeletal Muscle (2021) 11:3 https://doi.org/10.1186/s13395-020-00258-x REVIEW Open Access Muscle spindle function in healthy and diseased muscle Stephan Kröger* and Bridgette Watkins Abstract Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies. Keywords: Mechanotransduction, Sensory physiology, Proprioception, Neuromuscular diseases, Intrafusal fibers, Muscular dystrophy In its original sense, the term proprioception refers to development of head control and walking, an early im- sensory information arising in our own musculoskeletal pairment of fine motor skills, sensory ataxia with un- system itself [1–4]. Proprioceptive information informs steady gait, increased stride-to-stride variability in force us about the contractile state and movement of muscles, and step length, an inability to maintain balance with about muscle force, heaviness, stiffness, viscosity and ef- eyes closed (Romberg’s sign), a severely reduced ability fort and, thus, is required for any coordinated move- to identify the direction of joint movements, and an ab- ment, normal gait and for the maintenance of a stable sence of tendon reflexes [6–12]. -
Datasheet: VPA00477KT Product Details
Datasheet: VPA00477KT Description: CAPZB ANTIBODY WITH CONTROL LYSATE Specificity: CAPZB Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 2 Westerns Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation 20μl Rabbit polyclonal antibody purified by affinity chromatography Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 2% Sucrose Immunogen Synthetic peptide directed towards the N-terminal region of human CAPZB External Database Links UniProt: P47756 Related reagents Entrez Gene: 832 CAPZB Related reagents Specificity Rabbit anti Human CAPZB antibody recognizes CAPZB also known as F-actin-capping protein subunit beta or capZ beta. Page 1 of 3 The CAPZB gene encodes the beta subunit of the barbed-end actin binding protein, which belongs to the F-actin capping protein family. The capping protein is a heterodimeric actin capping protein that blocks actin filament assembly and disassembly at the fast growing (barbed) filament ends and functions in regulating actin filament dynamics as well as in stabilizing actin filament lengths in muscle and nonmuscle cells. -
Table 1 Gene Name Increased Or Decreased in LTD
Table_1 gene_name increased or decreased in LTD protein_id description keep_supernatant keep_pellet comparison sample hit_annotation_methodpvalue fdr hit hit_annotation 2010300C02RIK increased E9Q3M9 Protein 2010300C02Rik OS=Mus musculus GN=2010300C02Rik PE=1 SV=1 TRUE TRUE NMDA - control pellet fdrtool 0,074667 0,584087 FALSE trend 2310035C23RIK|KIAA1468increased A0A087WSS1|E9QM90|Q148V7|Q148V7-2 Protein 2310035C23Rik OS=Mus musculus GN=2310035C23Rik PE=1 SV=1|Protein 2310035C23Rik OS=Mus musculusTRUE GN=2310035C23Rik PE=1 SV=2|LisH FALSE domain NMDAand HEAT - control repeat-containing protein KIAA1468 supernatant OS=Mus musculus GN=Kiaa1468 fdrtoolPE=1 SV=1|Isoform 0,080056 2 of 0,589077LisH domain FALSEand HEAT trend repeat-containing protein KIAA1468 OS=Mus musculus GN=Kiaa1468 ABR increased E9PUE7|Q5SSL4|Q5SSL4-2|Q5SSL4-3|Q5SSL4-4 Active breakpoint cluster region-related protein OS=Mus musculus GN=Abr PE=1 SV=1|Isoform 2 of Active breakpointTRUE cluster region-related protein TRUE OS=Mus musculus NMDA GN=Abr|Isoform - control 3 of Active breakpoint supernatant cluster region-related protein OS=Mus fdrtool musculus 0,08128 GN=Abr|Isoform 0,592743 4 of Active FALSE breakpoint trend cluster region-related protein OS=Mus musculus GN=Abr ADAM22 increased D3YUP9|Q9R1V6|Q9R1V6-10|Q9R1V6-11|Q9R1V6-12|Q9R1V6-13|Q9R1V6-14|Q9R1V6-15|Q9R1V6-17|Q9R1V6-4|Q9R1V6-5|Q9R1V6-6|Q9R1V6-7|Q9R1V6-8Disintegrin and metalloproteinase domain-containing protein 22 OS=Mus musculus GN=Adam22 PE=1 SV=1|DisintegrinFALSE and metalloproteinase domain-containing TRUE -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Netwo
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis Sriram Devanathan Washington University School of Medicine in St. Louis Timothy Whitehead Washington University School of Medicine in St. Louis George G. Schweitzer Washington University School of Medicine in St. Louis Nicole Fettig Washington University School of Medicine in St. Louis Attila Kovacs Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Devanathan, Sriram; Whitehead, Timothy; Schweitzer, George G.; Fettig, Nicole; Kovacs, Attila; Korach, Kenneth S.; Finck, Brian N.; and Shoghi, Kooresh I., ,"An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis." PLoS One.9,7. e101900. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3326 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Sriram Devanathan, Timothy Whitehead, George G. Schweitzer, Nicole Fettig, Attila Kovacs, Kenneth S. Korach, Brian N. Finck, and Kooresh I. Shoghi This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3326 An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Network Analysis Sriram Devanathan1, Timothy Whitehead1, George G. Schweitzer2, Nicole Fettig1, Attila Kovacs3, Kenneth S. -
Desmin- Cytoskeleton Marker Cat#: ET1606-30
rev. 04/13/16 Desmin- Cytoskeleton Marker Cat#: ET1606-30 Prod uct Type: R ecombinant r abbit mono clonal IgG, primary antibodies Species reactivity: Human, Mouse, Rat, Zebra fish Applications: WB, ICC/IF, IHC, FC Molecular Wt.: 53 kDa Description: Cytoskeletal intermediate filaments (IFs) constitute a diverse group of proteins that are expressed in a highly tissue - specific manner. IFs are constructed from two - chain α -helical coiled-coil molecules arranged on an imperfect helical Fig1: Western blot analysis of Desmin on lattice, and have been widely used as markers for distinguishing different lysates using anti-Desmin antibody at individual cell types within a tissue and identifying the origins 1/1,000 dilution. of metastatic tumors. Vimentin is an IF general marker of cells Positive control: originating in the mesenchyme. Vimentin and Desmin, a related class III IF, are both expressed during skeletal muscle development. Lane 1: Human skeletal muscle Desmin, a 469 amino acid protein found near the Z line in sarcomeres, Lane 2: Mouse heart is expressed more frequently in adult differentiated state tissues. Desmin makes up attachments between the terminal Z-disc and membrane-associated proteins to form a force-transmitting system. Mutations in the gene encoding for Desmin are associated with adult-onset skeletal myopathy, sporadic disease and mild cardiac involvement. Immunogen: Recombinant protein. Positive control: Fig2: ICC staining Desmin in C2C12 cells (green). C2C12, human uterus tissue, mouse bladder tissue, mouse heart The nuclear counter stain is DAPI (blue). Cells tissue, mouse skeletal muscle tissue. were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS. -
The Muscular System
THE MUSCULAR SYSTEM COMPILED BY HOWIE BAUM 1 Muscles make up the bulk of the body and account for 1/3 of its weight.!! Blood vessels and nerves run to every muscle, helping control and regulate each muscle’s function. The muscular system creates body heat and also moves the: Bones of the Skeletal system Food through Digestive system Blood through the Circulatory system Fluids through the Excretory system MUSCLE TISSUE The body has 3 main types of muscle tissue 1) Skeletal, 2) Smooth, and 3) Cardiac SKELETAL MUSCLE SMOOTH MUSCLE CARDIAC MUSCLE Skeletal muscles attach to and move bones by contracting and relaxing in response to voluntary messages from the nervous system. Skeletal muscle tissue is composed of long cells called muscle fibers that have a striated appearance. Muscle fibers are organized into bundles supplied by blood vessels and innervated by motor neurons. Muscle structure Skeletal (striated or voluntary) muscle consists of densely packed groups of hugely elongated cells known as myofibers. These are grouped into bundles (fascicles). A typical myofiber is 2–3 centimeters ( 3/4–1 1/5 in) long and 0.05millimeters (1/500 inch) in diameter and is composed of narrower structures – myofibrils. These contain thick and thin myofilaments made up mainly of the proteins actin and myosin. Numerous capillaries keep the muscle supplied with the oxygen and glucose needed to fuel contraction. Skeletal Muscles • Skeletal muscles attach to bones by tendons (connective tissue) and enable movement. • Skeletal muscles are mostly voluntary Feel the back of your ankle to feel your Achilles tendon - the largest tendon in your body. -
Muscle Histology
Muscle Histology Dr. Heba Kalbouneh Functions of muscle tissue ▪ Movement ▪ Maintenance of posture ▪ Joint stabilization ▪ Heat generation Types of Muscle Tissue ▪ Skeletal muscle ▪ Cardiac muscle ▪ Smooth muscle Types of Muscle Tissue Skeletal •Attach to and move skeleton •40% of body weight •Fibers = multinucleate cells (embryonic cells fuse) •Cells with obvious striations •Contractions are voluntary Cardiac: only in the wall of the heart •Cells are striated •Contractions are involuntary (not voluntary) Smooth: walls of hollow organs •Lack striations •Contractions are involuntary (not voluntary) Similarities… ▪ Their cells are called fibers because they are elongated ▪ Contraction depends on myofilaments ▪ Actin ▪ Myosin ▪ Plasma membrane is called sarcolemma ▪ Sarcos = flesh ▪ Lemma = sheath SKELETAL MUSCLES Epimysium: surrounds whole muscle Endomysium is around each muscle fiber Perimysium is around fascicle = muscle cell= myofiber Skeletal muscle This big cylinder is a fiber: a cell ▪ Fibers (each is one cell) have striations ▪ Myofibrils are organelles of the cell: these are made -an organelle up of myofilaments ▪ Sarcomere ▪ Basic unit of contraction ▪ Myofibrils are long rows of repeating sarcomeres ▪ Boundaries: Z discs (or lines) Sarcomere M line provides an attachment to myosin filaments Z line provides an attachment to actin filaments A band is the darker band of the myofibril containing myosin filaments H band is the lighter section in the middle of the A band where only myosin is present I band is the lighter band containing -
Development of a High-Throughput Screen to Identify Small Molecule Enhancers of Sarcospan for the Treatment of Duchenne Muscular Dystrophy
UCLA UCLA Previously Published Works Title Development of a high-throughput screen to identify small molecule enhancers of sarcospan for the treatment of Duchenne muscular dystrophy. Permalink https://escholarship.org/uc/item/85z6k8t7 Journal Skeletal muscle, 9(1) ISSN 2044-5040 Authors Shu, Cynthia Kaxon-Rupp, Ariana N Collado, Judd R et al. Publication Date 2019-12-12 DOI 10.1186/s13395-019-0218-x Peer reviewed eScholarship.org Powered by the California Digital Library University of California Shu et al. Skeletal Muscle (2019) 9:32 https://doi.org/10.1186/s13395-019-0218-x RESEARCH Open Access Development of a high-throughput screen to identify small molecule enhancers of sarcospan for the treatment of Duchenne muscular dystrophy Cynthia Shu1,2,3, Ariana N. Kaxon-Rupp2, Judd R. Collado2, Robert Damoiseaux4,5 and Rachelle H. Crosbie1,2,3,6* Abstract Background: Duchenne muscular dystrophy (DMD) is caused by loss of sarcolemma connection to the extracellular matrix. Transgenic overexpression of the transmembrane protein sarcospan (SSPN) in the DMD mdx mouse model significantly reduces disease pathology by restoring membrane adhesion. Identifying SSPN-based therapies has the potential to benefit patients with DMD and other forms of muscular dystrophies caused by deficits in muscle cell adhesion. Methods: Standard cloning methods were used to generate C2C12 myoblasts stably transfected with a fluorescence reporter for human SSPN promoter activity. Assay development and screening were performed in a core facility using liquid handlers and imaging systems specialized for use with a 384-well microplate format. Drug-treated cells were analyzed for target gene expression using quantitative PCR and target protein expression using immunoblotting.