March 2019 NUCLEUS 2-22-19Web

Total Page:16

File Type:pdf, Size:1020Kb

March 2019 NUCLEUS 2-22-19Web DED UN 18 O 98 F http://www.nesacs.org N Y O T R E I T H C E N O A E S S S L T A E A C R C I N S M S E E H C C TI N O CA March 2019 Vol. XCVII, No.7 N • AMERI Monthly Meeting 2018 Richards Award to Chad A. Mirkin at Harvard Who Was Theodore William Richards? By M. S. Simon Volunteering with the United States Pharmacopeia By Chris Moreton Carolyn R. Bertozzi to Receive 2019 Esselen Award rings of Saturn through a four-inch tele- and precise. Hence, in trying to satisfy Who was scope by Professor Josiah Parsons a desire which had as its object the dis- Cooke, Jr. of Harvard while the family covery of more knowledge concerning Theodore was at Newport, R.I. the fundamental nature of things, one At ten he was making Pharaoh’s naturally assigns to the atomic weights Serpents with mercuric thiocyanate and an important place.” William coloring flames with various salts. He In the following years Richards and obtained money to set up a chemistry his students (if we include independent Richards? laboratory when he was 13 by printing work of Baxter and Hönigschmid, who on a hand press, copywriting, and sell- had been trained by him) determined the by M.S. Simon ing an edition of his mother’s sonnets. atomic weight of 55 of the 92 known el- Adapted from The NUCLEUS, 1996 (3) He was allowed to attend chemistry ements, in many cases in parts per ten 4 ff lectures at the University of Pennsylva- thousand, in some, parts per hundred nia, and at 14 entered and studied chem- thousand. All of the elements whose The first award of what, at that time, istry at Haverford. He received the atomic weights were the basis for deter- was known as the Theodore William Bachelor of Science at 17. He went to mining the atomic weights of other ele- Richards Gold Medal (the medal is still Harvard to study under Cooke and re- ments were determined. His work on gold, with a silver replica for informal ceived a Bachelor of Arts and, at 20, lead from uranium and from non-ra- display) was made to Arthur Amos after a year of very difficult research in dioactive sources advanced acceptance Noyes in 1932. The Section Chairman, which he demonstrated exceptional ex- of the theory of isotopes, the only con- William Ryan, introduced the occasion perimental skills in determining the clusive evidence until the development with the following quotation by Henry atomic weight ratio of oxygen to hydro- of the mass spectrograph. Watterson: gen in water, earned the Ph.D. degree. He was always respectful to those A mound of earth a little higher graded A year in Europe gave him the opportu- on whose shoulders he was standing, J.J. Perhaps upon a stone a chiselled name, nity of studying analytical techniques at Berzelius and J.S. Stas, pioneers in A daub of printer’s ink soon blurred and Göttingen and visiting important labo- atomic weight determination, but when faded ratories in Germany, France, England, his superior methods showed that the And then — oblivion. That — that is and Switzerland. Stas values had to be revised, he took fame. He returned to Harvard in 1889 as the mantle on his own shoulders. A an assistant and remained there for the modest man, only after searching dili- Ryan went to point out that Watterson, rest of his years. When Cooke died, in gently for his own possible errors would as an observer in national politics, had 1892, Richards, already an assistant pro- he conclude that the Stas work had to be developed a cynical attitude toward self- fessor, was sent to Ostwald at Leipzig superseded. seeking politicians, and Ryan contrasts and Nernst at Göttingen to prepare him- He was guided to success by “his the impermanence of reputation of such self to become the instructor in physical ability to foresee all sources of error and with the seekers of truth for truth’s sake chemistry. His rise to full professorship possible calamities which the average for whom true fame is imperishable. at Harvard in 1901 came quickly, when investigator would have overlooked With reference to Richards he said, Göttingen attempted to recruit him. completely,” reported his son-in-law, “True fame ... lives on, not merely to His early work centered one what James B. Conant. perpetuate the name of the individual at the time was one of the major scien- Richards put it thus, “Every sub- and his accomplishments, but rather to tific problems, that of determining exact stance must be assumed to be impure, inspire and encourage others who are atomic weights. He explained his every reaction must be assumed to be in- serving similar ends.” choice, “not merely because I felt more complete, every method of measurement But in our age, when only “fifteen competent in that direction than in any must be assumed to contain some con- minutes” of fame are allowed, it be- other, but also because atomic weights stant error, until proof to the contrary hooves us to keep alive the names and seemed to be one of the primal mysteries can be obtained. As little as possible accomplishments of our predecessors in of the universe. They are values which must be taken for granted.” chemistry. The Northeastern Section has no man by taking thought can change. It is illuminating to consider that many great chemists, but the earliest of They seem to be independent of place much of his work was conducted in the internationally renowned was and time. They are silent witnesses of the Boylston Hall, where his laboratory had Theodore William Richards. His Nobel very beginnings of the universe, and the been a stockroom, where the iron sashes Prize in Chemistry, awarded in 1914, half-hidden, half-disclosed symmetry of of the fume hood rained rust, and a flood was the first given an American chemist. the periodic system of the elements only on the floor above caused the ceiling to He was born in Germantown in enhances one’s curiosity about them. collapse on him; where fumes from else- 1868, was educated at home by his Moreover, among the many properties where in the building could ruin his ex- mother, a poet, and his father, a marine possessed by an element, the atomic periments. Finally, the Wolcott Gibbs artist. He became interested in science weight seems one of the most definite at the age of six when he was shown the continued on page 8 2 The Nucleus March 2019 The Northeastern Section of the American- Chemical Society, Inc. Contents Office: Anna Singer, 12 Corcoran Road, Burlington, MA 01803 (Voice or FAX) (781) 272-1966. Who Was Theodore William Richards? 2 e-mail: [email protected] ______________________ NESACS Homepage: By Myron S. Simon http://www.NESACS.org Officers 2019 Carolynn R. Bertozzi to Receive 2019 Esselen Award 4 Chair __________ Andrew Scholte Sanofi-Genzyme Monthly Meeting 5 153 2nd Ave _______________________________________ Waltham, MA 02451-1122 Richards Award Meeting at Harvard, Chad A. Mirkin, Northwestern University, [email protected] to receive 2018 Richards Award. Chair-Elect Anna W. Sromek Volunteering with the United States Pharmacopeia 6 115 Mill Street, ____________ Belmont, MA 02478 [email protected] Past Recipients of the Theodore Williams Richards Award 8 Immediate Past Chair ______ Mindy Levine 2019 Quantum Matters Competition 9 35 Cottage St _______________________ Sharon, MA 02067-2130 (516)697-9688 Professor Joseph S. Francisco to speak at Northeastern 10 [email protected] ______ Secretary Michael Singer Invite for the CCEW Event at the Museum of Science Boston 11 MilliporeSigma ___ 400 Summit Drive, Burlington, MA 01803 (781)-229-7037, Photos from the January Monthly Meeting 12 [email protected] __________________ Treasurer By Brian D’Amico Ashis Saha 67 Bow St A Cartoon by Sidney Harris 14 Arlington, MA 02474-2744 ______________________________ (978)212-5462 Business Directory 15 [email protected] ____________________________________ Archivist Ken Mattes Seminar Calendar 16 Trustees _____________________________________ Dorothy Phillips, Ruth Tanner, Peter C. Meltzer Cover: Directors-at-Large 2018 Richards Award Recipient, Professor Chad A. Mirkin, Northwest- David Harris, June Lum, Michael P. Filosa, ern University (Photograph by Matt Gilson). John M. Burke, James U. Piper, Ralph Scannell Councilors/Alternate Councilors Editorial Deadlines: Term Ends 12/31/2019 May 2019 Issue: March 22, 2019 Thomas R. Gilbert Mary A. Mahaney Summer-September Issue: July 22, 2019 Mary Jane Shultz Jerry P. Jasinski Michael Singer Matthew M. Jacobsen Lisa Marcaurelle Ajay Purohit Leland L. Johnson, Jr. Hicham Fenniri Term Ends 12/31/2020 Michael P. Filosa Sonja Strah-Pleynet Carol Mulrooney Patrick M. Gordon Patricia A. Mabrouk Patrick Cappillino The Nucleus is published monthly, except June and August, by the Northeastern Section of the American Anna Sromek Raj (SB) Rajur Chemical Society, Inc. Forms close for advertising on the 1st of the month of the preceding issue. Text Sofia A. Santos Ashis Saha must be received by the editor six weeks before the date of issue. Term Ends 12/31/2021 Editor: Michael P. Filosa, Ph.D., 18 Tamarack Road, Medfield, MA 02052 Email: Catherine E. Costello Kenneth Mattes Ruth Tanner Joshua Sacher [email protected]; Tel: 508-843-9070 Andrew Scholte Mariam Ismail Associate Editors: Myron S. Simon, 60 Seminary Ave. apt 272, Auburndale, MA 02466 June Lum Malika Jeffries-EL Morton Z. Hoffman, 23 Williams Rd., Norton, MA 02766 Morton Z. Hoffman Dajit Matharu Board of Publications: Ajay Purohit (Chair), Mary Mahaney, Ken Drew, Katherine Lee, Katherine Rubino All Chairs of standing Business Manager: Vacant: contact Michael Filosa at [email protected] Committees, the editor of THE NUCLEUS, and Advertising Manager: Vacant: contact Michael Filosa at [email protected] the Trustees of Section Calendar Coordinator: Samurdhi Wijesundera, Email: [email protected] Funds are members of the Photographers: Brian D’Amico, Morton Z.
Recommended publications
  • Como Citar Este Artigo Número Completo Mais Informações Do
    Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação ISSN: 1518-2924 Programa de Pós-graduação em Ciência da Informação - Universidade Federal de Santa Catarina STANFORD, Jailiny Fernanda Silva; SILVA, Fábio Mascarenhas e Prêmio Nobel como fator de influência nas citações dos pesquisadores: uma análise dos laureados de Química e Física (2005 - 2015) Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, vol. 26, e73786, 2021, Janeiro-Abril Programa de Pós-graduação em Ciência da Informação - Universidade Federal de Santa Catarina DOI: https://doi.org/10.5007/1518-2924.2021.e73786 Disponível em: https://www.redalyc.org/articulo.oa?id=14768130002 Como citar este artigo Número completo Sistema de Informação Científica Redalyc Mais informações do artigo Rede de Revistas Científicas da América Latina e do Caribe, Espanha e Portugal Site da revista em redalyc.org Sem fins lucrativos acadêmica projeto, desenvolvido no âmbito da iniciativa acesso aberto Artigo Original Prêmio Nobel como fator de influência nas citações dos pesquisadores: uma análise dos laureados de Química e Física (2005 - 2015) Nobel Prize as an influencing factor in researchers' citations: an analysis of Chemistry and Physics laureates (2005 to 2015) Jailiny Fernanda Silva STANFORD Mestre em Ciência da Informação (PPGCI/UFPE) Bibliotecária-chefe Seminário Teológico Batista do Norte do Brasil (STBNB), Recife, Brasil [email protected] https://orcid.org/0000-0003-2112-6561 Fábio Mascarenhas e SILVA Doutor em Ciência da Informação (USP), Professor Associado Universidade Federal de Pernambuco, Departamento de Ciência da Informação, Recife, Brasil [email protected] https://orcid.org/0000-0001-5566-5120 A lista completa com informações dos autores está no final do artigo RESUMO Objetivo: Analisa a influência nos índices de citação por parte dos pesquisadores que foram contemplados pelo prêmio Nobel nas áreas da Física e Química no período de 2005 a 2015.
    [Show full text]
  • Physical Chemistry
    The Journal of Physical Chemistry 0 Copyright 1993 by the American Chemical Society VOLUME 97, NUMBER 12, MARCH 25,1993 .. " .. ",.. I~.__ 1, ~,.... ", Photograph eaurlcry of Stanlord University Viiud SIrriecr Harden M. Mcconnelk A Celebration of His Scientific Achievements Harden McConnell is a scientist of great imagination and originality. He has made major contributions to theoretical and experimental chemistry for over forty years. On April4.1992, tocoincidewith theAmericanchemicalsociety Meetinginsan Francisco, approximately 100 of his present and former students, colleagues, and friends held a scientific meeting at Stanford to honor the McConnells on Harden's 65th birthday. As part of the celebration, and with the encouragement of Mostafa El-Sayed, Editor, this issue of The Journal of Physical Chemistry was planned. A special issue of the Biophysical Journal is being published concurrently to present the more biological work of McConnell's former students and colleagues. These two publications provide a glimpse of the broad scope of activities and careers influenced by Harden McConnell, ranging from molecular quantum mechanics to immunology. C022-36S4/93/2097-2805S04.C0/0 0 1993 American Chemical Society 2806 The Journal of Physical Chemistry, Vol. 97, No. 12. 1993 Biographical Summary Harden M. McConnell was born on July 18, 1927, in Richmond, VA. He earned a B.S. degree in chemistry from George Washington University in 1947, and his Ph.D. in chemistry from the California Instituteof Technology in 1951 with Norman Davidson. After serving for two years as a National Research Fellow in physics at the University of Chicago with Robert S. Mulliken and John Platt, he held a position as research chemist at Shell Development Co.
    [Show full text]
  • R. Stephen Berry 1931–2020
    R. Stephen Berry 1931–2020 A Biographical Memoir by Stuart A. Rice and Joshua Jortner ©2021 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. RICHARD STEPHEN BERRY April 9, 1931–July 26, 2020 Elected to the NAS, 1980 We have prepared this memoir to bear witness to the life of R. Stephen (Steve) Berry, with emphasis on the view that a memorial is about reminding ourselves and others of more than his many and varied contributions to science; it is also to remind us of his personal warmth and freely offered friendship, of his generous support for all of us in a variety of situations, and of his loyalty to his friends and the institutions he served. The record of an individ- ual’s accomplishment is commonly taken to define his/ her legacy. Using that protocol, creative scientists are fortunate in that their contributions are visible, and those contributions endure, or not, on their own merits. Steve Berry was one of the most broadly ranging and influen- tial scientists in the world. His seminal experimental and By Stuart A. Rice theoretical contributions are distinguished by a keen eye and Joshua Jortner for new concepts and innovative and practical analyses. These contributions, which are remarkable in both scope and significance, have helped to shape our scientific perception. They have had, and continue to have, great influence on the development of chemistry, biophysics materials science, the science and technology related to the use, production, and conservation of energy, the societal applications of science and technology, and national and international science policy.
    [Show full text]
  • Sequencing As a Way of Work
    Edinburgh Research Explorer A new insight into Sanger’s development of sequencing Citation for published version: Garcia-Sancho, M 2010, 'A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77', Journal of the History of Biology, vol. 43, no. 2, pp. 265-323. https://doi.org/10.1007/s10739-009- 9184-1 Digital Object Identifier (DOI): 10.1007/s10739-009-9184-1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Journal of the History of Biology Publisher Rights Statement: © Garcia-Sancho, M. (2010). A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77. Journal of the History of Biology, 43(2), 265-323. 10.1007/s10739-009-9184-1 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 THIS IS AN ADVANCED DRAFT OF A PUBLISHED PAPER. REFERENCES AND QUOTATIONS SHOULD ALWAYS BE MADE TO THE PUBLISHED VERION, WHICH CAN BE FOUND AT: García-Sancho M.
    [Show full text]
  • Biochemistrystanford00kornrich.Pdf
    University of California Berkeley Regional Oral History Office University of California The Bancroft Library Berkeley, California Program in the History of the Biosciences and Biotechnology Arthur Kornberg, M.D. BIOCHEMISTRY AT STANFORD, BIOTECHNOLOGY AT DNAX With an Introduction by Joshua Lederberg Interviews Conducted by Sally Smith Hughes, Ph.D. in 1997 Copyright 1998 by The Regents of the University of California Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the Nation. Oral history is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well- informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is indexed, bound with photographs and illustrative materials, and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. ************************************ All uses of this manuscript are covered by a legal agreement between The Regents of the University of California and Arthur Kornberg, M.D., dated June 18, 1997. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley.
    [Show full text]
  • Dioxygen Activation in Soluble Methane Monooxygenase
    Dioxygen Activation in Soluble Methane Monooxygenase The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Tinberg, Christine E., and Stephen J. Lippard. “Dioxygen Activation in Soluble Methane Monooxygenase.” Accounts of Chemical Research 44.4 (2011): 280–288. As Published http://dx.doi.org/10.1021/ar1001473 Publisher American Chemical Society Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/69856 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Dioxygen Activation in Soluble Methane Monooxygenase† Christine E. Tinberg and Stephen J. Lippard* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to) * To whom correspondence should be addressed. E-mail: [email protected]. Telephone: (617) 253-1892. Fax: (617) 258-8150. †Work from our laboratory discussed in this Account was funded by grant GM032134 from the National Institute of General Medical Sciences. 1 CONSPECTUS The controlled oxidation of methane to methanol is a chemical transformation of great industrial importance that is underutilized because of inefficient and costly synthetic procedures. Methane monooxygenase enzymes (MMOs) from methanotrophic bacteria achieve this chemistry efficiently under ambient conditions. In this Account we discuss the first step in the oxidation of methane at the carboxylate-bridged diiron active site of the soluble MMO (sMMO), namely, the reductive activation of atmospheric O2.
    [Show full text]
  • Anfinsen Experiments
    Lecture Notes - 2 7.24/7.88J/5.48J The Protein Folding Problem Handouts: An Anfinsen paper Reading List Anfinsen Experiments The Problem of the title refers to how the amino acid sequence of a polypeptide chain determines the folded three-dimensional organization of the chain: • Does the sequence determine the structure?? • Protein Denaturation • Emergence of the Problem • Ribonuclease A • Refolding of ribonuclease in vitro. A. Protein Denaturation/Inactivation One of the features that identified proteins as distinctive polymers was 1) Unusual phase transition in semi purified proteins When exposed to relatively gentle conditions outside the range of physiological • heat • pH • salt • organic solvents, e.g. alcohols Lets consider the familiar transition I mentioned last week; • Heat denaturation; cooking the white of an egg • Acid denaturation; Milk turning sour Macroscopic changes in bulk solution; scatters visible light, increase in viscosity - white of egg: >>heat; opaque, hard; cool down; no change: Coagulation, Aggregation, precipitation, denaturation: One of the components is egg white lysozyme: activity assay; hydrolysis of bacterial cell walls: Activity remaining vs. temperature on same axes This transition: is Denaturation. These transitions were in general found to be irreversible: activity was not recovered upon cooling: Historically the study of the folding and unfolding of proteins emerged from trying to understand this unusual change of state or phase transitions. B. Emergence of the Protein Folding Problem In the period 1958-1960, the first structure of a protein molecule - myoglobin, the oxygen binding protein of muscle - was solved by John Kendrew in 1958, followed soon after by the related tetrameric red blood cell oxygen binding protein, hemoglobin, solved by Max Perutz, both of the British Medical Research Council Labs in Cambridge, U.K.
    [Show full text]
  • Pauling-Linus.Pdf
    NATIONAL ACADEMY OF SCIENCES L I N U S C A R L P A U L I N G 1901—1994 A Biographical Memoir by J A C K D. D UNITZ Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. LINUS CARL PAULING February 28, 1901–August 19, 1994 BY JACK D. DUNITZ INUS CARL PAULING was born in Portland, Oregon, on LFebruary 28, 1901, and died at his ranch at Big Sur, California, on August 19, 1994. In 1922 he married Ava Helen Miller (died 1981), who bore him four children: Linus Carl, Peter Jeffress, Linda Helen (Kamb), and Edward Crellin. Pauling is widely considered the greatest chemist of this century. Most scientists create a niche for themselves, an area where they feel secure, but Pauling had an enormously wide range of scientific interests: quantum mechanics, crys- tallography, mineralogy, structural chemistry, anesthesia, immunology, medicine, evolution. In all these fields and especially in the border regions between them, he saw where the problems lay, and, backed by his speedy assimilation of the essential facts and by his prodigious memory, he made distinctive and decisive contributions. He is best known, perhaps, for his insights into chemical bonding, for the discovery of the principal elements of protein secondary structure, the alpha-helix and the beta-sheet, and for the first identification of a molecular disease (sickle-cell ane- mia), but there are a multitude of other important contri- This biographical memoir was prepared for publication by both The Royal Society of London and the National Academy of Sciences of the United States of America.
    [Show full text]
  • Chad A. Mirkin, Ph.D
    Chad A. Mirkin, Ph.D. Controlling the architecture of bio- or nonbio-materials in nanometer length scale and the application of such structures in the development of new technologies in diverse areas, such as chemical and biological sensing, gene regulation, lithography, catalysis, optics, and energy generation, storage, and conversion, are recognized to be one of the hottest research area. Chad Mirkin, who is a chemist, chemical engineer, and world-renowned expert in nanoscience, has contributed significantly in this field. He has pioneered the use of nanoparticle-biomolecule conjugates as synthons in materials science, their novel applications to extra- and intra-cellular diagnostic and therapeutic tools, and Dip-Pen Nanolithography. A common strategy used by Mirkin’s group is the use of the unique properties of spherical nucleic acids (SNAs), spherical arrangements of nucleic acids with or without organic or inorganic nanoparticle cores, to enable the synthesis of novel materials and development of highly sensitive probes for chemical and medical purposes. He is one of today’s most celebrated chemists for his discovery and development of SNAs and many medical diagnostic and therapeutic technologies, the invention of Dip-Pen Nanolithography (recognized by National Geographic as one of the top 100 scientific discoveries that changed the world), and significant contributions to supramolecular chemistry, nanoelectronics, and nanooptics. He is the author of over 700 manuscripts and over 1000 patents worldwide (over 300 issued), and the founder of six companies including Nanosphere, Nanolnk, AuraSense, Exicure, TERA-print, and CDJ, which are commercializing nanotechnology applications in the life science and semiconductor industries. He was an eight-year Member of the President’s Council of Advisors on Science & Technology (PCAST, Obama Administration), and the only chemist to be elected to all three US National Academies.
    [Show full text]
  • Department of Chemistry
    Department of Chemistry In the 2005–2006 academic year, the Department of Chemistry continued its strong programs in undergraduate and graduate education. Currently there are 245 graduate students, 93 postdoctoral researchers, and 92 undergraduate chemistry majors. As of July 1, 2006, the Department faculty will comprise 32 full-time faculty members including 5 assistant, 4 associate, and 23 full professors, one an Institute Professor. In the fall, Professor Joseph P. Sadighi was promoted to associate professor without tenure, effective July 1, 2006; in the spring, Professor Timothy F. Jamison was promoted to associate professor with tenure, also effective July 1, 2006. In September 2005, Professor Arup K. Chakraborty took up a joint senior appointment as the Robert T. Haslam professor of chemical engineering, professor of chemistry, and professor of biological engineering. Professor Chakraborty obtained his PhD in chemical engineering at the University of Delaware. He came to MIT from the University of California at Berkeley, where he served as the Warren and Katherine Schlinger distinguished professor and chair of chemical engineering, and professor of chemistry from 2001 to 2005. Highlights The Department of Chemistry had a wonderful year. On October 2, 2005, we learned that Professor Richard R. Schrock, Frederick G. Keyes professor of chemistry, had won the 2005 Nobel Prize in chemistry for the development of a chemical reaction now used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other products. Schrock Professor Richard R. Schrock speaking at a press shared the prize with Yves Chauvin of the conference at MIT on October 5, 2005.
    [Show full text]
  • John D. Roberts
    John D. (Jack) Roberts 1918 – 2016 John D. Roberts, the Institute Professor of Chemistry, Emeritus, and one of the most influential chemists of the 20th century, passed away on October 29, 2016 at the age of 98 following a stroke. John Dombrowski “Jack” Roberts was born on June 8, 1918 in Los Angeles, California. He spent most of his 98 years in Southern California and witnessed first hand its transformation from a reasonably under- populated region into one of the world’s busiest metropolitan areas. In fact, Jack (or “JDR” as he was oft referred in the labs at Caltech) was born essentially right underneath what is now the famous four level interchange connecting the 101 and 110 freeways in modern day downtown LA. JDR also witnessed the growth and explosion of science and in particular chemistry over that century span. As summarized in his J. Org. Chem. 2009, 74, 4897-4917 article and numerous talks over the later part of his life, the explosion of instrumentation capabilities available to the organic chemist progressed in the course of his scientific career from no less than the melting point apparatus to some of the most advanced instruments on the planet. Without doubt, the advances most influential to JDR’s monumental career in chemistry were the advent of nuclear magnetic resonance (NMR) spectroscopy and the accompanying explosion in computing. Combined, these tools greatly facilitated the insightfully designed experimentation and careful analyses that became the hallmark of JDR’s career. It is clear that Jack’s thoroughgoing nature combined with his deep understanding of instrumentation and fundamental chemistry served as an inspiration to nearly four generations of scientists.
    [Show full text]
  • National Academy of Sciences July 1, 1979 Officers
    NATIONAL ACADEMY OF SCIENCES JULY 1, 1979 OFFICERS Term expires President-PHILIP HANDLER June 30, 1981 Vice-President-SAUNDERS MAC LANE June 30, 1981 Home Secretary-BRYCE CRAWFORD,JR. June 30, 1983 Foreign Secretary-THOMAS F. MALONE June 30, 1982 Treasurer-E. R. PIORE June 30, 1980 Executive Officer Comptroller Robert M. White David Williams COUNCIL Abelson, Philip H. (1981) Markert,C. L. (1980) Berg, Paul (1982) Nierenberg,William A. (1982) Berliner, Robert W. (1981) Piore, E. R. (1980) Bing, R. H. (1980) Ranney, H. M. (1980) Crawford,Bryce, Jr. (1983) Simon, Herbert A. (1981) Friedman, Herbert (1982) Solow, R. M. (1980) Handler, Philip (1981) Thomas, Lewis (1982) Mac Lane, Saunders (1981) Townes, Charles H. (1981) Malone, Thomas F. (1982) Downloaded by guest on September 30, 2021 SECTIONS The Academyis divided into the followingSections, to which membersare assigned at their own choice: (11) Mathematics (31) Engineering (12) Astronomy (32) Applied Biology (13) Physics (33) Applied Physical and (14) Chemistry Mathematical Sciences (15) Geology (41) Medical Genetics Hema- (16) Geophysics tology, and Oncology (21) Biochemistry (42) Medical Physiology, En- (22) Cellularand Develop- docrinology,and Me- mental Biology tabolism (23) Physiological and Phar- (43) Medical Microbiology macologicalSciences and Immunology (24) Neurobiology (51) Anthropology (25) Botany (52) Psychology (26) Genetics (53) Social and Political Sci- (27) Population Biology, Evo- ences lution, and Ecology (54) Economic Sciences In the alphabetical list of members,the numbersin parentheses, followingyear of election, indicate the respective Class and Section of the member. CLASSES The members of Sections are grouped in the following Classes: I. Physical and Mathematical Sciences (Sections 11, 12, 13, 14, 15, 16).
    [Show full text]