BROWN ALGAE · HETEROKONTOPHYTA (PART II) Notebook Requirements (12 Drawings) 1

Total Page:16

File Type:pdf, Size:1020Kb

BROWN ALGAE · HETEROKONTOPHYTA (PART II) Notebook Requirements (12 Drawings) 1 BROWN ALGAE · HETEROKONTOPHYTA (PART II) Notebook Requirements (12 drawings) 1. Macrocystis pyrifera – 4 drawings (thallus, scimitar blade (apical end), cross section of sporophyll, and sporophyll blade) 2. Nereocystis leutkeana –2 drawings (thallus and lateral section) 3. Laminaria setchellii – 1 drawings (thallus) 4. Alaria marginata – 1 drawing (thallus and cross section of sporophyll) 5. Egregia menziesii – 1 drawing (at least 2 different blade types and/or terminal blade) 6. Lessoniopsis littoralis – 1 drawing (thallus) 7. Unknowns – 2 Thallus drawings and steps in key C. Order Laminariales Family Laminariaceae Species: Macrocystis pyrifera • Examine and sketch the thallus of M. pyrifera. Label stipe, blades, sporophylls, holdfast, pneumatocysts and location of intercalary meristem • Examine and sketch the apical end of M. pyrifera noting the scimitar blade. • Draw a sporophyll blade and a vegetative blade. Q: Where is each type of blade located on the thallus? How can you visually tell them apart from each other? Species: Nereocystis leutkeana To transport sugars throughout the plant body of this large kelp, Nereocystis (and M. pyrifera) has sieve tubes in the outer medulla. • Draw the thallus of N. leutkeana, label stipe, pneuomatocyst, holdfast sporophylls, and sori (if present). • Prepare and draw a lateral section of the stipe. Identify and label mucilage ducts (if visible - in cortex), sieve plates (in medulla)/sieve elements (trumpet hyphae), cortex and medulla. Work on this together to get a good cross section. Q: What is the purpose of sieve plates? Q: Compare and contrast Macrocystis and Nereocystis: What morphological differences are there? Which species is annual? Which is perennial? What environment are each species found? (hint, check MAC) Q: What is the life history of Laminariales? Q: For algae in Laminariales – Is the macro-thallus (the algae we have in the water table) 1N or 2N? Understand the lifecycle of this order. Species: Laminaria setchellii The holdfast of this species is composed of stiff, branched haptera. Each holdfast produces a single, long stipe. Sori appear as irregular darkened patches on the blades, but not all blades have sori. 1. Examine and draw the overall thallus. Label holdfast, stipe, blade and sori (if present). Family Alariaceae Species: Alaria marginata • Sketch thallus, label holdfast, stipe, terminal blade, midrib, sporophylls and sori (if present) • Draw a cross section through a sorus patch of Alaria, label sporangia, cortex, and medulla. Family Lessoniaceae Species: Egregia menziesii Simplified blade types found in Egregia menziesii. • Draw thallus. Label the rachis (specialized Filiform Blade blade/central axis = “midrib”) and identify and label the blades coming off the rachis (see Stipitate Blade diagram for different types of blades). Also label pneumatocysts. Spatulate Blade Q: Where is the meristematic region of thallus? Pneumatocyst Species: Lessoniopsis littoralis 1. Sketch the thallus of L. littoralis, label stipe, blades, holdfast, sporophylls and sori. (Hint: see your MAC for a description of the sporophylls). H. Unknowns As in previous labs, key to species (and draw) the two unknowns presented to you. Be sure to write out each step of your path through the dichotomous. Life Cycle of the Laminariales Diplohaplontic e.g. Laminaria setchellii antheridia produce sperm 1N zoospores 1N gametophytes syngamy meiosis occurs in oogonium unilocular sporangia sori on 2N adult 2N embryonic sporophyte .
Recommended publications
  • Algae & Marine Plants of Point Reyes
    Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella
    [Show full text]
  • Fucus Vesiculosus Populations?
    l MARINE ECOLOGY PROGRESS SERIES Vol. 133: 191-201.1996 Published March 28 1 Mar Ecol Prog Ser Are neighbours harmful or helpful in Fucus vesiculosus populations? Joel C. Creed*,T. A. Norton, Joanna M. Kain (Jones) Port Erin Marine Laboratory, Port Erin. Isle of Man IM9 6JA, United Kingdom ABSTRACT: In order to investigate the effect of density on Fucus vesjculosus L. at all stages of its development, 2 experiments were carried out. A culture study in the laboratory found that increased density resulted in depressed growth and a negatively skewed population structure during the first month in the lives of freshly settled germlings. Intraspecific competition acts even at this early stage, and the limiting factor was probably nutrients. 'Two-sided' ('resource depletion') competition and an early scramble phase of growth may explain negative skewness in plant sizes. On the shore experi- mental thinning by reduction of the canopy resulted in increased macrorecruitment (apparent density) from a bank of microscopic plants which must have been present for some time. With increased thinning more macrorecruits loined the remaining plants, making population size structures highly posit~velyskewed. Thinning had no effect on reproduction In terms of the portion of biomass as repro- ductive tissue. Manipulative weedlng allows an assessment of the potent~alspore bank in seasonally reproductive seaweeds and revealed that there are always replacement plants in reserve to compen- sate for canopy losses. In E vesiculosus the performance of individuals early on is crucial to their sub- sequent survival to reproductive stage, as neighbours are generally competitively harmful. However, a failure to 'win' early on may not necessarily result in the ending of a small plant's life - the 'seed' bank still offers the individual a slim chance of survival and protects the population from harmful stochastic events KEY WORDS: Culture .
    [Show full text]
  • Icelandic Geothermal Kelp – Specifications
    Icelandic Geothermal Kelp – Specifications Laminaria digitata Certified 100% Organic PRODUCT DESCRIPTION Species Laminaria digitata Plant Part Milled Sea Vegetation (whole thallus) Processing Method Sustainable harvest, controlled geothermal low-temperature drying Country of Origin Iceland Primary Active Phytonutrients, Iodine and other micronutrients Recommended Daily Serving 50 milligrams* Particle Size Granules and Powder Color Green Aroma Mild marine odor Taste Salty Storage Dry area Shelf Life Best used within 60-months Packaging 25 kg. (55 lbs.); Multi-walled Kraft bag; easy-pour spout Certificates Certified 100% Organic by QAI; Certified Kosher by Star-K ANALYSIS Activity 2500-7500 ppm (0.25 – 0.75%) Iodine Moisture NMT 10% Test Methods Ash NMT 50% Lead NMT 5 ppm ICP-MS Inorganic Arsenic NMT 30 ppm IC-ICP-MS Cadmium NMT 1.5 ppm ICP-MS Mercury NMT 0.05 ppm ICP-MS Aerobic Plate Count <10,000 CFU/g FDA BAM 3 Total Coliform <1,000 CFU/g FDA BAM 4 Microbial E. coli N/D (<10 CFU/g) FDA BAM 4 Salmonella Negative (ND/25g) AOAC-989.09 Yeast/Mold <2,500 CFU/g each FDA BAM 18 Thorvin contains over 60 minerals, vitamins, amino acids, and beneficial phytonutrients. Thorvin is a 100% natural organic marine algae product; therefore, a specific laboratory analysis may vary from the typical analysis due to naturally occurring fluctuations in the sea plant. The information presented above is believed to be accurate and reliable; however, Thorvin, Inc. makes no warranty, either express or implied, and assumes no liability for this information and the product described herein. These are averages and are not guaranteed as conditions of sale.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Sugar kelp (Saccharina latissima) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White & Charlotte Marshall 2007-09-06 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1375]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. & Marshall, C.E. 2007. Saccharina latissima Sugar kelp. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1375.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-09-06 Sugar kelp (Saccharina latissima) - Marine Life Information Network See online review for distribution map Buoy line with Saccharina latissima.
    [Show full text]
  • 27April12acquatic Plants
    International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange,
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Dabberlocks (Alaria esculenta) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters 2008-05-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1291]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., 2008. Alaria esculenta Dabberlocks. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1291.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-05-29 Dabberlocks (Alaria esculenta) - Marine Life Information Network See online review for distribution map Exposed sublittoral fringe bedrock with Alaria esculenta, Isles of Scilly.
    [Show full text]
  • And Red Sea Urchins
    NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA By Johnathan Centoni A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. Sean Craig, Committee Chair Dr. Brian Tissot, Committee Member Dr. Paul Bourdeau, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Erik Jules, Program Graduate Coordinator May 2018 ABSTRACT NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA Johnathan Centoni Red abalone and sea urchins are both important herbivores that potentially compete with each other for resources like food and space along the California coast. Red abalone supported a socioeconomically important recreational fishery during this study (which was closed in 2018) and red sea urchins support an important commercial fishery. Both red sea urchins and red abalone feed on the same macroalgae (including Pterygophora californica, Laminaria setchellii, Stephanocystis osmundacea, Costaria costata, Alaria marginata, Nereocystis leutkeana), and a low abundance of this food source during the period of this project may have created a highly competitive environment for urchins and abalone. Evidence that suggests competition between red abalone and red sea urchins can be seen within data collected during the years of this study (2014-2016): a significantly higher red sea urchin density, concomitant with a significantly lower red abalone density, was observed within areas closed to commercial sea urchin harvest (in MPAs) compared to nearby reference areas open to sea urchin harvest.
    [Show full text]
  • Macrocystis Mariculture in Chile : Growth Performance of Heterosis
    Erschienen in: Journal of Applied Phycology ; 23 (2011), 5. - S. 819-825 https://dx.doi.org/10.1007/s10811-010-9581-z Macrocystis mariculture in Chile: growth performance of heterosis genotype constructs under field conditions Renato Westermeier & David J. Patiño & Pedro Murúa & Dieter G. Müller Abstract Recent progress in Macrocystis mariculture is Introduction based on clonal stock cultures of gametophyte parents. Batches of up to 105 genetically identical sporophyte Macrocystis (giant kelp) is an important natural resource in seedlings can be produced at any time in the laboratory the coastal waters of Chile. Dried material is used for and explanted in the field for production of biomass. Sexual alginate production, while fresh fronds are harvested in crosses of selected Macrocystis pyrifera gametophyte large quantities as food for mariculture of herbivorous high- parents of different geographic origin along the coast of value mollusks (abalone, Haliotis rufescens and H. discus Chile showed heterosis and produced sporophyte batches hannai). Intense harvesting pressure on natural kelp beds with superior growth performance. Starting from zygotes, has led to over-exploitation damage (Vásquez 2008). This after 10 weeks in the laboratory and 5 months in the sea, situation calls for efforts to supplement the available kelp our best hybrid genotypes grew up to 11 kg fresh weight biomass by laboratory-based culture methods. per frond, which corresponds to 66 kg m 1 of line in a Traditional mariculture techniques make use of meio- commercial mariculture installation. In contrast, average spores from natural populations, which are collected and yields of 14.4 and 22 kg m 1 are reported in the literature manipulated to settle on ropes in laboratory tanks.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Phaeophyceae – the Brown Algae
    Phaeophyceae – The Brown Algae Anyone who has walked along the California seashore can easily recognize that brown algae are among the most conspicuous representatives of our local marine flora. In addition to a plethora of intertidal species, brown algae comprise the impressive kelp forests that characterize subtidal regions of California waters and those of many other regions of the world, especially along shores where coastal upwelling occurs. The brown algae, of which there are approximately 225 genera and 1400 species, are almost entirely found in the marine environment. They are the predominant algae in terms of biomass in the intertidal and subtidal zones of polar, boreal and cold temperate waters, getting progressively less abundant as latitude decreases. With the exception of a few species, they are not generally found in at depths greater than ca. 25 meters. Certain brown algae, such as the giant kelp Macrocystis, are the largest of the nonvascular plants and may reach in excess of 150 feet. Plants as large as this are found along the West Coast of North America, from Alaska to Baja California. The greatest degree of tissue differentiation found in the algae occurs in this group. No unicellular or colonial forms are known and only certain reproductive stages (zoospores and some gametes) are planktonic. The evolutionary origins of these organisms remain obscure. Many brown algae are commercially valuable either for human consumption, or as a source of natural chemicals, such as alginic acid. Many species of brown algae contain toxic chemicals as a defense against herbivores. Some systematic treatments of algae consider that the brown algae comprise a separate taxonomic Division – The Phaeophyta whereas many texts include them as a class, the Phaeophyceae in the Division Chromophyta.
    [Show full text]
  • Processing of Allochthonous Macrophyte Subsidies by Sandy Beach Consumers: Estimates of Feeding Rates and Impacts on Food Resources
    Mar Biol DOI 10.1007/s00227-008-0913-3 RESEARCH ARTICLE Processing of allochthonous macrophyte subsidies by sandy beach consumers: estimates of feeding rates and impacts on food resources Mariano Lastra · Henry M. Page · Jenifer E. Dugan · David M. Hubbard · Ivan F. Rodil Received: 29 January 2007 / Accepted: 8 January 2008 © Springer-Verlag 2008 Abstract Allochthonous subsidies of organic material impact on drift macrophyte processing and fate and that the can profoundly inXuence population and community struc- quantity and composition of drift macrophytes could, in ture; however, the role of consumers in the processing of turn, limit populations of beach consumers. these inputs is less understood but may be closely linked to community and ecosystem function. Inputs of drift macro- phytes subsidize sandy beach communities and food webs Introduction in many regions. We estimated feeding rates of dominant sandy beach consumers, the talitrid amphipods (Megalor- Allochthonous inputs of organic matter can strongly inXu- chestia corniculata, in southern California, USA, and Tali- ence population and community structure in many eco- trus saltator, in southern Galicia, Spain), and their impacts systems (e.g., Polis and Hurd 1996; Cross et al. 2006). on drift macrophyte subsidies in Weld and laboratory exper- Such eVects are expected to be greatest where a highly iments. Feeding rate varied with macrophyte type and, for productive system interfaces with and exports materials to T. saltator, air temperature. Size-speciWc feeding rates of a relatively less productive system (Barrett et al. 2005). talitrid amphipods were greatest on brown macroalgae Ecosystems that are subsidized by allochthonous inputs (Macrocystis, Egregia, Saccorhiza and Fucus).
    [Show full text]
  • Getative Tissues; the GDBH Predicts Metabolic Costs Associated with Them
    J. Phycol. 35, 483±492 (1999) PHLOROTANNIN ALLOCATION AMONG TISSUES OF NORTHEASTERN PACIFIC KELPS AND ROCKWEEDS1 Kathryn L. Van Alstyne2 Department of Zoology, Oregon State University, Corvallis, Oregon 97331 James J. McCarthy III, Cynthia L. Hustead, and Laura J. Kearns Department of Biology, Kenyon College, Gambier, Ohio 43022 Optimal defense theory (ODT) predicts antiher- Abbreviations: DM, dry mass; GDBH, growth±dif- bivore defensive compounds will be allocated so ferentiation balance hypothesis; ODT, optimal de- that the most valuable or most susceptible tissues fense theory will be best defended. The growth±differentiation balance hypothesis (GDBH) predicts that defense al- location will be a result of trade-offs between growth Plants allocate materials and energy among criti- and defense. Thus, these two theories predict op- cal functions such as maintenance, growth, repro- posite allocation patterns with respect to ``valuable,'' duction, and defense (Bazazz and Grace 1997 and actively growing meristematic and reproductive tis- citations therein). It is widely assumed the total sues. ODT predicts that meristems and reproductive amount of resources available for these functions is tissues should have higher defense levels than non- limited and all of these functions have signi®cant meristematic vegetative tissues; the GDBH predicts metabolic costs associated with them. Consequently, the defense levels of meristems and reproductive over evolutionary time there should be selection for tissues will be lower than vegetative tissues. We ex- individuals to distribute resources among functions amined allocation patterns of phlorotannins in 21 in ways that maximize overall ®tness, assuming that species of kelps (Order Laminariales) and rock- allocation strategies are not limited by physiological weeds (Order Fucales) from nine sites on the west or other constraints.
    [Show full text]