64 3 Journal of Molecular M K Tsoumpra et al. Upregulation of dystrobrevin by 64:3 195–208 Endocrinology calcitriol RESEARCH Dystrobrevin alpha gene is a direct target of the vitamin D receptor in muscle Maria K Tsoumpra1, Shun Sawatsubashi2, Michihiro Imamura1, Seiji Fukumoto2, Shin’ichi Takeda1, Toshio Matsumoto2 and Yoshitsugu Aoki1 1Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan 2Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan Correspondence should be addressed to S Fukumoto:
[email protected] Abstract The biologically active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (VD3), exerts its Key Words tissue-specific actions through binding to its intracellular vitamin D receptor (VDR) which f vitamin D functions as a heterodimer with retinoid X receptor (RXR) to recognize vitamin D response f muscle elements (VDRE) and activate target genes. Upregulation of VDR in murine skeletal muscle f gene regulation cells occurs concomitantly with transcriptional regulation of key myogenic factors upon f receptor binding VD3 administration, reinforcing the notion that VD3 exerts beneficial effects on muscle. Herein we elucidated the regulatory role of VD3/VDR axis on the expression of dystrobrevin alpha (DTNA), a member of dystrophin-associated protein complex (DAPC). In C2C12 cells, Dtna and VDR gene and protein expression were upregulated by 1–50 nM of VD3 during all stages of myogenic differentiation. In the dystrophic-derived H2K-mdx52 cells, upregulation of DTNA by VD3 occurred upon co-transfection of VDR and RXR expression vectors. Silencing of MyoD1, an E-box binding myogenic transcription factor, did not alter the VD3-mediated Dtna induction, but Vdr silencing abolished this effect.