Semiconductor Trends 2005

Total Page:16

File Type:pdf, Size:1020Kb

Semiconductor Trends 2005 Semiconductor Trends 2005 180 160 s t 140 120 Uni 100 of 80 ons i 60 l l i 40 M 20 0 Windows Servers SuperCs Nick Tredennick, Editor Gilder Technology Report [email protected] 21 September 2005 Nick Tredennick 1 Overview • Major trends affecting the microprocessor market – Value PC – Value transistor – Emerging economies • Microprocessors – Computer microprocessors – Embedded microprocessors – Configurable microprocessors – PLD microprocessors 21 September 2005 Nick Tredennick 2 Moore’s Law 21 September 2005 Nick Tredennick 3 Moore’s Law: Wafer Yield • 37 die/wafer • 177 die/wafer • 28 good die • 167 good die • Yield: 75% • Yield: 94% Halving dimensions yields 6x good die! 21 September 2005 Nick Tredennick 4 Top View: Field-Effect Transistor 21 September 2005 Nick Tredennick 5 The Microprocessor • 10 years of Moore’s-law progress led to the microprocessor • The second generic component • Raised engineers’ productivity • Problem-solving became programming • Grew to billions of units/year • Stalled progress in design methods for thirty years 21 September 2005 Nick Tredennick 6 The Personal Computer • 10 years of microprocessor progress led to the PC • Dominated the industry for 20 years • Supply of performance grows with Moore’s law • Demand grows more slowly • Diverging growth in supply and demand leads to the value PC 21 September 2005 Nick Tredennick 7 The PC Is Good Enough 21 September 2005 Nick Tredennick 8 The Path To The Value Transistor 21 September 2005 Nick Tredennick 9 Electronic Systems Market Segments 21 September 2005 Nick Tredennick 10 Computer Markets 180 160 s t 140 120 Uni 100 of 80 ons i 60 l l 40 Mi 20 0 Windows Servers SuperCs 21 September 2005 Nick Tredennick 11 Microprocessor Markets 8000 7000 s t i n 6000 U 5000 f o 4000 s n o 3000 i l l 2000 Mi 1000 0 Embedded PCs Servers 21 September 2005 Nick Tredennick 12 The Cost-Performance Segment 21 September 2005 Nick Tredennick 13 Cost-Performance-Per-Watt 21 September 2005 Nick Tredennick 14 Microprocessors Are Unsuitable 21 September 2005 Nick Tredennick 15 Programmers And Logic Designers • Programmers optimize software – Languages – OS – Compilers The Users Manual – Applications is the Programmers (problematic) bridge • Logic designers optimize hardware – Microprocessors – Memory Logic designers 21 September 2005 Nick Tredennick 16 Scenic View 21 September 2005 Nick Tredennick 17 Scenic View in Fog 21 September 2005 Nick Tredennick 18 Scenic View with Lens 21 September 2005 Nick Tredennick 19 Scenic View and Photoshop 21 September 2005 Nick Tredennick 20 Microprocessors and ASICs Microprocessor • For the ultimate in flexibility, programmers map the application onto a general-purpose microprocessor. Programmers • For the ultimate in performance, logic Application designers map the application into a custom circuit. ASIC Logic designers 21 September 2005 Nick Tredennick 21 ASICs & Microprocessors 21 September 2005 Nick Tredennick 22 Microprocessor Evolution Dynamically reconfigurable microprocessor Run-time reconfigurable microprocessor Microprocessor Stretch Design-time Programmers configurable microprocessor ARC MIPS Tensilica ASIC FPGA Logic designers 21 September 2005 Nick Tredennick 23 Design-Time Configurable Microprocessor Most of the application runs as execution of general-purpose Profile the instructions application Programmers Create custom Design-time hardware and configurable Application instructions to microprocessor accelerate critical application sections Logic designers 21 September 2005 Nick Tredennick 24 Design-Time Configurable Microprocessor • Profile the application • Create custom instructions for critical code sections • Build specialized execution units • Can be 10 to100 times faster than a general-purpose microprocessor on the target algorithm • Examples: ARC and Tensilica • Customized microprocessor limitations – Requires logic designers – Creates an application-specific, limited-function microprocessor – Accelerates only critical sections 21 September 2005 Nick Tredennick 25 Run-Time Reconfigurable Microprocessor Most of the application runs as execution of Profile the general-purpose application instructions Run-time Create custom reconfigurable instructions in an microprocessor FPGA fabric to accelerate critical application sections Programmers Application Logic designers 21 September 2005 Nick Tredennick 26 Run-Time Reconfigurable Microprocessor • Build a general-purpose microprocessor with integrated FPGA fabric • Profile the application • Create custom instructions for critical code sections • Build custom execution units in FPGA fabric • Can be 10 to 100 times faster than a general-purpose microprocessor on the target application • Example: Stretch • Run-time reconfigurable microprocessor limitations – Accelerates only statically identifiable critical sections – Limited to problems for which profiling works – Profiling is difficult 21 September 2005 Nick Tredennick 27 ASICs & Microprocessors 21 September 2005 Nick Tredennick 28 Dynamically Reconfigurable Microprocessor Dynamically Create custom reconfigurable instructions in a microprocessor custom fabric to accelerate the entire application Programmers Application Logic designers 21 September 2005 Nick Tredennick 29 Dynamically Reconfigurable Microprocessor • Each cycle creates a new microprocessor implementation – Each cycle creates a custom circuit (Ascenium instruction) representing hundreds to thousands of conventional instructions • Programmed using ANSI-standard programming languages (e.g., C/C++) • Tens to 100s of times faster than a general-purpose microprocessor • Dynamically reconfigurable microprocessor limitations – There are none on the market today • Until Ascenium, no one has figured out how to “program” a dynamically reconfigurable circuit – VCs don’t understand it 21 September 2005 Nick Tredennick 30 Reconfigurable Systems Emerge 21 September 2005 Nick Tredennick 31 Situation What Value Who • PLDs $3B logic designers • ASICs $30B logic designers • Microprocessors $40B programmers PLDs and microprocessors are usurping a declining ASIC market. Microprocessors (and their derivatives) will win. 21 September 2005 Nick Tredennick 32 Supply and Demand: ASICs & PLDs 21 September 2005 Nick Tredennick 33 Battles are fought at the leading edge; the war goes to what is good enough. • RISC vs. CISC – Proving you can build a career on smoke and mirrors • Assembler vs. High-level language • Workstations vs. PCs – Build for volume and performance follows; build for performance and languish • ASICs vs. PLDs 21 September 2005 Nick Tredennick 34 Fixed ResourcesSemiconductor Development Fixed Algorithms Fixed Resourcesand The Value PC Variable Algorithms Instruction-based Implementation Circuit-based Implementation Problem solving: becomes programming Solutions: affordable, adequate, inefficient Entrenched: chips, tools, manufacturers Value PC Computer Design Methods: 30-year stall Microprocessor 2003 194x 1971 21 September 2005 Nick Tredennick Tethered systems dominate volumes PCs dominate chip development Cost PerformanceProgress depends on Moore’s law 35 Fixed Resources The End of Design’s Fixed Algorithms Fixed Resources 30-Year Stall Variable Algorithms iency Instruction-based Implementation Effic wer Circuit-based Po Implementation Problem solving: becomes programming Solutions: affordable, adequate, inefficient s facturers tem Entrenched: chips, tools, manu sys s ile hip Value PC ob c Computer Design Methods: 30-year stall M ed edd mb Microprocessor E 2003 194x Variable Resources 1971 Tethered systems dominate volumes 21 September 2005 Nick Tredennick Variable Algorithms PCs dominate chip development Generic chips Cost PerformanceProgress depends on Moore’s law New non-volatile memory, new PLDs Instruction-based processing is inadequate Cost Performance Per Watt 36 Consequences • Rise of mobile applications – New non-volatile memories • Rise of foundries – Rise of soft (IP) cores – Horizontal fragmentation of integrated device manufacturers • Rise of non-volatile PLDs • Rise of reconfigurable systems • Growing market for embedded microprocessors – Tethered: traditional role – Mobile: supervisory role 21 September 2005 Nick Tredennick 37 21 September 2005 Nick Tredennick 38 Microprocessors • x86 AMD, Intel, Via •ARC ARC •ARM ARM • MicroBlaze Xilinx • MIPS MIPS • Nios Altera • PowerPC IBM, Freescale • SPARC Sun • Tensilica Stretch, Tensilica • Old stuff Everyone 21 September 2005 Nick Tredennick 39 Microprocessor Applications • Supercomputers • Workstations and servers •PCs • Embedded systems – Automobiles – Cameras – Cell phones – Game players – MP3 players – Set-top boxes 21 September 2005 Nick Tredennick 40 Computer Microprocessors •x86 – AMD – Intel – Via • Proprietary – IBM – Freescale – Sun 21 September 2005 Nick Tredennick 41 Embedded Microprocessors • Microprocessor advantages – Flexibility – High-volume production – Usable by programmers • Microprocessor limitations – Too slow – Too much power 21 September 2005 Nick Tredennick 42 Embedded Microprocessors • x86 AMD, Intel, Via •ARM ARM • PowerPC IBM, Freescale • Old stuff Everyone – Triscend (Xilinx) 21 September 2005 Nick Tredennick 43 Configurable Microprocessors •ARC ARC • Ascenium Ascenium • MIPS MIPS • Nios Altera • Tensilica Stretch, Tensilica 21 September 2005 Nick Tredennick 44 PLD Microprocessors •Altera – Nios (soft) • Xilinx – MicroBlaze (soft) – PicoBlaze (soft) – PowerPC (hard) 21 September 2005 Nick Tredennick 45.
Recommended publications
  • Field Programmable Gate Arrays with Hardwired Networks on Chip
    Field Programmable Gate Arrays with Hardwired Networks on Chip PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 6 november 2012 om 15:00 uur door MUHAMMAD AQEEL WAHLAH Master of Science in Information Technology Pakistan Institute of Engineering and Applied Sciences (PIEAS) geboren te Lahore, Pakistan. Dit proefschrift is goedgekeurd door de promotor: Prof. dr. K.G.W. Goossens Copromotor: Dr. ir. J.S.S.M. Wong Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof. dr. K.G.W. Goossens Technische Universiteit Eindhoven, promotor Dr. ir. J.S.S.M. Wong Technische Universiteit Delft, copromotor Prof. dr. S. Pillement Technical University of Nantes, France Prof. dr.-Ing. M. Hubner Ruhr-Universitat-Bochum, Germany Prof. dr. D. Stroobandt University of Gent, Belgium Prof. dr. K.L.M. Bertels Technische Universiteit Delft Prof. dr.ir. A.J. van der Veen Technische Universiteit Delft, reservelid ISBN: 978-94-6186-066-8 Keywords: Field Programmable Gate Arrays, Hardwired, Networks on Chip Copyright ⃝c 2012 Muhammad Aqeel Wahlah All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission of the author. Printed in The Netherlands Acknowledgments oday when I look back, I find it a very interesting journey filled with different emotions, i.e., joy and frustration, hope and despair, and T laughter and sadness.
    [Show full text]
  • RTEMS CPU Supplement Documentation Release 4.11.3 ©Copyright 2016, RTEMS Project (Built 15Th February 2018)
    RTEMS CPU Supplement Documentation Release 4.11.3 ©Copyright 2016, RTEMS Project (built 15th February 2018) CONTENTS I RTEMS CPU Architecture Supplement1 1 Preface 5 2 Port Specific Information7 2.1 CPU Model Dependent Features...........................8 2.1.1 CPU Model Name...............................8 2.1.2 Floating Point Unit..............................8 2.2 Multilibs........................................9 2.3 Calling Conventions.................................. 10 2.3.1 Calling Mechanism.............................. 10 2.3.2 Register Usage................................. 10 2.3.3 Parameter Passing............................... 10 2.3.4 User-Provided Routines............................ 10 2.4 Memory Model..................................... 11 2.4.1 Flat Memory Model.............................. 11 2.5 Interrupt Processing.................................. 12 2.5.1 Vectoring of an Interrupt Handler...................... 12 2.5.2 Interrupt Levels................................ 12 2.5.3 Disabling of Interrupts by RTEMS...................... 12 2.6 Default Fatal Error Processing............................. 14 2.7 Symmetric Multiprocessing.............................. 15 2.8 Thread-Local Storage................................. 16 2.9 CPU counter...................................... 17 2.10 Interrupt Profiling................................... 18 2.11 Board Support Packages................................ 19 2.11.1 System Reset................................. 19 3 ARM Specific Information 21 3.1 CPU Model Dependent Features..........................
    [Show full text]
  • IT Acronyms.Docx
    List of computing and IT abbreviations /.—Slashdot 1GL—First-Generation Programming Language 1NF—First Normal Form 10B2—10BASE-2 10B5—10BASE-5 10B-F—10BASE-F 10B-FB—10BASE-FB 10B-FL—10BASE-FL 10B-FP—10BASE-FP 10B-T—10BASE-T 100B-FX—100BASE-FX 100B-T—100BASE-T 100B-TX—100BASE-TX 100BVG—100BASE-VG 286—Intel 80286 processor 2B1Q—2 Binary 1 Quaternary 2GL—Second-Generation Programming Language 2NF—Second Normal Form 3GL—Third-Generation Programming Language 3NF—Third Normal Form 386—Intel 80386 processor 1 486—Intel 80486 processor 4B5BLF—4 Byte 5 Byte Local Fiber 4GL—Fourth-Generation Programming Language 4NF—Fourth Normal Form 5GL—Fifth-Generation Programming Language 5NF—Fifth Normal Form 6NF—Sixth Normal Form 8B10BLF—8 Byte 10 Byte Local Fiber A AAT—Average Access Time AA—Anti-Aliasing AAA—Authentication Authorization, Accounting AABB—Axis Aligned Bounding Box AAC—Advanced Audio Coding AAL—ATM Adaptation Layer AALC—ATM Adaptation Layer Connection AARP—AppleTalk Address Resolution Protocol ABCL—Actor-Based Concurrent Language ABI—Application Binary Interface ABM—Asynchronous Balanced Mode ABR—Area Border Router ABR—Auto Baud-Rate detection ABR—Available Bitrate 2 ABR—Average Bitrate AC—Acoustic Coupler AC—Alternating Current ACD—Automatic Call Distributor ACE—Advanced Computing Environment ACF NCP—Advanced Communications Function—Network Control Program ACID—Atomicity Consistency Isolation Durability ACK—ACKnowledgement ACK—Amsterdam Compiler Kit ACL—Access Control List ACL—Active Current
    [Show full text]
  • The Cortex-M Series: Hardware and Software
    The Cortex-M Chapter Series: Hardware 2 and Software Introduction In this chapter the real-time DSP platform of primary focus for the course, the Cortex M4, will be introduced and explained. in terms of hardware, software, and development environments. Beginning topics include: • ARM Architectures and Processors – What is ARM Architecture – ARM Processor Families – ARM Cortex-M Series – Cortex-M4 Processor – ARM Processor vs. ARM Architectures • ARM Cortex-M4 Processor – Cortex-M4 Processor Overview – Cortex-M4 Block Diagram – Cortex-M4 Registers ECE 5655/4655 Real-Time DSP 2–1 Chapter 2 • The Cortex-M Series: Hardware and Software What is ARM Architecture • ARM architecture is a family of RISC-based processor archi- tectures – Well-known for its power efficiency; – Hence widely used in mobile devices, such as smart phones and tablets – Designed and licensed to a wide eco-system by ARM • ARM Holdings – The company designs ARM-based processors; – Does not manufacture, but licenses designs to semiconduc- tor partners who add their own Intellectual Property (IP) on top of ARM’s IP, fabricate and sell to customers; – Also offer other IP apart from processors, such as physical IPs, interconnect IPs, graphics cores, and development tools 2–2 ECE 5655/4655 Real-Time DSP ARM Processor Families ARM Processor Families • Cortex-A series (Application) Cortex-A57 Cortex-A53 – High performance processors Cortex-A15 Cortex-A9 Cortex-A Cortex-A8 capable of full Operating Sys- Cortex-A7 Cortex-A5 tem (OS) support; Cortex-R7 Cortex-R5 Cortex-R – Applications include smart- Cortex-R4 Cortex-M4 New!: Cortex-M7, Cortex-M33 phones, digital TV, smart Cortex-M3 Cortex-M1 Cortex-M Cortex-M0+ books, home gateways etc.
    [Show full text]
  • Accelerated V2X Provisioning with Extensible Processor Platform
    Accelerated V2X provisioning with Extensible Processor Platform Henrique S. Ogawa1, Thomas E. Luther1, Jefferson E. Ricardini1, Helmiton Cunha1, Marcos Simplicio Jr.2, Diego F. Aranha3, Ruud Derwig4 and Harsh Kupwade-Patil1 1 America R&D Center (ARC), LG Electronics US Inc. {henrique1.ogawa,thomas.luther,jefferson1.ricardini,helmiton1.cunha}@lge.com [email protected] 2 University of Sao Paulo, Brazil [email protected] 3 Aarhus University, Denmark [email protected] 4 Synopsys Inc., Netherlands [email protected] Abstract. With the burgeoning Vehicle-to-Everything (V2X) communication, security and privacy concerns are paramount. Such concerns are usually mitigated by combining cryptographic mechanisms with a suitable key management architecture. However, cryptographic operations may be quite resource-intensive, placing a considerable burden on the vehicle’s V2X computing unit. To assuage this issue, it is reasonable to use hardware acceleration for common cryptographic primitives, such as block ciphers, digital signature schemes, and key exchange protocols. In this scenario, custom extension instructions can be a plausible option, since they achieve fine-tuned hardware acceleration with a low to moderate logic overhead, while also reducing code size. In this article, we apply this method along with dual-data memory banks for the hardware acceleration of the PRESENT block cipher, as well as for the F2255−19 finite field arithmetic employed in cryptographic primitives based on Curve25519 (e.g., EdDSA and X25519). As a result, when compared with a state-of-the-art software-optimized implementation, the performance of PRESENT is improved by a factor of 17 to 34 and code size is reduced by 70%, with only a 4.37% increase in FPGA logic overhead.
    [Show full text]
  • The Past and Future of FPGA Soft Processors
    The Past and Future of FPGA Soft Processors Jan Gray Gray Research LLC [email protected] ReConFig 2014 Keynote 9 Dec 2014 Copyright © 2014, Gray Research LLC. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) license. http://creativecommons.org/licenses/by/4.0/ In Celebration of Soft Processors • Looking back • Interlude: “old school” soft processor, revisited • Looking ahead 9 Dec 2014 ReConFig 2014 2 New Engines Bring New Design Eras 9 Dec 2014 ReConFig 2014 3 1. EARLY DAYS 9 Dec 2014 ReConFig 2014 4 1985-1990: Prehistory • XC2000, XC3000: not quite up to the job – Early multi-FPGA coprocessors – ~8-bit MISCs 9 Dec 2014 ReConFig 2014 5 1991: XC4000 9 Dec 2014 ReConFig 2014 6 1991: RISC4005 [P. Freidin] • The first monolithic general purpose FPGA CPU • “FPGA Devices: 1 Xilinx XC4005 ... On-board RAM: 64K Words (16 bit words) Notes: A 16 bit RISC processor that requires 75% of an XC4005, 16 general registers, 4 stage pipeline, 20 MHz. Can be integrated with peripherals on 1 FPGA, and ISET can be extended. … Includes a macro assembler, gate level simulator, ANSI C compiler, and a debug monitor.” [Steve Guccione: List of FPGA-based Computing Machines, http://www.cmpware.com/io.com/guccione/HW_list.html] Freidin Photos: Photos: Philip 9 Dec 2014 ReConFig 2014 7 1994-95: Gathering Steam • Communities: FCCM, comp.arch.fpga [http://fpga-faq.org/archives/index.html] • Research, commercial interest – OneChip, V6502 9 Dec 2014 ReConFig 2014 8 1995: J32 • 32-bit RISC + “SoC” • Integer only • 33 MHz ÷ 2φ • 4-stage pipeline •
    [Show full text]
  • Embedded Design Handbook
    Embedded Design Handbook Subscribe EDH | 2020.07.22 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. Introduction................................................................................................................... 6 1.1. Document Revision History for Embedded Design Handbook........................................ 6 2. First Time Designer's Guide............................................................................................ 8 2.1. FPGAs and Soft-Core Processors.............................................................................. 8 2.2. Embedded System Design...................................................................................... 9 2.3. Embedded Design Resources................................................................................. 11 2.3.1. Intel Embedded Support........................................................................... 11 2.3.2. Intel Embedded Training........................................................................... 11 2.3.3. Intel Embedded Documentation................................................................. 12 2.3.4. Third Party Intellectual Property.................................................................12 2.4. Intel Embedded Glossary...................................................................................... 13 2.5. First Time Designer's Guide Revision History............................................................14 3. Hardware System Design with Intel Quartus Prime and Platform Designer.................
    [Show full text]
  • Profiling Nios II Systems
    Profiling Nios II Systems AN-391-3.0 Application Note This application note describes the methods to measure the performance of a Nios® II system with the GNU profiler (nios2-elf-gprof), the performance counter component, and the timestamp interval timer component. This application note also includes two tutorials to measure performance in the Altera® Nios II Software Build Tools (SBT) development flow. Requirements You must be familiar with the Nios II SBT development flow for Nios II systems, including the Quartus® II software and Qsys to use the tutorials. Obtaining the Hardware Design The tutorials in this application note work with the Nios II Ethernet Standard Design Example. To use the design example, unzip the .zip for your development kit to a working directory on your system. 1 This application note refers the software example directory as <project_directory>. Obtaining the Software Examples To obtain the software examples for this application note, follow these steps: 1. Download the profiler_software_examples.zip. 2. Unzip the profiler_software_examples.zip to <project_directory> in your system. 1 This application note refers the directory as <profiler_software_examples>. © 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in 101 Innovation Drive accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice.
    [Show full text]
  • The Design and Implementation of Gnu Compiler Generation Framework
    The Design and Implementation of Gnu Compiler Generation Framework Uday Khedker GCC Resource Center, Department of Computer Science and Engineering, Indian Institute of Technology, Bombay January 2010 CS 715 GCC CGF: Outline 1/52 Outline • GCC: The Great Compiler Challenge • Meeting the GCC Challenge: CS 715 • Configuration and Building Uday Khedker GRC, IIT Bombay Part 1 GCC ≡ The Great Compiler Challenge CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program gcc Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc as Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc as ld Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc as glibc/newlib ld Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc as GCC glibc/newlib ld Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 3/52 Why is Understanding GCC Difficult? Some of the obvious reasons: • Comprehensiveness GCC is a production quality framework in terms of completeness and practical usefulness • Open development model Could lead to heterogeneity.
    [Show full text]
  • The RISC-V Instruction Set Manual Volume I: User-Level ISA Document Version 2.2
    The RISC-V Instruction Set Manual Volume I: User-Level ISA Document Version 2.2 Editors: Andrew Waterman1, Krste Asanovi´c1;2 1SiFive Inc., 2CS Division, EECS Department, University of California, Berkeley [email protected], [email protected] May 7, 2017 Contributors to all versions of the spec in alphabetical order (please contact editors to suggest corrections): Krste Asanovi´c,Rimas Aviˇzienis,Jacob Bachmeyer, Christopher F. Batten, Allen J. Baum, Alex Bradbury, Scott Beamer, Preston Briggs, Christopher Celio, David Chisnall, Paul Clayton, Palmer Dabbelt, Stefan Freudenberger, Jan Gray, Michael Hamburg, John Hauser, David Horner, Olof Johansson, Ben Keller, Yunsup Lee, Joseph Myers, Rishiyur Nikhil, Stefan O'Rear, Albert Ou, John Ousterhout, David Patterson, Colin Schmidt, Michael Taylor, Wesley Terpstra, Matt Thomas, Tommy Thorn, Ray VanDeWalker, Megan Wachs, Andrew Waterman, Robert Wat- son, and Reinoud Zandijk. This document is released under a Creative Commons Attribution 4.0 International License. This document is a derivative of \The RISC-V Instruction Set Manual, Volume I: User-Level ISA Version 2.1" released under the following license: c 2010{2017 Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovi´c. Creative Commons Attribution 4.0 International License. Please cite as: \The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2", Editors Andrew Waterman and Krste Asanovi´c,RISC-V Foundation, May 2017. Preface This is version 2.2 of the document describing the RISC-V user-level architecture. The document contains the following versions of the RISC-V ISA modules: Base Version Frozen? RV32I 2.0 Y RV32E 1.9 N RV64I 2.0 Y RV128I 1.7 N Extension Version Frozen? M 2.0 Y A 2.0 Y F 2.0 Y D 2.0 Y Q 2.0 Y L 0.0 N C 2.0 Y B 0.0 N J 0.0 N T 0.0 N P 0.1 N V 0.2 N N 1.1 N To date, no parts of the standard have been officially ratified by the RISC-V Foundation, but the components labeled \frozen" above are not expected to change during the ratification process beyond resolving ambiguities and holes in the specification.
    [Show full text]
  • Gnu Assembler
    Using as The gnu Assembler (Sourcery G++ Lite 2010q1-188) Version 2.19.51 The Free Software Foundation Inc. thanks The Nice Computer Company of Australia for loaning Dean Elsner to write the first (Vax) version of as for Project gnu. The proprietors, management and staff of TNCCA thank FSF for distracting the boss while they gotsome work done. Dean Elsner, Jay Fenlason & friends Using as Edited by Cygnus Support Copyright c 1991, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001, 2002, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". i Table of Contents 1 Overview :::::::::::::::::::::::::::::::::::::::: 1 1.1 Structure of this Manual :::::::::::::::::::::::::::::::::::::: 14 1.2 The GNU Assembler :::::::::::::::::::::::::::::::::::::::::: 15 1.3 Object File Formats::::::::::::::::::::::::::::::::::::::::::: 15 1.4 Command Line ::::::::::::::::::::::::::::::::::::::::::::::: 15 1.5 Input Files :::::::::::::::::::::::::::::::::::::::::::::::::::: 16 1.6 Output (Object) File:::::::::::::::::::::::::::::::::::::::::: 16 1.7 Error and Warning Messages :::::::::::::::::::::::::::::::::: 16 2 Command-Line Options::::::::::::::::::::::: 19 2.1 Enable Listings: `-a[cdghlns]'
    [Show full text]
  • TR0130 Nios II Embedded Tools Reference
    Nios II Embedded Tools Reference TR0130 Dec 01, 2009 Software, hardware, documentation and related materials: Copyright E 2008 Altium Limited. All Rights Reserved. The material provided with this notice is subject to various forms of national and international intellectual property protection, including but not limited to copyright protection. You have been granted a non-exclusive license to use such material for the purposes stated in the end-user license agreement governing its use. In no event shall you reverse engineer, decompile, duplicate, distribute, create derivative works from or in any way exploit the material licensed to you except as expressly permitted by the governing agreement. Failure to abide by such restrictions may result in severe civil and criminal penalties, including but not limited to fines and imprisonment. Provided, however, that you are permitted to make one archival copy of said materials for back up purposes only, which archival copy may be accessed and used only in the event that the original copy of the materials is inoperable. Altium, Altium Designer, Board Insight, DXP, Innovation Station, LiveDesign, NanoBoard, NanoTalk, OpenBus, P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed. v8.0 31/3/08 Table of Contents Table of Contents C Language 1-1 1.1 Introduction . .. .. .. .. .. .. 1-1 1.2 Data Types . .. .. .. .. .. .. 1-2 1.2.1 Changing the Alignment: __unaligned, __packed__ and __align().
    [Show full text]