Result Report Algae Sources, Cultivation and Collection

Total Page:16

File Type:pdf, Size:1020Kb

Result Report Algae Sources, Cultivation and Collection Result Report Algae sources, cultivation and collection FucoSan is funded by Interreg Deutschland-Danmark with means from the European Regional Development Fund. Imprint Lead partner Photo credits Prof. Dr Alexa Karina Klettner, project coordinator Copyright of all pictures and graphics by FucoSan. University Medical Centre Schleswig-Holstein Campus Kiel Project management Department of Ophthalmology DSN Connecting Knowledge Arnold-Heller-Straße 3 www.dsn-online.de 24105 Kiel, Germany Mail: [email protected] www.fucosan.eu This result report presents a compilation on the key findings provided by the partners working in the work package: WORK PACKAGE Project management 1 WORK PACKAGE Project communication & PR 2 WORK PACKAGE Algae sources, cultivation and collection 3 WORK PACKAGE Fucoidan characterisation and database development 4 WORK PACKAGE Pilot developments in medicine and cosmetics 5 WORK PACKAGE Organisation and business models 6 2 FucoSan (2017-2020) The FucoSan project Project aims Algae from the North and Baltic Sea serve as an im- ✔ Development of economically and ecologically portant but yet under-exploited marine bio resource. sustainable processes to obtain brown algae Brown algae contain fucoidan - a polysaccharide with from the Baltic Sea highly health-promoting activities that could be used in medicine and cosmetics. Fucoidans are also valued ✔ Setup of a database for the identification for their positive influence on inflammation, vascular of suitable fucoidans supply and tissue regeneration. With their antimicrobial properties, infections in the ✔ Pilots for fucoidan-based applications in bone could potentially be treated. However, fucoidan ophthalmology, regenerative medicine varies in structure, composition and modifications (tissue engineering) and cosmetics such as degree of sulfation or molecular weight - de- pending on the origin and other factors. This leads to ✔ Establishment of a German-Danish value different, sometimes even opposing effects. chain around the use of fucoidans The FucoSan project aimed at generating systematic knowledge of fucoidans and their modes of action. The FucoSan process chain In various test systems, the project partners inves- tigated on the optimal fucoidan for each particular application. Over the last three years, the project established a network in the German-Danish cross- border region pooling the expertise of companies and research institutions. They are active in the fields of extraction and purification as well as in chemical and biological characterisation of fucoidans. March 2017 – August 2020 3.8 million Euros budget, thereof 2.2 million Euros funds 8 partner organisations from Icons made by www.freepik.com from www.flatcions.com Denmark and Germany FucoSan (2017-2020) FucoSan (2017-2020) 3 Project partners Germany Denmark University Medical Centre Schleswig-Holstein, Technical University of Denmark Campus Kiel Department of Chemical and Biochemical Department of Ophthalmology Engineering, Lyngby Prof. Dr Alexa Karina Klettner Prof. Anne S. Meyer [email protected] [email protected] Department of Orthopaedics and Trauma Surgery University of Southern Denmark Prof. Dr Sabine Fuchs Department of Chemical Engineering, [email protected] Biotechnology and Environmental Technology, Odense Kiel University Prof. Xavier Fretté Pharmaceutical Biology [email protected] Prof. Dr Susanne Alban [email protected] Mads Clausen Institute, SDU Technology Entrepreneurship and Innovation, Sønderborg Technology Management Ferran Giones Prof. Dr Carsten Schultz [email protected] [email protected] Silke Tegtmeier [email protected] CRM – Coastal Research & Management oHG Verena Sandow Odense University Hospital [email protected] Orthopaedic Research Unit Prof. Søren Overgaard oceanBASIS GmbH, Kiel [email protected] Dr Levent Piker Prof. Ming Ding [email protected] [email protected] GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Natural Products Chemistry Prof. Dr Deniz Tasdemir [email protected] 4 FucoSan (2017-2020) Introduction What are algae? Broadly speaking, all photosynthe- time, people also started cultivating some species, tically active eukaryotes (organisms with a true cell especially in East Asia, which is nowadays the biggest nucleus) apart from land plants (mosses, ferns, seed market for seaweed products. Today, about 30 mil- plants) can be considered as algae. Within this very lion tons of seaweed biomass are produced in farms diverse group of ca. 44,000 known species (the ac- (i.e. seaweed aquaculture) worldwide, and only 1 mil- tual number is estimated to be much higher), most lion tons are collected from wild stocks. In compari- species are unicellular microscopic organisms called son, the total quantity of fish caught by fisheries is microalgae. Only a few microalgal lineages formed about 80 million tons/year (see FAO 2018). As men- multicellular macroscopic forms in the course of evo- tioned before, the majority of seaweed production lution, which are nowadays categorised as macroal- takes place in East Asia. In Europe, there are only a gae or “seaweds”. The three most prominent macro- small number of farms along the Atlantic Coast, and algal groups are green, red and brown algae, named wild material is collected in countries such as Norway after their typical colours, which result from different and France. Along the German and Danish Baltic Sea combinations of photosynthetic pigments. Red algae coast, i.e. in the project area, there are only a few sea- are the largest macroalgal group with about 7,200 weed farms, which all produce sugar kelp (Saccharina species, followed by brown algae (ca. 2,000 species) latissima). The only German farm is operated by the and green algae (ca. 1,800 species). They range in size company CRM. Other brown algae of interest for the from millimetres to more than 50 metres in the gi- project, like species of the genus Fucus, have not been ant kelps. Most macroalgae live in marine habitats, domesticated yet. At the same time, sustainable har- and only a small number colonise freshwater envi- vesting of brown algal biomass is also in its infancy in ronments. Macroalgae are typically found on rocky the project area. shores, because most species need a hard substra- tum to attach to, in order to maintain their position Therefore, three approaches were used to provide against currents or waves. Attachment is performed brown algal material to the project partners. First, with a special holdfast organ called a rhizoid; most biomass of different brown algal species was purcha- macroalgae also have a kind of stalk, called a cauloid. sed from farms located along European coasts. Se- Finally, the part responsible for photosynthesis and cond, a test farm was established in Kiel, Germany, reproduction is called a phylloid, because it often re- to experimentally cultivate two Fucus species in the sembles a plant leaf. Baltic Sea. Third, CRM collected experimental quan- tities of seaweed from the local Baltic Sea coast, and Red, green and brown algae are not closely related; also pursued developing a sustainable harvesting therefore, their chemical composition is very diffe- method for commercial purposes in negotiation with rent. For instance, they differ with respect to their the German and Danish authorities. The precise met- main cell wall sugars: red algae contain agars and hods and results of this part of the project are shown carrageenans, green algae contain ulvans and brown on the following pages. algae contain alginates and fucoidans as cell wall su- gars. As the focus of the FucoSan project was to elu- Seaweed in the North Sea and Baltic Sea is a valuable cidate the chemical properties and biological activi- but still underutilised marine bioresource, which is ties of fucoidans from different sources, only brown regarded as extremely promising, because it serves macroalgae were used as source material. CRM (Co- as a carbon sink, and it can be used for a wide range astal Research & Management, Kiel, Germany) was of purposes, from nutrition to pharmaceutics. One responsible for providing the other project partners of the beneficial ingredients in seaweed is fucoidan, with suitable algal material for the extraction of fu- which can be extracted from the brown algae and coidans. But where can one obtain brown algal bio- transformed into different value-added products. mass? The tasks of work package 3 (WP 3) were fundamen- tal, because they laid the foundation for all other Seaweeds have been used for millennia as food for work packages. Therefore, WP 3 was indispensable humans, as medicine and as feed for livestock, espe- to the success of the project. cially in coastal cultures. Originally, the biomass was The aim of WP 3 was to develop a common know- just collected from the shores during low tide. Over ledge base on the use of macroalgae (brown algae) FucoSan (2017-2020) FucoSan (2017-2020) 5 for the utilisation of fucoidan. During the literature coidan was tested regionally in this WP (activity 3.2). research and interviews, a list of algae species was The collection of natural macroalgae stocks can also compiled that are sustainable as well as suitable for be sustainable, if strategies are examined with re- (industrial) extraction of fucoidan (activity 3.1). Based gard to ecological sustainability and economy (acti- on this list of candidates, the project partners were vity 3.3). provided with raw material for extraction, testing This work package includes project partners with
Recommended publications
  • Icelandic Geothermal Kelp – Specifications
    Icelandic Geothermal Kelp – Specifications Laminaria digitata Certified 100% Organic PRODUCT DESCRIPTION Species Laminaria digitata Plant Part Milled Sea Vegetation (whole thallus) Processing Method Sustainable harvest, controlled geothermal low-temperature drying Country of Origin Iceland Primary Active Phytonutrients, Iodine and other micronutrients Recommended Daily Serving 50 milligrams* Particle Size Granules and Powder Color Green Aroma Mild marine odor Taste Salty Storage Dry area Shelf Life Best used within 60-months Packaging 25 kg. (55 lbs.); Multi-walled Kraft bag; easy-pour spout Certificates Certified 100% Organic by QAI; Certified Kosher by Star-K ANALYSIS Activity 2500-7500 ppm (0.25 – 0.75%) Iodine Moisture NMT 10% Test Methods Ash NMT 50% Lead NMT 5 ppm ICP-MS Inorganic Arsenic NMT 30 ppm IC-ICP-MS Cadmium NMT 1.5 ppm ICP-MS Mercury NMT 0.05 ppm ICP-MS Aerobic Plate Count <10,000 CFU/g FDA BAM 3 Total Coliform <1,000 CFU/g FDA BAM 4 Microbial E. coli N/D (<10 CFU/g) FDA BAM 4 Salmonella Negative (ND/25g) AOAC-989.09 Yeast/Mold <2,500 CFU/g each FDA BAM 18 Thorvin contains over 60 minerals, vitamins, amino acids, and beneficial phytonutrients. Thorvin is a 100% natural organic marine algae product; therefore, a specific laboratory analysis may vary from the typical analysis due to naturally occurring fluctuations in the sea plant. The information presented above is believed to be accurate and reliable; however, Thorvin, Inc. makes no warranty, either express or implied, and assumes no liability for this information and the product described herein. These are averages and are not guaranteed as conditions of sale.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Dabberlocks (Alaria esculenta) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters 2008-05-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1291]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., 2008. Alaria esculenta Dabberlocks. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1291.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-05-29 Dabberlocks (Alaria esculenta) - Marine Life Information Network See online review for distribution map Exposed sublittoral fringe bedrock with Alaria esculenta, Isles of Scilly.
    [Show full text]
  • And Red Sea Urchins
    NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA By Johnathan Centoni A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. Sean Craig, Committee Chair Dr. Brian Tissot, Committee Member Dr. Paul Bourdeau, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Erik Jules, Program Graduate Coordinator May 2018 ABSTRACT NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA Johnathan Centoni Red abalone and sea urchins are both important herbivores that potentially compete with each other for resources like food and space along the California coast. Red abalone supported a socioeconomically important recreational fishery during this study (which was closed in 2018) and red sea urchins support an important commercial fishery. Both red sea urchins and red abalone feed on the same macroalgae (including Pterygophora californica, Laminaria setchellii, Stephanocystis osmundacea, Costaria costata, Alaria marginata, Nereocystis leutkeana), and a low abundance of this food source during the period of this project may have created a highly competitive environment for urchins and abalone. Evidence that suggests competition between red abalone and red sea urchins can be seen within data collected during the years of this study (2014-2016): a significantly higher red sea urchin density, concomitant with a significantly lower red abalone density, was observed within areas closed to commercial sea urchin harvest (in MPAs) compared to nearby reference areas open to sea urchin harvest.
    [Show full text]
  • Optimization of Seedling Production Using Vegetative Gametophytes Of
    Optimization of seedling production using vegetative gametophytes of Alaria esculenta Aires Duarte Mestrado em Biologia Funcional e Biotecnologia de Plantas Departamento de Biologia 2017 Orientador Isabel Sousa Pinto, associate professor, CIIMAR Coorientador Jorunn Skjermo, Senior Scientist, SINTEF OCEAN 2 3 Acknowledgments First and foremost, I would like to express my sincere gratitude to: professor Isabel Sousa Pinto of Universidade do Porto and senior research scientist Jorunn Skjermo of SINTEF ocean. From the beginning I had an interest to work aboard with macroalgae, after talking with prof. Isabel Sousa Pinto about this interest, she immediately suggested me a few places that I could look over. One of the suggestions was SINTEF ocean where I got to know Jorunn Skjermo. The door to Jorunn’s office was always open whenever I ran into a trouble spot or had a question about my research. She consistently allowed this study to be my own work, but steered me in the right the direction whenever she thought I needed it. Thank you!! I want to thank Isabel Azevedo, Silje Forbord and Kristine Steinhovden for all the guidance provided in the beginning and until the end of my internship. I would also like to thank the experts who were involved in the different subjects of my research project: Arne Malzahn, Torfinn Solvang-Garten, Trond Storseth and to the amazing team of SINTEF ocean. I also want to thank my master’s director professor Paula Melo, who was a relentless person from the first day, always taking care of her “little F1 plants”. A huge thanks to my fellows Mónica Costa, Fernando Pagels and Leonor Martins for all the days and nights that we spent working and studying hard.
    [Show full text]
  • Seaweed Harvesting and Processing
    FISHERIES DIVERSIFICATION PROGRAM Productivity and Product Enhancement Project Summary: FDP 17 2002 Sea Kelp Health Products Developed and Marketing Goals Pursued This project involves the marketing and development of certain types of seaweed or kelp found near Ramea as new health food products. This project assisted Newfoundland Aqua Products Inc. (NAPI) with the design and con- struction of a prototype food grade product shredder, the hiring of a full-time marketing person and improvements to the company website - www.nfkelp.com. Background Newfoundland Aqua Products Inc. produced and sold the first encapsulated marine plant One of many kelp products available. nutritional supplements every manufactured in Newfoundland at Ramea in 1998. From the Methodology harvesting to the bottling and labeling, all This company has been inspected and is reg- aspects of the creation of these new kelp ulated by the Canadian Food Inspection products were completed in this province. Agency. Their harvesting sites and process- One main goal since those times has been to ing methods are Certified Organic. The try and secure a number of contracts with dis- species available in commercial quantities tributors and manufacturers for their products are Laminaria digitata, Ascophyllum under the SeaviteTM name. The company nodosum, fucus species and alaria esculenta. also sought others who would be interested in The company employs up to 11 people who buying bulk amounts of their products. The harvest the marine vegetables with knives company has been told by a number of busi- and scissors. The company has been careful ness contacts that the marine plant industry to develop a harvesting plan based on an has great potential and is just at the start of its approved crop rotation system with a strong growth potential as people accept marine priority on sustainability.
    [Show full text]
  • Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 29, 2018 Panel Meeting Date: September 24-25, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Lillian C. Becker, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Analyst/Writer Date: August 29, 2018 Subject: Safety Assessment of Brown Algae as Used in Cosmetics Enclosed is the Draft Report of 83 brown algae-derived ingredients as used in cosmetics. (It is identified as broalg092018rep in this pdf.) This is the first time the Panel is reviewing this document. The ingredients in this review are extracts, powders, juices, or waters derived from one or multiple species of brown algae. Information received from the Personal Care Products Council (Council) are attached: • use concentration data of brown algae and algae-derived ingredients (broalg092018data1, broalg092018data2, broalg092018data3); • Information regarding hydrolyzed fucoidan extracted from Laminaria digitata has been included in the report.
    [Show full text]
  • Changes in Subtidal Community Structure Associated with British Columbia Sea Otter Transplants*
    Vol. 7: 13-20, 1982 MARINE ECOLOGY - PROGRESS SERIES Published January 1 Mar. Ecol. Prog. Ser. Changes in Subtidal Community Structure Associated with British Columbia Sea Otter Transplants* Paul A. Breenl, Trudy A. Carson2,J. Bristol ~oste9and E. Anne Stewart3 ' Department of Fisheries and Oceans, Resource Services Branch, Pacific Biological Station, Nanaimo. Brltish Columbia V9R SK6, Canada Ecological Reserves Unit, Ministry of Lands, Parks & Housing. Victoria, British Columbia. Canada Box 26, Bamfield, British Columbia, Canada ABSTRACT: Sea otters Enhydra Iutris were re-introduced into coastal waters of British Columbia, Canada, in 1969-1972, after being hunted to extinction In the previous 2 centuries. In 1979, we visited an area where 55 individuals had been seen in 1978, and we made subtidal observations of the abundance and distribution of red sea urchins, other grazers, and kelps. Earlier observations, made in the area before sea otters were re-introduced, confirmed that changes have taken place in subtidal communities since the re-introduction. Where sea otters had been observed feeding, sea urchins Strongylocentrotus franciscanus were scarce and restricted to crevices or beneath boulders, other grazers were scarce, and kelps colonized the bottom to 10-m depths. The algal communities in these areas appeared to be simple downward extensions of sublittoral fringe communities. Where sea otters had not fed, kelps were limited to shallow water by abundant sea urchins. The observed differences between the 2 types of areas are concluded to have been caused by early ellmlnation of sea urchins by sea otters, as reported in Alaska and California. From the pattern of sea urchin abundance in the general area of the transplant, we were able to delineate the feeding range of this small population of sea otters.
    [Show full text]
  • Kelp Aquaculture
    Aquaculture in Shared Waters Kelp Aquaculture Sarah Redmond1 ; Samuel Belknap2 ; Rebecca Clark Uchenna3 “Kelp” are large brown marine macroalgae species native to New England and traditionally wild harvested for food. There are three commercially important kelp species in Maine—sugar kelp (Saccharina latissima), winged kelp (Alaria esculenta), and horsetail kelp (Laminaria digitata). Maine is developing techniques for culturing kelp on sea farms as a way for fishermen and farmers to diversify their operations while providing a unique, high quality, nutritious vegetable seafood for new and existing markets. Kelp is grown on submerged horizontal long lines on leased sea farms from September to May, making it a “winter crop” for Maine. The simple farm design, winter season, and relatively low startup costs allow for new and existing sea farmers to experiment with this newly developing type of aquaculture on Maine’s coast. “Kelp” can refer to sugar kelp (Saccharina latissima), Alaria (Alaria esculenta), or horsetail kelp (Laminaria digitata). Sugar kelp has been cultivated in Maine for several years, and successful experimental cultivation has been done with species such as Alaria. These photos are examples of the cultivation stages of sugar kelp. Microscopic Seeded kelp line Kelp line at time of kelp seed harvest 1 Sarah Redmond • Marine Extension Associate, Maine Sea Grant College Program and University of Maine Cooperative Extension 33 Salmon Farm Road Franklin, ME • 207.422.6289 • [email protected] 2 Samuel Belknap • University of Maine • 234C South Stevens Hall Orono, ME • 207.992.7726 • [email protected] 3 Rebecca Clark Uchenna • Island Institute • Rockland, ME • 207.691.2505 • [email protected] Is there a viable market for Q: kelps grown in Maine? aine is home to a handful of consumers are looking for healthier industry, the existing producers and Mcompanies that harvest sea alternatives.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 9: 57–71, 2017 AQUACULTURE ENVIRONMENT INTERACTIONS Published February 8§ doi: 10.3354/aei00215 Aquacult Environ Interact OPEN ACCESS Successional changes of epibiont fouling communities of the cultivated kelp Alaria esculenta: predictability and influences A. M. Walls1,*, M. D. Edwards1, L. B. Firth2, M. P. Johnson1 1Irish Seaweed Research Group, Ryan Institute, National University of Ireland, Galway, Ireland 2School of Geography, Earth & Environmental Science, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK ABSTRACT: There has been an increase in commercial-scale kelp cultivation in Europe, with fouling of cultivated kelp fronds presenting a major challenge to the growth and development of the industry. The presence of epibionts decreases productivity and impacts the commercial value of the crop. Several abiotic and biotic factors may influence the occurrence and degree of fouling of wild and cultivated fronds. Using a commercial kelp farm on the SW coast of Ireland, we studied the development of fouling communities on cultivated Alaria esculenta fronds over 2 typical grow- ing seasons. The predictability of community development was assessed by comparing mean occurrence-day. Hypotheses that depth, kelp biomass, position within the farm and the hydrody- namic environment affect the fouling communities were tested using species richness and com- munity composition. Artificial kelp mimics were used to test whether local frond density could affect the fouling communities. Species richness increased over time during both years, and spe- cies composition was consistent over years with early successional communities converging into later communities (no significant differences between June 2014 and June 2015 communities, ANOSIM; R = −0.184, p > 0.05).
    [Show full text]
  • Effect of Environmental History on the Habitat-Forming Kelp Macrocystis
    www.nature.com/scientificreports OPEN Efect of environmental history on the habitat‑forming kelp Macrocystis pyrifera responses to ocean acidifcation and warming: a physiological and molecular approach Pamela A. Fernández1*, Jorge M. Navarro2, Carolina Camus1, Rodrigo Torres3 & Alejandro H. Buschmann1 The capacity of marine organisms to adapt and/or acclimate to climate change might difer among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidifcation (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not difer among populations: elevated temperature reduced growth while OA had no efect on growth − and photosynthesis. However, we observed higher growth rates and NO3 assimilation, and enhanced − expression of metabolic‑genes involved in the NO3 and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter‑population diferences in response to OA and − OW, intrinsic diferences among populations might be related to their natural variability in CO2, NO3 and seawater temperatures driven by coastal upwelling. Further work including additional populations and fuctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might infuence a species’ response to climate change. Anthropogenic climate change, such as global warming and ocean acidifcation (OA) are altering the structure and functioning of terrestrial and marine ecosystems, causing shifs in the distribution and relative abundance of species1–4.
    [Show full text]
  • Factors Structuring Fucus Communities at Open and Complex Coastlines in the Baltic Sea
    Factors structuring Fucus communities at open and complex coastlines in the Baltic Sea Martin Isæus Department of Botany, Stockholm University 2004 © Martin Isæus ISBN 91-7265-846-0 Print Center, Frescati Stockholm 2004 Front page photo by Martin Isæus. Sketched illustrations by Meta Isæus-Berlin. 2 Doctoral dissertation 2004 Martin Isæus Department of Botany Stockholm University SE-106 91 Stockholm Sweden Abstract This thesis deals with physical factors and biological interactions affecting the distribution of two fucoid species, Fucus vesiculosus and F. serratus, in the Baltic Sea. Studies have been carried out in two quite different environments: an archipelago, and an open rocky coast. The archipelago has an extremely long coastline with a heterogeneous submerged landscape of different substrate types, slopes, water qualities, and degrees of wave exposure. The factors influencing F. vesiculosus distribution, morphology and epiphyte composition were studied in the Stockholm archipelago using field surveys and spatial modelling in Geographic information systems (GIS). A GIS-method to estimate wave exposure was developed and validated by comparing the result to an index based on vertical zonation of lichens. Wave exposure was considered an important factor for predicting the distribution of F. vesiculosus by its ability to clean hard surfaces from silt, and a predictive model was constructed based on the information of wave exposure and slope of the shore. It is suggested that the lower distribution boundary of attached F. vesiculosus is set by sediment in sheltered parts of the archipelago, and by light availability in highly wave exposed parts. The morphology of F. vesiculosus was studied over a wave exposure gradient, and several characters responded in accordance with earlier studies.
    [Show full text]
  • Seaweed Aquaculture in Norway: Recent Industrial Developments and Future Perspectives
    Aquacult Int DOI 10.1007/s10499-017-0120-7 Seaweed aquaculture in Norway: recent industrial developments and future perspectives Pierrick Stévant1,2 & Céline Rebours1,3 & Annelise Chapman1 Received: 7 June 2016 /Accepted: 18 January 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The use of cultivated seaweeds as a feedstock for multiple industrial applica- tions has gained increasing interest in the Western World over the past decades. Norway has an extensive coastline and a well-established aquaculture sector offering suitable preconditions for developing large-scale cultivation of seaweed biomass both in mono- culture and in Integrated Multi-Trophic Aquaculture (IMTA) systems. Recent efforts from research, industry and public authorities have been committed to develop a Nor- wegian bio-economy based on cultivated seaweed, focusing on cultivation and process- ing of the biomass. This review reports on the status of seaweed aquaculture in Norway, supported by production data collected since the delivery of the first commercial cultivation permits at sea in 2014. Although novel product developments are currently limited, future industrial perspectives based on cultivated biomass are being discussed. Upscaling from experimental cultivation schemes to commercial production requires a thorough assessment of the risks and benefits associated with seaweed aquaculture, as well as the development of a regulative framework adapted to this industry. Issues associated with upscaling the macroalgal production that needs to be addressed includes (i) genetic interactions between cultivated and wild crops, (ii) impacts of seaweed cultivation on surrounding ecosystems, (iii) epiphytes and diseases, (iv) area utilization and (v) threats from climate change.
    [Show full text]