Proton Spin at Small x

Yuri Kovchegov The Ohio State University Outilne

• Goal: understanding the spin coming from helicities and OAM of small-x and . • Brief introduction to small-x physics and evolution equations. • Helicity: • Quark helicity distribution at small x • Small-x evolution equations for quark helicity • Small-x asymptotics of quark helicity • Helicity: • Gluon helicity distribution at small x • Small-x evolution equations for gluon helicity • Small-x asymptotics of quark helicity TMDs • Quark and Gluon OAM at small x • Preliminary phenomenology • Conclusions Goal: Proton Spin at Small x

3 Proton Spin

Our understanding of nucleon spin structure has evolved:

• In the 1980’s the proton spin was thought of as a sum of constituent quark spins (left panel)

• Currently we believe that the proton spin is a sum of the spins of valence and sea quarks and of gluons, along with the orbital angular momenta of quarks and gluons (right panel) 4 Helicity Distributions • To quantify the contributions of quarks and gluons to the proton spin on defines helicity distribution functions: number of quarks/gluons with spin parallel to the proton momentum minus the number of quarks/gluons with the spin opposite to the proton momentum:

• The helicity parton distributions are 2 + 2 2 f(x, Q ) f (x, Q ) f (x, Q ) ⌘ with the net quark helicity distribution ⌃ u + u¯ + d + d¯+ s + s¯ ⌘ and ∆"($, &') the gluon helicity distribution.

5 Proton Helicity Sum Rule

• Helicity sum rule (Jaffe-Manohar form): 1 = S + L + S + L 2 q q g g

with the net quark and gluon spin 1 1 2 1 2 2 2 S (Q )= dx ⌃(x, Q ) Sg(Q )= dx G(x, Q ) q 2 Z0 Z0

• Lq and Lg are the quark and gluon orbital angular momenta

6 1 1 S (Q2)= dx ⌃(x, Q2) Proton Spin Puzzle q 2 Z0

• The spin puzzle began when the EMC collaboration measured the proton

g1 structure function ca 1988. Their data resulted in ⌃ 0.1 0.2 ⇡ ÷ • It appeared quarks do not carry all of the proton spin (which would have corresponded to ⌃ =1 ). 1 • = Sq + Lq + Sg + Lg Missing spin can be 2 – Carried by gluons – In the orbital angular momenta of quarks and gluons – At small x: 1 1 1 S (Q2)= dx ⌃(x, Q2) S (Q2)= dx G(x, Q2) q 2 g Z0 Z0

Can’t integrate down to zero, use xmin instead! – Or all of the above! Current Knowledge of Proton Spin

• The proton spin carried by the quarks is estimated to be (for 0 . 001

S (Q2 = 10 GeV2) 0.13 0.26 G ⇡ ÷

• Unfortunately the uncertainties are large. Note also that the x-ranges are limited, with more helicity (positive or negative) possible at small x. How much spin is at small x?

• E. Aschenaur et al, arXiv:1509.06489 [hep-ph], (DSSV = de Florian, Sassot, Stratmann, Vogelsang, helicity PDF parametrization) • Uncertainties are very large at small x! (EIC may reduce them.) Spin at small x

• The goal of this work is to provide theoretical understanding of helicity PDFs at very small x.

• Our work would provide guidance for future hPDFs parametrizations of the existing and new data (e.g., the data to be collected at EIC).

• Alternatively the data can be analyzed using our small-x evolution formalism.

10 Introduction: small-x physics Quasi-classical approximation Kinematics of DIS

Ø carries 4-momentum q µ , its virtuality is Q2 = q qµ µ Ø Photon hits a quark in the proton carrying momentum x Bj p with p being the protons momentum. Parameter x Bj is the Bjorken x variable. 13 Dipole picture of DIS

• In the dipole picture of DIS the virtual photon splits into a quark-antiquark pair, which then interacts with the target. • The total DIS cross section and structure functions are calculated via:

q x x ⊥ ⊥ γ∗

14 Dipole Amplitude

• The total DIS cross section is expressed in terms of the (Im part of the) forward quark dipole amplitude N: 1 d2x dz ⇤A 2 ⇤ qq¯ 2 ~ tot = ? d b ! (~x ,z) N(~x , b ,Y) 2 ⇡ ? z (1 z) | ? | ? ? Z Z0

q z x x ⊥ ⊥ γ∗ 1 z b ,Y ?

with rapidity Y=ln(1/x) 15 DIS in the Classical Approximation

The DIS process in the rest frame of the target is shown below. It factorizes into

A 2 qq¯ 2 tot⇤ (xBj,Q )= ⇤! N(x ,Y =ln1/xBj) | | ⌦ ? with rapidity Y=ln(1/x) 16 Dipole Amplitude

• The quark dipole amplitude is defined by 1 N(x1,x2)=1 tr V (x1) V †(x2) Nc h i • Here we use the Wilson lines along⇥ the light-cone direction⇤ 1 + + V (x)=Pexp ig dx A(x ,x =0,x) 2 3 Z • In the classical Glauber4 -Mueller/1 McLerran-Venugopalan5 approach the dipole amplitude resums multiple rescatterings: x1 x ⊥ x2

17 Quasi-classical dipole amplitude

x ⊥ A.H. Mueller, 90

Lowest-order interaction with each nucleon – two gluon exchange – the same resummation parameter as in the MV model: 2 1/3 ↵s A

18 DIS in the Classical Approximation

The dipole-nucleus amplitude in the classical approximation is 2 2 x Qs 1 N(x ,Y)=1 exp ? ln ? 4 x ⇤  ? A.H. Mueller, 90 Black disk limit,

2 sptot < 2 R

Color transparency 1/QS 19 Small-x evolution equations Quantum Evolution

• The energy (x) dependence comes in through nonlinear small-x BK/JIMWLK evolution, which resums the long-lived s-channel gluon corrections:

1 ↵ ln ↵ Y 1 s x ⇠ s ⇠

These extra gluons bring in powers of aS ln 1/x, such that when aS << 1 and ln 1/x >>1 this parameter is aS ln 1/x ~ 1 (leading logarithmic approximation, LLA). 21 Resumming Gluonic Cascade

In the large-NC limit of QCD the gluon corrections become color dipoles. Gluon cascade becomes a dipole cascade. A. H. Mueller, 93-94

We need to resum dipole cascade, with each final state dipole interacting with the target. Yu. K. 99 22 Notation (Large-NC)

⃗x1 ⃗x1 ⊥ ⊥

⃗x2 ⊥ ⃗x2 ⊥ Real emissions in the ⃗x0 ⃗x0 ⊥ ⊥ ⃗x1 ⃗x1 amplitude squared ⊥ ⊥

⃗x2 ⊥ ⃗x2 (dashed line – all ⊥

⃗x0 ⃗x0 Glauber-Mueller exchanges ⊥ ⊥ ⃗x1 at light-cone time =0) ⊥

⃗x2 ⊥

⃗x0 ⊥ Virtual corrections in the amplitude (wave function)

23 Nonlinear Evolution

To sum up the gluon cascade at large-NC we write the following equation for the dipole S-matrix:

1 1

S ∂ ∂Y S 2 dashed line = S

0 0 all interactions 1 1 with the target

2 2 S S

0 0

↵ N x2 @ S (Y )= s c d2x 01 [S (Y ) S (Y ) S (Y )] Y x0,x1 2⇡2 2 x2 x2 x0,x2 x2,x1 x0,x1 Z 02 21 Remembering that S= 1-N we can rewrite this equation in terms of the dipole scattering amplitude N.

24 Nonlinear evolution at large Nc As N=1-S we write

1 1

N ∂ ∂Y N 2

0 0 1 1 1

2 2 N N

0 0 1 dashed line = N 2 all interactions N with the target 0 BFKL ↵ N x2 @ N (Y )= s c d2x 01 [N (Y )+N (Y ) N (Y ) N (Y ) N (Y )] Y x0,x1 2 ⇡2 2 x2 x2 x0,x2 x2,x1 x0,x1 x0,x2 x2,x1 Z 02 21 Balitsky ‘96, Yu.K. ‘99 25 Beyond large-Nc: JIMWLK Equation

• JIMWLK evolution equation (1997-2002): 2 1 2 2 ab @Y WY [↵]=↵s d x d y a b ⌘~x ~y WY [↵] 2 ? ? ↵ (x, ~x ) ↵ (y, ~y ) ? ? ( Z ? ? ⇥ ⇤ 2 a d x a ⌫~x WY [↵] ? ↵ (x, ~x ) ? ) AAADonicbVLbbhMxEHV2uZRwS8sjD4wIoCC1UTYglRekqggJ8QCtIE1RvFl5HW9i1XvR2ltltfJ/8R288Td4LyFN0pEsjY7PmZkztp8ILtVg8Ldl2Xfu3ru/96D98NHjJ087+wcXMs5SykY0FnF66RPJBI/YSHEl2GWSMhL6go39q0/l/fiapZLH0U+VJ8wNyTziAadEGcjbb/3GCUkVJ8L7BWNzJpiIZEFc+Ah15knAh4BP+XyOC3gDOEgJLRxdDDVgHimYTYew9HDC0qQNUJJLJK+RSlsp8IwJRaZD3WRN+SmB3nJ6dAgFvma0LFDGUtfyt5V+g+9DL//Ph3xFNMMIFqhJXQEz06ogvvaKmmcKFhVRr4UNoDd8VxZSPl8oFzA2fo92XG57WjlqWt9ia+1HV+JqUsBRNiXNgCvjcGPSzcHWU1VPob1Od9AfVAG7idMkXdTEmdf5g2cxzUIWKSqIlBNnkCi3KF+fCqbbOJMsIfSKzNnEpBEJmXSL6otpeG2QGQRxao7ZRoXeVBQklDIPfcMMiVrI7bsSvO1ukqngg1vwKMkUi2jdKMgEqBjK/woznjKqRG4SQlNuZgW6IGb5yvzqtlmCs215N7kY9p13/eH5++7JabOOPfQcvUQ95KBjdIK+oDM0QtR6YX22vlnf7Vf2V/vc/lFTrVajeYY2wsb/AFIJHwU= Z ? ⇥ ⇤

with ab ab 4 2 ~x21 ~x20 ⌘ = d x · 1 U U † U U † + U U † ~x1 ~x0 2 2 2 2 2 ~x1 ~x2 ~x2 ~x0 ~x1 ~x0 ? ? g ⇡ x x ? ? ? ? ? ? AAADanicnVJda9RAFJ1N/Kir1W0FRfpycRUEdUliwb4IRV98rGDawk52mUwm2aGTD2YmZZch0N/om7/AF3+Es0nspyJ4IXA4554zMzc3rgRX2vO+Dxz31u07dzfuDe8/2Hz4aLS1fajKWlIW0lKU8jgmiglesFBzLdhxJRnJY8GO4pNPa/3olEnFy+KrXlUsyklW8JRToi013xqcYabJzJC4mRuDTxmFpUU+rpisGrhgvI5p4APgVBJqdhuTzQLAb4ZgC1d8FjSAeaEhsfRyvpb61ouUwLc9NCl1l9xaoVO8pjHLtqNNhWXLtaE2R7BUT60pTsFGvIWwv22fAJdv3UA4MzghWcbklVcFv/W/+IN/+M9n8Pr/zj/3Y8mzhY66sY/G3sRrC24Cvwdj1NfBfPQNJyWtc1ZoKohSU9+rdGSI1JwK1gxxrVhF6AnJ2NTCguRMRaZdlQZeWiaBtJT2s7+qZS87DMmVWuWx7cyJXqjr2pr8kzatdboXGV5UtWYF7Q5KawG6hPXeQcIlo1qsLCBUcntXoAtit0Pb7RzaIfjXn3wTHAYT/90k+LI73v/Yj2MD7aDn6BXy0Xu0jz6jAxQiOvjhbDpPnKfOT3fbfebudK3OoPc8RlfKffELTssP6Q== 21 20 Z h i 2 a i d x2 a ⌫ = Tr T U U † ~x1 2 2 ~x1 ~x2 ? g ⇡ x ? ? AAACmHicbVFbi9QwGE3rbR0vOyq+6EtwEHyQoa2CggiDF9S3Vaa7C5O2pOnXTtj0QpIuM4T8Jv+Lb/4bM90urLt7IHByzvfluyTvBFc6CP56/o2bt27f2bs7uXf/wcP96aPHh6rtJYOYtaKVxzlVIHgDseZawHEngda5gKP85PPOPzoFqXjbLPW2g6SmVcNLzqh2Ujb9TZo+pZkx5BQY3tjMhKQD2VmLP2JSSsoMt6bC5DUmHU8jOzDe6NEs0miCHTZZZM0mM1Foz4PqvN2YpXQXAaVe4WVKcXxdpeGBODWkoFUF0l6Mic67IZJXa51k01kwDwbgqyQcyQyNOMimf0jRsr6GRjNBlVqFQacTQ6XmTICdkF5BR9kJrWDlaENrUIkZFmvxS6cUuGylO27kQb2YYWit1LbOXWRN9Vpd9nbidd6q1+X7xPCm6zU07KxQ2QusW7z7JVxwCUyLrSOUSe56xWxN3cK1+8uJW0J4eeSr5DCah2/m0c+3s8WncR176Dl6gV6hEL1DC/QdHaAYMe+p98H74n31n/kL/5v/4yzU98acJ+g/+L/+Adw4yRc= 21 Z h i • Here U is the adjoint Wilson line on a light cone,

1 + + U~x =Pexp ig dx (x =0,x, ~x ) ? 8 A ? 9

AAACgnicbVFNbxMxEPUuBUr4CuXIZURUqdA23W2RyoFKBS4cg0TaSnGy8jqziVXvh+zZKpG1P4S/xY1fA94kB9oyksfP78147Jm00spSFP0OwgdbDx893n7Sefrs+YuX3Vc7F7asjcShLHVprlJhUasCh6RI41VlUOSpxsv0+murX96gsaosftCywnEuZoXKlBTkqaT7c5g4x29QwqJJeIWmaoAfwFnreJ6WCzfwBC4q4Boz4g5UK82864A3rgriWuWKbOIO/SmjZTNZ7zCFxeSwDXdcCg2fm8k+7C0m+2fRQausb7hd/R1wo2Zz4k3S7UX9aGVwH8Qb0GMbGyTdX3xayjrHgqQW1o7iqKKxE4aU1Nh0eG2xEvJazHDkYSFytGO3amEDu56ZQlYavwqCFftvhhO5tcs89ZG5oLm9q7Xk/7RRTdnHsVNFVRMWcl0oqzVQCe08YKoMStK+WUpIo/xbQc6FEZL81Dq+CfHdL98HF8f9+KR//P1D7/zLph3b7A17y/ZYzE7ZOfvGBmzIJPsT7Ab94CjcCt+HcXiyDg2DTc5rdsvCT38Bn069JA== Z < 1 = : ;

26 Resummation parameter

• BK equation resums powers of 1 ↵s Nc ln

AAACC3icbVDLSsNAFJ34rPUVdelmaBFcSEmqoMuiG1dSwT6gKeFmOmmHTiZhZiKW0L0bf8WNC0Xc+gPu/BsnbRfaeuByD+fcy8w9QcKZ0o7zbS0tr6yurRc2iptb2zu79t5+U8WpJLRBYh7LdgCKciZoQzPNaTuRFKKA01YwvMr91j2VisXiTo8S2o2gL1jICGgj+XbJA54MwFfYO8E3PsmbxwX2Qgkkc8fZw9i3y07FmQAvEndGymiGum9/eb2YpBEVmnBQquM6ie5mIDUjnI6LXqpoAmQIfdoxVEBEVTeb3DLGR0bp4TCWpoTGE/X3RgaRUqMoMJMR6IGa93LxP6+T6vCimzGRpJoKMn0oTDnWMc6DwT0mKdF8ZAgQycxfMRmASUGb+IomBHf+5EXSrFbc00r19qxcu5zFUUCHqISOkYvOUQ1dozpqIIIe0TN6RW/Wk/VivVsf09Ela7ZzgP7A+vwB86eZvg== x • The Galuber-Mueller/McLerran-Venugopalan initial conditions resum powers of 2 1/3 ↵s A

27 Solution of BK equation

1

N(x⊥,Y) numerical solution 0.8 α SYY=0, = 0, 3, 1.2, 6, 9,2.4, 12 3.6, 4.8 by J. Albacete ‘03 (earlier solutions were 0.6 found numerically by Golec-Biernat, Motyka, Stasto, 0.4 by Braun and by Lublinsky et al in ‘01) 0.2

0 0.00001 0.0001 0.001 0.01 0.1 1 10 -1 x⊥ (GeV ) 1/Qs BK solution preserves the black disk limit, N<1 always (unlike the linear BFKL equation) qqA¯ =2 d2bN(x ,b ,Y) ? ? 28 Z Saturation scale

Q (Y) (GeV) 10000 s

1000

100

10

1

0 1 2 3 4 5 6 αsY

numerical solution by J. Albacete 29 Small-x Asymptotics

↵ 1 1 P • BFKL solution gives (x<<1) N ⇠ x with ✓ ◆ 4 ↵ N ↵ N ↵ 1= s c ln 2 2.77 s c P ⇡ ⇡ ⇡ • NLO corrections are known (Fadin, Lipatov ’98; Ciafaloni, Camici ’98; Balitsky, Chirilli ‘07 for BK).

• Full BK equation solution also leads to saturation at very small x (x<<<1): N const ⇠ • Below we will refer to the BFKL-like linear regime as the “small-x asymptotics” of TMDs. It should be understood that at even smaller x saturation is expected to come in and stop the small x evolution.

30 Map of High Energy QCD

Q2 (Y) saturation s 1 region 2 Qs

Y = ln 1/x ⇠ x Geometric ✓ ◆ Scaling Saturation Scale BK/JIMWLK grows with energy energy BFKL, DGLAP – linear equations BK/JIMWLK – nonlinear BFKL DGLAP non-perturbative region

2 2 ΛQCD ln Q αs ~ 1 αs << 1

size of gluons 31 References

Published in September 2012 by Cambridge U Press

32 Quark Helicity at Small x (flavor-singlet case)

Yu.K., M. Sievert, arXiv:1505.01176 [hep-ph] Yu.K., D. Pitonyak, M. Sievert, arXiv:1511.06737 [hep-ph], arXiv:1610.06197 [hep-ph], arXiv:1610.06188 [hep-ph], arXiv:1703.05809 [hep-ph], arXiv:1808.09010 [hep-ph] 33 Observables

• We want to calculate quark helicity PDF and TMD at small x.

Leading Twist TMDs Nucleon Spin Quark Spin

Quark Polarization

Un-Polarized Longitudinally Polarized Transversely Polarized (U) (L) (T)

┴ — h1 = U ƒ1 = Boer-Mulders

— L g1L = ┴ — h1L = Helicity

h1 = — T ƒ ┴ = — ┴ Transversity

Nucleon Polarization — 1T g1T =

Sivers ┴ h1T = —

34 Quark Helicity TMD

• We start with the definition of the quark helicity TMD with a future- pointing Wilson line staple. + 5 q 2 1 1 2 ik r g (x, k )= S d rdr e · p, S ¯(0) [0,r] (r) p, S + 1L T (2⇡)3 2 L h L| U 2 | Lir =0 AAACz3icbVJLb9QwEHbCq4RHFzhyGbFC2hXLKgkgEFKlCi4c9tCKbltpnUSO491a6zywHWDlBnHl73HjD/A7cLKRCi0j2f78zXwee8ZpJbjSvv/Lca9dv3Hz1s5t787de/d3Bw8eHquylpTNaSlKeZoSxQQv2FxzLdhpJRnJU8FO0vX71n/ymUnFy+JIbyoW5WRV8CWnRFsqGfxeJSaYNfEnGH2dwDo5isMx7AFeSkJN0JhRiCs+jl80gCcXbGi3qs4T8zGZNWAnwG8B80JDFocg29hMxs/t6rHYcFgDplmpQVqdIMVKMKgm0AnPAadE4krxkT/ukuREn1EizLxZ+BMZXSTGK5LnJH4GPXi1vcjE69RybM/qT8WyS5IYaaP3wG+SwdCf+p3BVRD0YIh6O0gGP3FW0jpnhaaCKLUI/EpHhkjNqWCNh2vFKkLXZMUWFhYkZyoyXT8aeGqZDJaltMPWpGP/VhiSK7XJUxvZPlZd9rXk/3yLWi/fRIYXVa1ZQbeJlrUAXULbXMi4ZFSLjQWESm7vCvSM2Npp+wU8W4Tg8pOvguNwGvjT4PDlcP9dX44d9Bg9QSMUoNdoH31AB2iOqDNzpGOcc/fQ/eJ+c79vQ12n1zxC/5j74w+5y9bL XSL Z • At small-x, in anticipation of the shock-wave formalism, we rewrite the quark helicity TMD as (in A-=0 gauge for the + moving proton) + q 2 2p 2 2 ik (⇣ ⇠) 1 + 5 g (x, k )= d ⇣ d⇣ d ⇠ d⇠ e · ¯ (⇠) V [⇠, ] V [ , ⇣] (⇣) 1L T (2⇡)3 2 ↵ ⇠ 1 ⇣ 1

AAADR3icbVJLj9MwEHayPJby2C4cuVhUSKm2rZICAq2EtIILBw6LtO2uVCeR4zipVeeB7aCWKP+OC1du/AUuHECII3aalaDLSJY+z3wz883YUcmZVK771bL3rl2/cXP/Vu/2nbv3DvqH9+eyqAShM1LwQlxEWFLOcjpTTHF6UQqKs4jT82j12sTPP1AhWZGfqU1J/QynOUsYwUq7wkPLT8Pae9sE76GzHsFVeBZMh/AlRInApJ7CMjhqameKSjYMnjQQHUPEcgXjoJ7q20eqMEQjGG9hMG4v29iadZE1C8Y9DWlQM7iCiMSFgs42d2zCQ83mNFFO19Vr2gIpzjIcHF2CZxAJli7VMKwR5uVSN450iabX5iKO85RTWKMIC1RK1oQdyzEdjJS5TqzymAqzK9O3gYtW3MjMlKiNr8dDx71dohFqqC0Hji5H9U1N0ylsdXQTDTuVSLR6wv7AnbitwavA68AAdHYa9r+guCBVRnNFOJZy4bml8mssFCOc6mErSUtMVjilCw1znFHp1+0/aOBj7YlhUgh99CO13r8zapxJuckizcywWsrdmHH+L7aoVPLCr1leVormZNsoqThUBTSfCsZMUKL4RgNMBNNaIVli/ZZKf72eXoK3O/JVMJ9OPHfivXs6OHnVrWMfPASPgAM88BycgDfgFMwAsT5Z36wf1k/7s/3d/mX/3lJtq8t5AP6xPesPeKkFzQ== ↵ Z ✓ ◆ D E where the fundamental light-cone Wilson line is

b + Vx[b,a]=Pexp8ig dx A (x,x)9 > > < aZ =

:> ;> 35 Quark Helicity TMD at Small x

• At high energy/small-x the proton is a shock wave, and we have the following contributions to the SIDIS quark helicity TMD:

ABC

ζξζξζξ

x− x− 0 0 DEF

ζξ ζξζξ

+ q 2 2p 2 2 ik (⇣ ⇠) 1 + 5 g (x, k )= d ⇣ d⇣ d ⇠ d⇠ e · ¯ (⇠) V [⇠, ] X X V [ , ⇣] (⇣) 1L T (2⇡)3 2 ↵ ↵ ⇠ 1 | ih | ⇣ 1 AAAEEnicbVPLbtNAFLUbHiU82sKSzYgIKVEfigMIhIRUwYYFiyL1ESljW+PxOBll/GBmXBqm/gsWfAs7xIYFP8BPsIUld2yX0pSRLJ/ce07uvXOuo0JwpYfDH+5K58rVa9dXb3Rv3rp9Z2194+6hyktJ2QHNRS7HEVFM8IwdaK4FGxeSkTQS7Ciav7L5o2MmFc+zfb0omJ+SacYTTomGULjhkmlovDdV8A71T7bQPNwPRgP0AuFEEmpGqAg2K9Mf4YIPgkcVws8RVmUajhHeQphnGsWBGUH8A9PExuIGBtv1jyZ3wtvMCQ+2uwBZYDiaI0zjXKN+o9226QGwBUt0H2E9IyJBeErSlASbZ+AJwpJPZ3oQGkxEMYOaEairbi3DgmRTwSBGJC4UD1tO3/617eEQZKWwlSo0qdupp0j0wkd4zrQZNyNGkljY/SuwLVpJzUVbZ0P69TXUlWwb7SyDtkks63bC9d5wZ1gfdBl4Leg57dkDUz7hOKdlyjJNBVFq4g0L7RsiNaeCwbClYgWhczJlE4AZSZnyTb0MFXoIkRgluYQH/Kmj/yoMSZVapBEwU6Jnajlng//LTUqdPPMNz4pSs4w2hRK4HJ0ju1ko5pJRLRYACJUcekV0RmCNNOxfF2fsPc3Bwyw2jbkVvOst8ypYk+oiAxyoJp5vLvja89qbPV1ig3Xn7NNzXuvAElsfM9rQAZieV4F7uV4ilaKhlFnMpP26LLECL71l5y6Dw9GOB/jt497uy9bVVee+88DpO57z1Nl1Xjt7zoFD3W/uT/eX+7vzsfO586XztaGuuK3mnnPhdL7/AQeRUqI= X Z X D E

36 Quark Helicity TMD at Small x

ABC

ζξ ζξζξ

DEF

ζξζ ξ ζξ

• Diagram D does not transfer spin information from the target. Diagram C is canceled as we move t-channel quarks across the cut. • Diagram F is energy-suppressed, since the gluon should have no time to be emitted and absorbed inside the shock wave. • Diagrams of the types A and E++ can be shown to cancel each other at the leading (DLA) order (Ward identity). • We are left with the diagram B.

37 Quark Helicity TMD at Small x

• Evaluating diagram B we arrive at 1 q 2 4Nc 2 2 2 ik (⇣ y) dz ⇣ w y w g (x, k )= d ⇣ d wd ye · G (zs) 1L T (2⇡)6 z ⇣ w 2 · y w 2 w,⇣ Z ⇤2Z/s | | | |

AAADhHichVLbbtNAEN3YUEq4pfDIy4gIkUgmtU25CAlUwQM8VKhITVspjq31epOu4hveNcHZ7o/wWbzxN6wTI9IGKSNZOntm5uzZ8YR5zLiw7d8tw7xxc+fW7u32nbv37j/o7D085VlZEDokWZwV5yHmNGYpHQomYnqeFxQnYUzPwtnHOn/2nRacZemJqHI6TvA0ZRNGsNBUsNf6OQ2kc6T8b9D7YcEsOPHdPrwD8CYFJvIAvgREyZ7r5azvv1KafwseSwVEvnQVeAsqMLQ9S59dmEMDqhpQX8JzYCC9Mo1oUTuEmW4hUSag94+USxGla9e4SvVVLVLf5cUsYYIH0jvSD4uw7+5z5TuNxQgWSi5qZ9aK2KI8V0pebq259N2/VmFDttoiuZlfyVkAnwK5Po+5sq7MZ2VGQW/B+xB0uvbAXgZsAqcBXdTEcdD55UUZKROaChJjzkeOnYuxxIVgJKaq7ZWc5pjM8JSONExxQvlYLpdIwVPNRDDJCv3p/7tk1zskTjivklBXJlhc8Ou5mvxfblSKyZuxZGleCpqS1UWTMgaRQb2RELGCEhFXGmBSMO0VyAXWIxd6b9t6CM71J2+CU3fg2APn60H38EMzjl30GD1BPeSg1+gQfUbHaIiI0TKeGbbhmDumZb4wX65KjVbT8whdCfP9H4lcHcQ=

where Gwz is the polarized dipole amplitude (defined on the next slide). • Here s is the cms energy squared, L is some IR cutoff, underlining denotes transverse vectors, z = smallest longitudinal momentum fraction of the dipole momentum out of those carried by the quark and the antiquark

ζ ξ

k1 w k2

38 Polarized Dipole

• All flavor-singlet small-x helicity observables depend on one object, “polarized dipole amplitude”:

1 pol pol G10(z) Re Ttr V0V1 † +Ttr V1 V0† (z)

AAADE3icfVJNb9QwEHXCV1m+tnDk4rJCagWqkgoJjlU5wAkV1N1WWqeR40yyVh0n2E7FYuU/cOGvcOEAQly5cOPf4GQj1N2uGMnSmzczz57xJJXg2gTBH8+/cvXa9RsbNwe3bt+5e2+4eX+iy1oxGLNSlOokoRoElzA23Ag4qRTQIhFwnJy9bOPH56A0L+WRmVcQFTSXPOOMGkfFm97Oq9iGQYO3P+5gAu9rfo5JpiizYWP38JuYNZg8xaRIyg/2HSycA54TQWUuAJMtsrVMdJlHF6qMco6AzEzxJLaklimo9rk4aAa4s2U6bE5tVYpOIKV5Dm294vnMRPjJf/XX6qy/JGhOe/F/2l0XarWtnnDjiYejYDfoDF8GYQ9GqLfDePibpCWrC5CGCar1NAwqE1mqDGcCmgGpNVSUndEcpg5KWoCObPenDX7smBRnpXJHGtyxFyssLbSeF4nLLKiZ6dVYS66LTWuTvYgsl1VtQLLFRVktsClxuyA45QqYEXMHKFPcvRWzGXUbYdwaDdwQwtWWL4PJ3m7o8Ntno/2Dfhwb6CF6hLZRiJ6jffQaHaIxYt4n74v3zfvuf/a/+j/8n4tU3+trHqAl83/9BfCB9SM= ⌘ 2Nc DD h i h iEE

unpolarized quark polarized quark: eikonal propagation, 1 non-eikonal spin-dependent interaction + + V exp ig dx A(x , 0,x) x ⌘ P 2 3 Z 1 • Double 4brackets denote an object5 with energy suppression scaled out:

(z) zs (z) O ⌘ O 39 DD EE D E Polarized fundamental “Wilson line”

• To complete the definition of the polarized dipole amplitude, we need to construct the definition of the polarized “Wilson line” Vpol, which is the leading helicity-dependent contribution for the quark scattering amplitude on a longitudinally-polarized target proton.

p2 p2 + k p2 p2 + k

σ σ′ σ σ′ a λ λ b

k k

− − p1 x1 x2

• At the leading order we can either exchange one non-eikonal t-channel gluon (with quark-gluon vertices denoted by blobs above) to transfer polarization between the projectile and the target, or two t-channel quarks, as shown above.

40 Polarized fundamental “Wilson line”

p2 p2 + k p2 p2 + k

σ σ′ σ σ′ a λ λ b

k k

− − p1 x1 x2 • In the end one arrives at (KPS ‘17; YK, Sievert, ‘18; cf. Chirilli ‘18) + 1 pol igp1 12 V = dx V [+ ,x] F (x,x) V [x, ] x s x 1 x 1 Z 1 2 + 1 1 g p1 b ba 1 + 5 a dx dx V [+ ,x] t (x,x) U [x,x] ¯ (x,x) t V [x, ]. s 1 2 x 1 2 2 x 2 1 2 ↵ 1 x 1 1  ↵ Z xZ AAAEM3icjVNbixMxFJ6d8bLWy3b10ZeDxWWXXugURRGERUH0bQXbXehcyKSZNmzmwiQjLSH/yRf/iA+C+KCIr/4Hk+ng9rKigWFOvvOdL9/JJcoZ5aLf/7JjO1euXru+e6Nx89btO3vN/bsjnpUFJkOcsaw4ixAnjKZkKKhg5CwvCEoiRk6j85cmf/qeFJxm6TuxyImfoGlKY4qR0FC4b785gFEg84ypUHplOiGFkYK5gufgxQXCksIU8tAN2kpyBV6nAeDRVHiMJlTwUHb1LBYLFSz/MIF50NU8GG0qjttLSscwfPCegdZ6FUh3oOBQQx244Mu5OjKMbRGj3oF6Va3iwQFAtzY7DQZm6T9+/8OsplZ213gVusYa/Lspw6naAhFEhiy9nFMVehERSHdo8gZcrT8CQxxuqAYyQloa6pKlSS3NSCzGdauukgNVGZ+iJEFBeyV+DF5BpzPha13E8hmqLKilpwgVUBurcsaZe5kzzRYBgr8cQ7VvFwfRC5utfq9fDdgO3DpoWfU4CZufvEmGy4SkAjPE+djt58KXqBAUM6IaXslJjvA5mpKxDlOUEO7L6s4reKiRCcRZob9UQIWuVkiUcL5IIs1MkJjxzZwBL8uNSxE/9SVN81KQFC8XiksGIgPzgGBCC4IF05eCIlxQ7RXwDOkDEfqZNfQmuJstbwejQc/t99y3j1rHL+rt2LXuWw+sQ8u1nljH1mvrxBpa2P5gf7a/2d+dj85X54fzc0m1d+qae9bacH79BgXKVlI= 1 1 b • We have employed an adjoint + + Ux[b,a]= exp ig dx (x =0,x,x) light-cone Wilson line P 2 A 3 aZ AAACeHicbVHLatwwFJXdVzp9ZNous7l0GpqQmcEOhWQTSNtNl1PoJAHLNrIsz4jIspHk4kH4G/Jv2fVDuskq8mQobdILgsM59+hK52a14NoEwS/Pf/T4ydNnW88HL16+er09fPP2TFeNomxOK1Gpi4xoJrhkc8ONYBe1YqTMBDvPLr/2+vlPpjSv5A+zqllckoXkBafEOCodXs1TixuZM9XfYNuugyhLJmMgySSGE8AlMUtKhJ11gFlbAxasMBFwWAzAFebSYMFLbnRqnadLrLN3kEObTACPwWLnhs9dcgB7bXJwEox7pef/TIW22wes+GJp4nQ4CqbBuuAhCDdghDY1S4fXOK9oUzJpqCBaR2FQm9gSZTgVrBvgRrOa0EuyYJGDkpRMx3YdXAe7jsmhqJQ70sCa/dthSan1qsxcZ5+Dvq/15P+0qDHFcWy5rBvDJL0bVDQCTAX9FiDnilEjVg4Qqrh7K9AlUYQat6uBCyG8/+WH4OxwGgbT8Pun0emXTRxbaAe9R3soREfoFH1DMzRHFP32drwP3q5344P/0d+/a/W9jecd+qf8w1tI87t+ 6 7 • Note the simple physical meaning of the first term:4 5 ~ 12

AAACJ3icbVDLSgMxFM34rPU16tJNsAgubJmpgm4qpYK4rGAf0BmHTJq2oZkHSaZQh/kbN/6KG0FFdOmfmGkH1NYDISfn3MvNPW7IqJCG8aktLC4tr6zm1vLrG5tb2/rOblMEEcekgQMW8LaLBGHUJw1JJSPtkBPkuYy03OFl6rdGhAsa+LdyHBLbQ32f9ihGUkmOflGEsTUiGFpelEALdwOZCbUEVmAx1Z17aB3DmroqP8+ru9gsJ45eMErGBHCemBkpgAx1R3+xugGOPOJLzJAQHdMIpR0jLilmJMlbkSAhwkPUJx1FfeQRYceTPRN4qJQu7AVcHV/Cifq7I0aeEGPPVZUekgMx66Xif14nkr1zO6Z+GEni4+mgXsSgDGAaGuxSTrBkY0UQ5lT9FeIB4ghLFW1ehWDOrjxPmuWSeVIq35wWqrUsjhzYBwfgCJjgDFTBNaiDBsDgATyBV/CmPWrP2rv2MS1d0LKePfAH2tc3oHGisQ== µ~ B = µ B = µ F · z z z 41 Polarized Dipole Amplitude

• The polarized dipole amplitude is then defined by

1 1 G (z) dx tr V [ , ]V [ ,x]( ig) A˜(x,x) V [x, ] +c.c. (z) 10 ⌘ 4N 0 1 1 1 1 r ⇥ 1 1 c Z 1 D h i E with the standard light-cone t Wilson line

b + Vx[b,a]=Pexp8ig dx A (x,x)9 > aZ > < = z :> ;>

1

0

proton

42 Polarized adjoint “Wilson line”

• Quarks mix with gluons. Therefore, we need to construct the adjoint polarized Wilson line --- the leading helicity-dependent part of the gluon scattering amplitude on the longitudinally polarized target.

p2 µ p2 + k p2 − k ′ ′ ν b b p2 a a

c ′ σ σ ′ λ λ b λ µ λ a ρ k k

− − p1 x1 x2 • The calculation is similar to the quark scattering case. It yields (cf. Chirilli ‘18) + + 1 pol ab 2igp1 12 + ab (U •) = dx U [+ ,x] (x =0,x,x) U [x, ] x s x 1 F x 1 Z 1 2 + 1 1 g p1 aa0 a0 1 + b0 b0b dx dx U [+ ,x] ¯(x,x) t V [x,x] t (x,x) U [x, ] c.c. s 1 2 x 1 2 2 x 2 1 2 5 1 x 1 1 Z xZ AAAEUXicdVPfb9MwEPbSAqMDtsEjLyembZ22Vk0FAiFNmkBCPA6JbpPqNnJcJ7Xm/FDsoFaW/0Ue4In/gxceQNhJhNZ1WIpzvvvuu/sucZgLLtVg8GPDa7Xv3X+w+bCz9ejxk+2d3acXMisLykY0E1lxFRLJBE/ZSHEl2FVeMJKEgl2G1+9d/PILKyTP0s9qmbNJQuKUR5wSZV3BrhcfQHcUaFymM1Y4FliYqc4zYY6mmoQGTgFHBaF6CBzwCcRuywN/emy0NB0AzFOFBU+4koHu2VOklpbhuLFgtpj2AL8FLFikurBSSy+MGTfIE7DAiUVaTo0pEfDB0vhDA93F9BhOB1Ah7L6Sf+S410hhXEObfixtweO5aiRhDAcAvUZYPB2uaHKHu0XVb5jBwmJ7a7jKu4Ia1qiRLUsOza0pww3lDjlxUCs9JAXgXHIn3PlPYDXvyOGUpTysWr1Yo22yqnYq0lqnb/SwFheTJCF2prURvGoIw5qwKu5q+/+pPXLQcF1Ok/Fv5lZ7EmYLTfu0b4KdvUF/UC1YN/zG2EPNOg92vuFZRsuEpYoKIuXYH+RqokmhOBXMdHApWU7oNYnZ2JopSZic6OpGGNi3nhlEWWGfVEHlvZmhSSLlMrH/wn5C1FzejjnnXbFxqaI3E83TvFQspXWhqBSgMnDXC2a8YFQJ+/k5oQW3vQKdEzt+ZS9hxw7Bvy153bgY9n1rf3q5d/auGccmeo5eoC7y0Wt0hj6iczRC1Pvq/fR+e39a31u/2qjt1VBvo8l5hlZWe+sv6SZeBA== 1 1

43 Small-x Evolution at large Nc

• At large Nc the evolution is gluon-driven. We will evolve a gluon dipole, remembering that at large Nc the relation between the adjoint and fundamental longitudinally-polarized gluon dipoles is Gadj(z)=4G (z) AAACC3icbVDLSsNAFJ3UV62vqEs3Q4tQQUoiBd0IRRd1WcE+oI1hMpm0YyeTMDMRaujejb/ixoUibv0Bd/6N0zaIVg9cOJxzL/fe48WMSmVZn0ZuYXFpeSW/Wlhb39jcMrd3WjJKBCZNHLFIdDwkCaOcNBVVjHRiQVDoMdL2hucTv31LhKQRv1KjmDgh6nMaUIyUllyzWL9OkX8zdlPbGsPy3QE8hVXYO4T1b8U1S1bFmgL+JXZGSiBDwzU/en6Ek5BwhRmSsmtbsXJSJBTFjIwLvUSSGOEh6pOuphyFRDrp9Jcx3NeKD4NI6OIKTtWfEykKpRyFnu4MkRrIeW8i/ud1ExWcOCnlcaIIx7NFQcKgiuAkGOhTQbBiI00QFlTfCvEACYSVjq+gQ7DnX/5LWkcV26rYl9VS7SyLIw/2QBGUgQ2OQQ1cgAZoAgzuwSN4Bi/Gg/FkvBpvs9ackc3sgl8w3r8AA2qX0Q== 10 10

(Note that the factor is 4, not 2 like in the unpolarized dipole case.)

44 Evolution for Polarized Quark Dipole

One can construct an evolution equation for the polarized dipole:

00 2 ∂Y 1 1

0 2 Spin-dependent (non-eikonal) vertex polarized 1 particle 0 2 1 similar to 0 unpolarized 2 1 BK evolution box = 0 target shock 2 wave 1

45 Evolution for Polarized Quark Dipole

00 2 ∂Y 1 1

0

2 1

0 1 2 ... = ... 1 hh ii zsh i

0 2

1 2 1 0 ⇢0 = z0 s 2 1 z 2 1 unp pol 1 unp pol ↵s dz0 d x2 † † tr V0 V1 (z)= tr V0 V1 (z)+ 2 2 Nc Nc 0 2⇡ z0 x21 2 DD h iEE DD h iEE zZi ⇢Z0

2 b unp a unp pol ba ✓(x10 x21) tr t V0 t V1 † U2 (z0) ⇥ Nc Equation does not close! ⇢ DD h i EE 2 2 1 b unp a pol unp ba + ✓(x10z x21z0) tr t V0 t V2 † U1 (z0) Nc DD h i EE 1 unp unp unp pol unp pol + ✓(x10 x21) tr V0 V2 † tr V2 V1 † (z0) Nc tr V0 V1 † (z0) Nc 46 hDD h i h iEE DD h iEE i Polarized Dipole Evolution in the Large-Nc Limit

In the large-Nc limit the equations close, leading to a system of 2 equations:

0 0

Γ02,21(z) S02(z) S02(z) ∂ G10(z) = 2 + + Γ01,21(z) ∂ ln z − z z S21(z) G21(z) G12(z) 1 1

0 0

Γ03,32(z′) S03(z′) S03(z′) ∂ Γ02,21(z′) = 3 + + Γ02,32(z′) ∂ ln z′ − S23(z′) G32(z′) G23(z′) z′ z′ 2 2

1 1 z z 2 z x10 2 (0) ↵s Nc dz0 dx21 G10(z)=G10 (z)+ 2 [2 02, 21(z0) S21(z0)+2G21(z0) S02(z0) 2⇡ z0 x21 2 zZi ⇢Z0

+ G12(z0) S02(z0) 01, 21(z0)] 2 2 z0 min x02,x21 z0/z00 { } 2 (0) ↵s Nc dz00 dx32 02, 21(z0)=02, 21(z0)+ 2 [2 03, 32(z00) S23(z00)+2G32(z00) S03(z00) 2⇡ z00 x32 Z Z2 zi ⇢00

+ G23(z00) S03(z00) 02, 32(z00)] S = found from BK/JIMWLK, it is LLA 47 “Neighbor” dipole

• There is a new object in the evolution equation – the neighbor dipole. • This is specific for the DLA evolution. Gluon emission may happen in one dipole, but, due to transverse distance ordering, may ’know’ about another dipole:

0 0

3,z′′

2 2,z′ 1 1

2 2 x z0 x z00 21 32

• We denote the evolution in the neighbor dipole 02 by 02, 21(z0)

48 Large-Nc Evolution

• In the strict DLA limit (S=1) and at large Nc we get (here G is an auxiliary function we call the ‘neighbour dipole amplitude’) (KPS ‘15) 2 z x10 2 2 (0) 2 ↵s Nc dz0 dx21 2 2 2 G(x10,z)= G (x10,z)+ 2 (x10,x21,z0)+3G(x21,z0) 2⇡ z0 x21 Z1 Z1 2 z0s ⇥ ⇤ x10s

2 2 z0 min x10,x21 z0 z00 n o 2 2 2 (0) 2 2 ↵s Nc dz00 dx32 2 2 2 (x10,x21,z0)= (x10,x21,z0)+ 2 (x10,x32,z00)+3G(x32,z00) 2⇡ z00 x32 Z1 Z1 2 z00s ⇥ ⇤ x10s • The initial conditions are given by the Born-level graphs

1 z 1 z 1 z x0 − x0 − x0 − x1 x1 x1 z z z

0 0 0

1 z 1 z (0) 2 2 (0) 2 x0 − x0 − (x10,x21,z)=G (x10,z) x1 x1 z z

0 0 2 (0) 2 ↵sCF zs 2 G (x10,z)= ⇡ CF ln 2 2ln(zsx10) Nc ⇤ h i 49 Resummation Parameter

• For helicity evolution the resummation parameter is different from BFKL, BK or JIMWLK, which resum powers of leading logarithms (LLA)

↵s ln(1/x) • Helicity evolution resummation parameter is double-logarithmic (DLA): 1 ↵ ln2 s x

• The second logarithm of x arises due to transverse momentum (or transverse coordinate) integration being logarithmic both in the UV and IR.

• This was known before: Kirschner and Lipatov ’83; Kirschner ’84; Bartels, Ermolaev, Ryskin ‘95, ‘96; Griffiths and Ross ’99; Itakura et al ’03; Bartels and Lublinsky ‘03.

50 Quark Helicity at Small x

• These equations can be solved both numerically and analytically. (KPS ‘16-’17)

↵sNc 1 ↵sNc zs s10 = ln ⌘ = ln 2⇡ x2 ⇤2 2 r 10 r 2⇡ ⇤

• The small-x asymptotics of quark helicity is (at large Nc) ↵q 1 h 4 ↵ N ↵ N q(x, Q2) with ↵q = s c 2.31 s c ⇠ x h p3 2⇡ ⇡ 2⇡ ✓ ◆ r r Small-x Evolution at large Nc&Nf

• At large Nc&Nf there is no simple relation between the adjoint and fundamental polarized dipole amplitudes. We need to construct coupled evolution equations mixing them with each other.

• Here’s the adjoint dipole evolution:

0 inhomogeneous term 1 0−

′ x− x− ′ I I II 2 1 II 0 0 0 0

2 2 k 2 k1 k 2 k1 k2 k1 k2 k1 2 2

1 1 1 1 − − − − − − − − − x− x1 0 x2 x1 0 x2 x1 0 0 2 III III′ eikonal 0 0 0

2 2 2 k1 k2 k1 k2 k1 k2 other eikonal diagrams

1 1 1 − − − − − − − − − x1 0 x2 x1 0 x2 x1 0 x2

52 Small-x Evolution at large Nc&Nf

• At large Nc&Nf there is no simple relation between the adjoint and fundamental polarized dipole amplitudes. We need to construct coupled evolution equations mixing them with each other.

• Here’s the fundamental dipole evolution:

0 inhomogeneous term 1 0−

′ x− x− ′ I I II 2 1 II 0 0 0 0

2 2 k 2 k1 k 2 k1 k2 k1 k2 k1 2 2

1 1 1 1 − − − − − − − − − x− x1 0 x2 x1 0 x2 x1 0 0 2 III eikonal 0 0

2 2 k1 k2 k1 k2 other eikonal diagrams

1 1 − − − − − − x1 0 x2 x1 0 x2

53 Small-x Evolution at large Nc&Nf

• The resulting equations are

2 z x10 2 (0) ↵sNc dz0 dx21 1 adj 1 adj ¯ Q10(zs)=Q10 (zs)+ 2 02,21(z0)+ G21 (z0)+Q12(z0) 01,21(z0) 2⇡ z0 x21 2 2 2 ( ) ⇤Z 1/(Zz0s) s 2 z x10z/z0 2 ↵s Nc dz0 dx21 + 2 Q21(z0), 4 ⇡ z0 x21 2 ⇤Z/s 1/(Zz0s) 2 z x10 2 adj adj (0) ↵s Nc dz0 dx21 adj adj G10 (z)=G10 (z)+ 2 10,21(z0)+3G21 (z0) 2⇡ z0 x21 2 2 max ⇤ ,Z1/x /s 1/(Zz0 s) h i { 10} 2 z x10z/z0 2 ↵s Nf dz0 dx21 ¯ These are yet to be solved. 2 02;21(z0), 2 ⇡ z0 x21 2 ⇤Z/s 1/(Zz0 s) 2 2 z0 min x10,x21z0/z00 { } 2 adj adj (0) ↵s Nc dz00 dx32 adj adj 10,21(z0)=10,21 (z0)+ 2 10,32(z00)+3G32 (z00) 2⇡ z00 x32 2 2 max ⇤ ,Z1/x /s 1/(zZ00 s) h i { 10} 2 z0 x21z0/z00 2 ↵s Nf dz00 dx32 ¯ 2 03;32(z00), 2 ⇡ z00 x32 2 ⇤Z/s 1/(zZ00 s) 2 2 z0 min x10,x21z0/z00 { } 2 ¯ ¯(0) ↵sNc dz00 dx32 1 adj 1 adj ¯ 10,21(z0)=10,21(z0)+ 2 03,32(z00)+ G32 (z00)+Q32(z00) 01,32(z00) 2⇡ z00 x32 2 2 2 ( ) ⇤Z 1/(Zz00s) s 2 z0 x21z/z0 2 ↵s Nc dz00 dx32 + 2 Q32(z00). 4 ⇡ z00 x32 ⇤2Z/s 1/(Zz s) AAAKfnictZbbTttAEIYNPQX3BO1lb6ZFEGhCYjtIRUJIiF7Qi6oCqRykbBJtHCfZYjuRvakgK79Fn6x3fZbedNaHxHEMFAksRdnszO7s/+2vjNtDm/lc0/4sLD56/OTps8KS+vzFy1evl1fenPqDkWdaJ+bAHnjnbepbNnOtE864bZ0PPYs6bds6a198lvGzn5bns4H7nV8NrYZDey7rMpNynGqtFH4BHLeErgWwMQZ/E/bUNTWZaooNbTMJlGAdCJCuR01BqD3s05YP31pmIAwyZAEuIszlxGYO435z3BJx6lc8TIc2jUD4QRCv74yLgcDP7CKsWd0YF7EYVr6MTmBMlgDOGLqcEZMRkDLIPQ5Yr0dEnKnjiQIMkEPqOLQlNKMsswXt/JBailJKKlPucRhtmEpBCmvEHXDaA0JQOf4uhVSMOGELBGlTL64SYBldlomC0YFw69QOpSw7rBvi25YjiTD8TuOYsKv6QXOcYTeXnQMPxtUwc46guAzSDI/DH9HZcVeCTOEwwpF4A52RzMkV0hjTEJHqpD/yFRqxvBltDr0EeWeJRiysV2VhmJweCc4oh5ul4+zdrENsq8vrE6PoWtYoKKuW7w8gHuv1eQNSd4yHX0df5EHohhDu8ZqzWq+96RnBWcsau5Dce3LtN8DYy41CYofY+g9qBZEWOS6GiK5jNIVEHObKAslu5Qkf3KMaZgYwA69mJPCiUb5bZGwCaNYuc6GH8kuayH8Dyci/VXrWN7VdqBmJtNg5mZzIIZEnop6SmzBpMSGj8h27jBR/W6OJkeS2muJ9+iO/EUG6E9XmLJPXirI5UeeZAs9rPdPoQ/SeO5ks47Ds/1KMLuxAU3gzAiut5VWtooUPzA/0eLCqxM9Ra/k36QzMkWO53LSp79d1bcgbgnqcmbYVqGTkW0NqXtCeVcehSx3Lb4jw9SmANZzpQHfg4cflEM6mVwjq+P6V08ZMh/K+n43JybxYfcS7Ow3B3OGIW64ZFeqObOADkO9i0GGeZXL7CgfU9BieFcw+RVIc39hUhKBnJc8PTo2KrlX04+3V/YMYR0F5p3xQNhRd+aTsK1+UI+VEMQt/l94vfVwqqYq6rm6p1Sh1cSFe81aZedSdfzz2TpI= 00 54 Gluon Helicity at Small x

Yu.K., D. Pitonyak, M. Sievert, arXiv:1706.04236 [nucl-th] Dipole Gluon Helicity TMD

• Now let us repeat the calculation for gluon helicity TMDs.

• We start with the definition of the gluon dipole helicity TMD:

2 + G 2 2iSL d⇠ d ⇠ ixP ⇠ ik ⇠ ij +i [+] +j [ ] g1 (x, kT )= e · P, SL ✏T tr F (0) †[0, ⇠] F (⇠) [⇠, 0] P, SL xP+ (2⇡)3 | U U | ⇠+=0 Z D h i E U^[+] t

• Here U[+] and U[-] are future and j past Wilson line staples (hence the name `dipole’ TMD, F. Dominguez et al ’11 – looks like a dipole scattering on a z proton): i

U^[−]

proton Dipole Gluon Helicity TMD

• At small x, the definition of dipole gluon helicity TMD can be massaged

into 2 8iNc SL Q Gdip 2 2 ik x10 i ij 2 j g1 (x, kT )= d x10 e · k ✏T d b10 G10(zs = ) g2(2⇡)3 ? x Z Z • Here we obtain a new operator, which is a transverse vector (written here in A-=0 gauge): 1 i 1 i G (z) dx tr V [ , ]V [ ,x]( ig) A˜ (x,x) V [x, ] +c.c. (z) 10 ⌘ 4N 0 1 1 1 1 1 1 c Z 1 D h t i E • i ij Note that k ✏ T can be thought of ? i i as a transverse curl acting on G10(z) i and not just on A ˜ ( x ,x ) -- different z

from the polarized dipole amplitude! 1 0

proton Dipole TMD vs dipole amplitude

• Note that the operator for the dipole gluon helicity TMD

1 i 1 i G (z) dx tr V [ , ]V [ ,x]( ig) A˜ (x,x) V [x, ] +c.c. (z) 10 ⌘ 4N 0 1 1 1 1 1 1 c Z 1 D h i E

is different from the polarized dipole amplitude

1 1 G (z) dx tr V [ , ]V [ ,x]( ig) A˜(x,x) V [x, ] +c.c. (z) 10 ⌘ 4N 0 1 1 1 1 r ⇥ 1 1 c Z 1 D h i E • We conclude that the dipole gluon helicity TMD does not depend on the polarized dipole amplitude! (Hence the ‘dipole’ name may not even be valid for such TMDs.) • This is different from the unpolarized gluon TMD case. Evolution Equation

• To construct evolution equation for the operator !" governing the gluon helicity TMD we resum similar (to the quark case) diagrams:

0 0 2

k1 k2 “c.c.”

1 i i 1 i x1− x2−

other LLA diagrams

i Large-Nc Evolution: Diagrams

• At large-Nc the equations are

0 0 0

gen Γ20 , 21(z′s) ∂ 2 i 2 ∂Y G10(zs) + + “c.c.” = z′ z′

G21(z′s) z z z i i i 1 1 1

0 0 gen Γ20 , 21(z′s)

2 2 “c.c.” + z′ + z′ + gen Γ21 , 20(z′s) z z i i 1 1

0 0

i Γ10 , 21(z′s) 2 + + z′ 2 + “c.c.” z′ i G12(z′s) z z i i 1 1 Large-Nc Evolution: Diagrams

0 0 0

• and ′′ Γ30 , 31(z s) ∂ 3 i z′s ∂Y Γ10 , 21( ) = 3 + z′′ + “c.c.” z′′ 2 2 2 z′ z′ z′ ′′ G30(z s)

i i i 1 1 1

0 0

′′ Γ30 , 31(z s)

+ 3 + 3 + “c.c.” z′′ z′′ 2 2 z′ z′ ′′ Γ31 , 30(z s)

i i 1 1

0 0

i z′′s Γ10 , 31( ) 3 3 + + + “c.c.” z′′ z′′

2 z′ i ′′ G30(z s)

i i 1 1 Large-Nc Evolution: Equations

• This results in the following evolution equations:

z ij j i i (0) ↵sNc dz0 2 1 ✏T (x21) gen G10(zs)=G10 (zs)+ 2 d x2 ln 2 ? 20 , 21(z0s)+G21(z0s) 2⇡ z0 x21⇤ x21 ⇤Z2 Z h i s z ij j ↵sNc dz0 2 1 ✏T (x20) gen gen 2 d x2 ln 2 ? 20 , 21(z0s)+21 , 20(z0s) 2⇡ z0 x21⇤ x20 ⇤Z2 Z h i s 2 z x10 2 ↵sNc dz0 dx21 i i + 2 G12(z0s) 10 , 21(z0s) 2⇡ z0 x21 Z1 Z1 2 z s h i x10s 0

z0 ij j i i (0) ↵sNc dz00 2 1 ✏T (x31) gen 10 21(z0s)=G10 (z0s)+ 2 d x3 ln 2 ? 30 , 31(z00s)+G31(z00s) 2⇡ z00 x31⇤ x31 ⇤Z2 Z h i s

z0 ij j ↵sNc dz00 2 1 ✏T (x30) gen gen 2 d x3 ln 2 ? 30 , 31(z00s)+31 , 30(z00s) 2⇡ z00 x31⇤ x30 ⇤Z2 Z h i s

2 2 z0 min x10 ,x21 z0 z00  2 ↵sNc dz00 dx31 i i + 2 2 G13(z00s) 10 , 31(z00s) . 2⇡ z00 x31 Z1 Z1 2 z s h i x10s 00 Large-Nc Evolution: Equations

• Here gen (z0s)=✓(x x ) (z0s)+✓(x x ) G (z0s) 20,21 20 21 20,21 21 20 20 is an object which we know from the quark helicity evolution, as the latter gives us G and G.

• Note that our evolution equations mix the gluon (Gi) and quark (G) small-x helicity evolution operators:

z ij j i i (0) ↵sNc dz0 2 1 ✏T (x21) gen G10(zs)=G10 (zs)+ 2 d x2 ln 2 ? 20 , 21(z0s)+G21(z0s) 2⇡ z0 x21⇤ x21 ⇤Z2 Z h i s z ij j ↵sNc dz0 2 1 ✏T (x20) gen gen 2 d x2 ln 2 ? 20 , 21(z0s)+21 , 20(z0s) 2⇡ z0 x21⇤ x20 ⇤Z2 Z h i s 2 z x10 2 ↵sNc dz0 dx21 i i + 2 G12(z0s) 10 , 21(z0s) 2⇡ z0 x21 Z1 Z1 2 z s h i x10s 0 Initial Conditions

• Initial conditions for this evolution are given by the lowest order t-channel

gluon exchanges: 0 0

1 i 1 i

b b

↵2C 1 d2b Gi (0)(zs)= d2b i (0) (zs)= s F ⇡✏ij xj ln 10 10 10 10,21 N 10 x ⇤ Z Z c 10

• Note that these initial conditions have no ln s, unlike the initial conditions for the quark evolution:

↵2C d2b G(0)(zs)= d2b (0) (zs)= s F ⇡ ln(zsx2 ) 10 10 10 10,21 N 10 Z Z c Large-Nc Evolution: Power Counting

• The kernel mixing Gi or Gi with G and G is LLA:

z ij j i i (0) ↵sNc dz0 2 1 ✏T (x21) gen G10(zs)=G10 (zs)+ 2 d x2 ln 2 ? 20 , 21(z0s)+G21(z0s) 2⇡ z0 x21⇤ x21 ⇤Z2 Z h i s z ij j ↵sNc dz0 2 1 ✏T (x20) gen gen 2 d x2 ln 2 ? 20 , 21(z0s)+21 , 20(z0s) 2⇡ z0 x21⇤ x20 ⇤Z2 Z h i s 2 z x10 2 LLA ↵sNc dz0 dx21 i i + 2 G12(z0s) 10 , 21(z0s) 2⇡ z0 x21 Z1 Z1 2 z s h i x10s 0

DLA

• But, the initial conditions for G and G have an extra ln # as compared to i i & & G and G , making the two terms comparable (order-$% in $% '( # ~1 DLA power counting). Large-Nc Evolution Equations: Solution

• These equations can be solved in the asymptotic high-energy region yielding the small-x gluon helicity intercept

G 13 ↵s Nc ↵s Nc ↵h = 1.88 4p3 r 2⇡ ⇡ r 2⇡

• We obtain the small-x asymptotics of the gluon helicity distributions:

13 p ↵s Nc 1 4p3 2⇡ G(x, Q2) gGdip(x, k2 ) ⇠ 1L T ⇠ x ✓ ◆

66 Main Physics Results

• At large Nc we get for helicity

↵q 1 h 4 ↵ N ↵ N q(x, Q2) with ↵q = s c 2.31 s c ⇠ x h p3 2⇡ ⇡ 2⇡ ✓ ◆ r r

G 1 ↵h ↵ N ↵ N G(x, Q2) with ↵G = 13 s c 1.88 s c ⇠ x h 4p3 2⇡ ⇡ 2⇡ ✓ ◆ r r

67 Orbital Angular Momentum

• The small-x asymptotics of the quark and gluon orbital angular momentum (OAM) in the Jaffe-Manohar decomposition shown above can be tackled similarly (YK, 2019).

• In the large-NC limit we obtain

4 p ↵s Nc 1 p3 2⇡ L (x, Q2)= ⌃(x, Q2) , q+¯q ⇠ x ✓ ◆ 13 p ↵s Nc 1 4p3 2⇡ L (x, Q2) G(x, Q2) G ⇠ ⇠ x AAADHXicnVLLbhMxFPVMeZTwaFqWbK6IkFIRopkkEmyQqoIEiwq1grSV4nTkcTyJVc8jtqdqZPlH2PArbFiAEAs2iL/ByaSCpiwQV7J0fM59+frGheBKB8FPz1+7dv3GzfVbtdt37t7bqG9uHaq8lJT1aS5yeRwTxQTPWF9zLdhxIRlJY8GO4tMXc/3ojEnF8+ydnhVsmJJxxhNOiXZUtOl19yIzhceAYyLN1Fponrfg4KSzDc/hCeCXTGgC+C0fp+S3hBVPawBYsEQ3cSIJNaE15xZLPp7o7RNTcT1rsJpKbbouL25Bdak0TEQxIZFyaSpz+puIWtMBXHDnb1tzEl/oe9Gry/Uvelul/6GvsGtND/67NRvVG0E7WBhcBeESNNDS9qP6dzzKaZmyTFNBlBqEQaGHhkjNqWC2hkvFCkJPyZgNHMxIytTQLH7XwiPHjCDJpTuZhgX7Z4QhqVKzNHaeKdETtarNyb9pg1Inz4aGZ0WpWUarQkkpQOcwXxUYccmoFjMHCJXc9Qp0QtyEtFuomhtCuPrkq+Cw0w677c5Br7GzuxzHOnqAHqImCtFTtINeo33UR9R77330Pntf/A/+J/+r/61y9b1lzH10yfwfvwDxyPGF ✓ ◆ Preliminary Helicity Distributions Phenomenology at Small x

Yu.K., D. Pitonyak, M. Sievert, arXiv:1706.04236 [nucl-th] Impact of our DS on the proton spin

2 ↵ • We have attached a ⌃˜ ( x, Q )= Nx h curve to the existing hPDF’s fits at some ad hoc small value of x labeled x0 :

xΔu(x,Q2)

0.08 DSSV14

This work (x0 =0.03) 0.06

This work (x0 =0.01) 0.04 This work (x0 =0.001)

0.02

x “ballpark” 10-9 10-7 10-5 10-3 phenomenology

xΔs(x,Q2) DSSV14

x This work (x =0.03) 10-7 10-4 0

-0.002 This work (x0 =0.01)

This work (x0 =0.001) -0.004

-0.006

-0.008 70 Impact of our DS on the proton spin

1 [x ] 2 2 • Defining ⌃ min ( Q ) dx ⌃ ( x, Q ) we plot it for x0=0.03, 0.01, ⌘ 0.001: Zxmin

ΔΣ [xmin](Q 2)

0.5 DSSV14

0.4 This work (x0 =0.03)

0.3 This work (x0 =0.01)

This work (x =0.001) 0.2 0

0.1

xmin 10-8 10-5 10-2

• We observe a moderate to significant enhancement of quark spin. • More detailed phenomenology is needed in the future.

71 Impact on proton spin

• Here we compare our results for the total quark helicity with DSSV, now including their error band.

• We observe consistency of our lower two curves with DSSV.

• Our upper curve disagrees with DSSV, but agrees with NNPDF (Nocera, Santopinto, ‘16).

• Better phenomenology is needed. EIC would definitely play a role.

72 Impact of our DG on the proton spin

2 ↵G • We have attached a G ˜ ( x, Q )= Nx h curve to the existing hPDF’s fits at some ad hoc small value of x labeled x0 : xΔg(x,Q2) 0.10 DSSV14

0.08 This work (x0 =0.08)

0.06 This work (x0 =0.05)

0.04 This work (x0 =0.001)

0.02

x 10-8 10-5 10-2

“ballpark” phenomenology 73 Impact of our DG on the proton spin

1 • Defining S [ x min ]( Q 2 ) dx G ( x, Q 2 ) we plot it for x =0.08, 0.05, G ⌘ 0 0.001: Zxmin

[xmin] 2 SG (Q )

0.4 DSSV14

This work (x0 =0.08) 0.3

This work (x0 =0.05) 0.2 This work (x0 =0.001)

0.1

xmin 10-8 10-5 10-2

• We observe a moderate enhancement of gluon spin. • More detailed phenomenology is needed in the future.

74 EIC & Spin Puzzle

• Parton helicity distributions are sensitive to low-x physics. • EIC would have an unprecedented low-x reach for a polarized DIS experiment, allowing to pinpoint the values of quark and gluon contributions to proton’s spin:

1 3 10 Current polarized DIS data: Q2 = 10 GeV2 CERN DESY JLab SLAC current Current polarized BNL-RHIC pp data: 0.5 data PHENIX π0 STAR 1-jet

2 ) 10 2 0.95 ≤

y 0.95 G ≤ ≤

y ∆ 0

(GeV ≤ 2 Q 10 √s= 140 GeV, 0.01 √s= 45 GeV, 0.01 DSSV+ EIC -0.5 EIC 5×100 EIC 5×250 EIC 20×250 2 1 all uncertainties for ∆χ =9

-4 -3 -2 -1 -1 10 10 10 10 1 0.3 0.35 0.4 0.45 x ∆Σ • DG and DS are integrated over x in the 0.001 < x < 1 interval. 75 EIC: Solving the Spin Puzzle )

) 1 2 2 0.6 DSSV 2014 DSSV 2014 )

2 2 2 0.6 eRHIC data: with 90% C.L. band (x,Q Q = 10 GeV 15 100 GeV g(x,Q ×

0.8 (x,Q

eRHIC data: ∆Σ ∆ + 15 × 250 GeV

15 × 100 GeV g] + 20 × 250 GeV min 1 ∆

+ 15 250 GeV dx × x min ∫ 1 dx x 0.4 all bands 90% C.L. ∫ + 20 × 250 GeV

0.4 + 0.6 all bands 90% C.L. arXiv:1409.1633 ∆Σ 0.4 0.2

DSSV 2014 min

0.2 1 dx [1/2 x

with 90% C.L. band ∫

eRHIC data: 0.2 15 × 100 GeV − 0 + 15 × 250 GeV 2 2 + 20 × 250 GeV 1/2 Q = 10 GeV all bands 90% C.L. 2 2 0 Q = 10 GeV 0 -0.2 -6 -5 -4 -3 -2 -1 -6 -5 -4 -3 -2 -1 -6 -5 -4 -3 -2 -1 10 10 10 10 10 10 1 10 10 10 10 10 10 1 10 10 10 10 10 10 1 xmin xmin xmin 1/2 - Gluon - Quarks = orbital angular • Above plot shows the • EIC will also reduce momentum running integral of the uncertainty on the Constraints on gluon and 2 ∆g(x,Q ) from xmin to 1 as a quark contribution to quark contributions will function of xmin the proton spin provide information on the orbital angular momentum • Large reduction in component of proton spin uncertainty on ∆G from EIC can be seen E. Aschenaur et al, arXiv:1409.1633 [hep-ph] 76 Conclusions

• At large Nc we have obtained the following small-x asymptotics: q ↵h 2 1 q 4 ↵s Nc ↵s Nc q(x, Q ) with ↵h = 2.31 ⇠ x p3 r 2⇡ ⇡ r 2⇡ ✓ ◆ G 1 ↵h ↵ N ↵ N G(x, Q2) with ↵G = 13 s c 1.88 s c ⇠ x h 4p3 2⇡ ⇡ 2⇡ ✓ ◆ r r 4 p ↵s Nc 1 p3 2⇡ L (x, Q2)= ⌃(x, Q2) , q+¯q ⇠ x ✓ ◆ 13 p ↵s Nc 1 4p3 2⇡ L (x, Q2) G(x, Q2) G ⇠ ⇠ x AAADHXicnVLLbhMxFPVMeZTwaFqWbK6IkFIRopkkEmyQqoIEiwq1grSV4nTkcTyJVc8jtqdqZPlH2PArbFiAEAs2iL/ByaSCpiwQV7J0fM59+frGheBKB8FPz1+7dv3GzfVbtdt37t7bqG9uHaq8lJT1aS5yeRwTxQTPWF9zLdhxIRlJY8GO4tMXc/3ojEnF8+ydnhVsmJJxxhNOiXZUtOl19yIzhceAYyLN1Fponrfg4KSzDc/hCeCXTGgC+C0fp+S3hBVPawBYsEQ3cSIJNaE15xZLPp7o7RNTcT1rsJpKbbouL25Bdak0TEQxIZFyaSpz+puIWtMBXHDnb1tzEl/oe9Gry/Uvelul/6GvsGtND/67NRvVG0E7WBhcBeESNNDS9qP6dzzKaZmyTFNBlBqEQaGHhkjNqWC2hkvFCkJPyZgNHMxIytTQLH7XwiPHjCDJpTuZhgX7Z4QhqVKzNHaeKdETtarNyb9pg1Inz4aGZ0WpWUarQkkpQOcwXxUYccmoFjMHCJXc9Qp0QtyEtFuomhtCuPrkq+Cw0w677c5Br7GzuxzHOnqAHqImCtFTtINeo33UR9R77330Pntf/A/+J/+r/61y9b1lzH10yfwfvwDxyPGF ✓ ◆ • Future helicity and OAM work will involve + solving the large-NC&Nf equations + including running coupling corrections + LLA corrections + phenomenology to constrain the spin+OAM coming from small-x quarks and gluons. • EIC should be able to measure helicity TMDs with high precision and down to fairly small x. We may also be able to learn something about OAM. Backup Slides

78 Quark Helicity TMD at Small x

• Dominance of diagram B can also be obtained by applying crossing symmetry to the SIDIS process (KS ‘15):

x y y ⊥ ⊥ x ⊥ ⊥ c.c. z z =0 ⊥ ⊥

y x ⊥ ⊥ z c.c. ⊥ = the answer

• Compare the last line ζ ξ to the diagram B: reflecting

the cc amplitude into the k1 w amplitude reduces the above k2 diagram to the one on the right.

79 Quark and Gluon OAM at Small x Quark OAM: Definition

• We begin by writing the (Jaffe-Manohar) quark OAM in terms of the Wigner distribution as 2 2 + d b db d k dk L = ? ? (b k) W (k, b) z (2⇡)3 z

AAACmHicbVHfb9MwEHbCBqP8WAtv8HKimtSKMSUFCV6QKngAJB4GouukJo0cx1mt2I5lO6AS+c/kgb+FF5wuD2zjJNvffXenO3+XK86MjaLfQXhrb//2nYO7g3v3Hzw8HI4enZm60YQuSM1rfZ5jQzmTdGGZ5fRcaYpFzukyr9538eV3qg2r5Te7VTQV+EKykhFsPZUN68/ZT3gLCZMWklJj0hbrGeRZoqhWUEC+fgHJMXRk1ZOdC9X6uWsnM0gUm65fuo6ctEkjIffYMkEN7NzKTX0DH13CpDrOp9lwHJ1EO4ObIO7BGPV2mo2CUVLUpBFUWsKxMas4UjZtsbaMcOoGSWOowqTCF3TlocS+d9rulHFw5JkCylr743+4Y/+taLEwZiv80EcC2425HuvI/8VWjS3fpC2TqrFUkstGZcPB1tDJDAXTlFi+9QATzfysQDbY62v9MgaJpD9ILQSWRaeSW8Vp9xZUd3tsx7FzV3Owcf7iaoMz4wZexPi6ZDfB2ewk9vjLq/H8XS/nAXqKnqEJitFrNEcf0SlaIIJ+oT/BXrAfPgnn4Yfw02VqGPQ1j9EVC7/+BTIoxmE= ⇥ Z with the quark SIDIS Wigner distribution

q,SIDIS 2 ik r 1 1 1 + W (k, b)=2 d rdr e · ¯↵ b r V 1 b r, X 2 b r 2 1 | i 2 ↵ X Z ⌧ 2 X ⇥ ⇤ 1 1 X V 1 ,b + r b + r b+ r 2 2

AAAEU3icdVPNbhMxEN5uA5RAoS1HLiOiSq2SVtkIiQoJqRQO9FZU2kaKk5XX602seH+wvaBo62fgQXgeDjwLF2Y3W5KmxZLl0cw3ns/zjYNMCm263d9r7nrjwcNHG4+bT55uPnu+tb1zqdNcMX7BUpmqfkA1lyLhF0YYyfuZ4jQOJL8Kph/K+NU3rrRIky9mlvFhTMeJiASjBl3+9trPq1HxtQPnpx9Pzy3sTTsQ7MM76AHReez3gbwFIhID4ajoWVBAOhCCGh2URhM3HxUCpkBYmBpQFn2SR4ZImowlBxJQRTItfEJlNqFQBfcgAMw3Eyqj8kYlxhOzX1546RcFyRMI7AJQOZS189wBBFh7kT066JT8IjOr7xkCkCk3Rd/eFKuhZEzjmI7aN/X84oZTwA21tfsQCMEMEXM9z0dHp4kYRcsrlxm2/8ew5tOpqLaXqP6jiE+dd6UsvWhK+56mVCdRVTv9rVb3sFstuGt4tdFy6nWG8v4gYcrymCeGSar1wOtmZlhQZQST3DZJrnlG2ZSO+QDNhOK7h0U1VhZ20RNClCrcOAGVdzmjoLHWsxhbsRtTM9GrsdJ5X2yQm+hoWIgkyw1P2LxQlEswKZQzCqFQnBk5Q4MyJZArsAlVlBmc5CZJ+HeWopZJWHbeDrxheYZclZ+gaHnW3sZQbWutfb0SQlnn+ctD2/Lqtl+voHGuFujrBa6WZwVdSYmVTYTMC8/i/7FNlNBbFeyucdk79ND+/Lp1fFKLueG8dF45e47nvHGOnU/OmXPhMHfHPXLfuyfrv9b/NNxGYw511+qcF86t1dj8C4+VYpM= ⇥h | 1 2 • Here, and above, the angle brackets denote ”CGC⇥ averaging”⇤ in the (polarized) proton target:

2 + 1 d d ib ˆ(b, r) = e · P + ˆ(0,r) P O 2P + (2⇡)3 2 O 2 AAADfHicbVJdb9MwFHVWPkb56uCRF4uC1KnblBQEPIA0AQ+8USS6TarbynGcxqrjRPYNqPL8F/h5SPwZhNNGbMt2JdtH95xrX/ncuJTCQBj+CXY6t27fubt7r3v/wcNHj3t7T05MUWnGJ6yQhT6LqeFSKD4BAZKflZrTPJb8NF59qvnTH1wbUajvsC75LKdLJVLBKPjUovebSJ4CkVQtJccko2AJoxJ/dXgQH+h9TLRYZkD0VvABk1RTZiNnR3g8HzpMDjARCpp8Mh9h8plLoDWRNNjr7MATpdifv9qU8LkVOMaEJQU0ou1VsaZ2PGxuawg7cq7VWrhpbcXBjvHhDepFrx8ehZvA10HUgD5qYrzYC36RpGBVzhUwSY2ZRmEJM0s1CCa565LK8JKyFV3yqYeK5tzM7MYAh1/6TILTQvvl/2KTvVxhaW7MOo+9MqeQmTZXJ2/iphWk72ZWqLICrtj2obSSGApcu4kToTkDufaAMi18r5hl1P8GeM+7RPGfrMhzqhJLKuWm0aw+E67rcbH9yLmrGmqc32SZ0YVpUd6Ybf3leelHzXyct9TemQv1+YWumaOWGjIqU/8y/J8t57yDUduv6+BkdBR5/O11//hj4+UueoaeowGK0Ft0jL6gMZogFrwP4mAVyJ2/nRedYedwK90Jmpqn6Ep03vwDQHsdjg== Z ⌧ D E Quark OAM: small-x simplifications

• The resulting quark OAM “PDF” is + 2 2P 2 2 2 ik (⇣ ⇠) ⇣ + ⇠ 1 + Lq(x, Q )= d k d ⇣ d⇣ d ⇠ d⇠ e · k ¯↵(⇠) V⇠[⇠, ] X (2⇡)3 ? 2 ⇥ 1 | i 2 ↵ X Z ✓ ◆ X D X V⇣ [ , ⇣] (⇣)

AAAEi3icbVNtb9MwEM5KgVHeNvjIlxMVqNW6qumQQBNIEwiJD/uwSbSrVDeR4zitVecF24GWLL+KH8Dv4N9gO6m2dbMU5XL33N1zvidBxplUg8G/nca95v0HD3cftR4/efrs+d7+i7FMc0HoiKQ8FZMAS8pZQkeKKU4nmaA4Dji9CJZfTPziJxWSpcl3tc7oLMbzhEWMYKVd/v7O31P/B3RWPTj3hl34BCgSmBRDOPMOyqIzRBnrekcloB4AknnsTwAdA2KJgtAbwtJHGRWZCYdeMdS431Rh+1mZ3uG12IrVkRXzDlvapF7BYAmIhKmCTpV7aMJdjeY0Up2aT4HypCpYwgFUXytWlrasYjGVlXNZIsHmC9Vt2XTEcTLnFFCABcok8xHm2QLrVrqF4TL2dRq3tWBqafXMcJFaz/S8S6qKSQkGuGGjFphHgOY4jrF3AHU3XaUqjAJLsXL3AaENO5vfN6VaGiSwrbvpXs01rRpDb3NzM9vY0jZl6wvq1tWRsLP5e+1Bf2AP3Dbc2mg79TnTK/+DwpTkMU0U4VjKqTvI1KzAQjHCadlCuaQZJks8p1NtJljznxVWaiW80Z4QolToR2vAeq9nFDiWch0HGhljtZDbMeO8KzbNVfRhVrAkyxVNSNUo0pejUjC6hZAJShRfawMTwTRXIAustaG0ulsoob9IqneShEYH5dSdmXdIhfkxirZbljcxWJb1zny5FdLbqfKvK6jt1td+uYXWGrlCX17h6vVsoa18dGdlVe0a/W4hcn4neb1md3upt43xsO9q+/xd++RzvfBd55Xz2uk4rvPeOXG+OWfOyCGNt43Txqgxbj5tHjWPmx8raGOnznnp3DjNr/8BKYV4Kg== ⇥h | 1 • This can be compared to quark helicity, E

+ q 2 2p 2 2 ik (⇣ ⇠) 1 + 5 g (x, k )= d ⇣ d⇣ d ⇠ d⇠ e · ¯ (⇠) V [⇠, ] V [ , ⇣] (⇣) 1L T (2⇡)3 2 ↵ ⇠ 1 ⇣ 1

AAADR3icbVJLj9MwEHayPJby2C4cuVhUSKm2rZICAq2EtIILBw6LtO2uVCeR4zipVeeB7aCWKP+OC1du/AUuHECII3aalaDLSJY+z3wz883YUcmZVK771bL3rl2/cXP/Vu/2nbv3DvqH9+eyqAShM1LwQlxEWFLOcjpTTHF6UQqKs4jT82j12sTPP1AhWZGfqU1J/QynOUsYwUq7wkPLT8Pae9sE76GzHsFVeBZMh/AlRInApJ7CMjhqameKSjYMnjQQHUPEcgXjoJ7q20eqMEQjGG9hMG4v29iadZE1C8Y9DWlQM7iCiMSFgs42d2zCQ83mNFFO19Vr2gIpzjIcHF2CZxAJli7VMKwR5uVSN450iabX5iKO85RTWKMIC1RK1oQdyzEdjJS5TqzymAqzK9O3gYtW3MjMlKiNr8dDx71dohFqqC0Hji5H9U1N0ylsdXQTDTuVSLR6wv7AnbitwavA68AAdHYa9r+guCBVRnNFOJZy4bml8mssFCOc6mErSUtMVjilCw1znFHp1+0/aOBj7YlhUgh99CO13r8zapxJuckizcywWsrdmHH+L7aoVPLCr1leVormZNsoqThUBTSfCsZMUKL4RgNMBNNaIVli/ZZKf72eXoK3O/JVMJ9OPHfivXs6OHnVrWMfPASPgAM88BycgDfgFMwAsT5Z36wf1k/7s/3d/mX/3lJtq8t5AP6xPesPeKkFzQ== ↵ Z ✓ ◆ D E • The operators are different, but the structure is similar. The quark OAM can be evaluated in the same way as the quark helicity operator: only diagram B survives. ABC

ζξζξζξ

x− x− 0 0 DEF

ζξ ζξζξ Quark OAM: small-x expression

• After some algebra we arrive at the following small-x expression for quark OAM:

1 8Nc x k dz 2 2 2 2 ik x10 10 f 2 f 2 Lq+¯q(x, Q )= d k d x10 d x1 e · x1 k G10(zs) [q (x, Q )+q¯ (x, Q )] (2⇡)5 ? x2 ⇥ 2 ⇥ z 10 k f Z ⇤2Z/s AAAEL3icbVJLb9QwEE66PEp5tXDkMrBC2qql3UQgekGqAAkOFWol+pDWm8hxnF1rnUdtB7Z1/aMQ/4I/gLggrty4wgkn2bbbba08vpn55uGZiQrOpOp2f7hzrWvXb9ycv7Vw+87de/cXlx7sybwUhO6SnOfiIMKScpbRXcUUpweFoDiNON2PRm8q+/4nKiTLs4/qqKD9FA8yljCClVWFSy7ZCvUhrACKsNCHxkBnvAo7gb8M8ApQIjDRG/AhJEZ3fFSw5eCFAcQyBXHgwyhEBRUFoFUrat/AONRe1zSybyWvgjTQDDQqMxhZE4lz1UhjU7NrepPpglo3wQIbFimWUjlNGln7BNSEs4jeKfks4eP6sSUjzlKmZKjRlm1QjAN/XZpAew2njh3DsdHHdUXvmqt0juUyPANAskzDBHqA3lKuMBwGyVSrVuBUP+njtLUfLra7a936wGXgTUDbmZxtO5avKM5JmdJMEY6l7HndQvU1FooRTs0CKiUtMBnhAe1ZmGF7476u18HAU6uJIcmFfe2gau20h8aplEdpZJkpVkM5a6uUV9l6pUo2+pplRaloRppESclB5VDtFsRMUKL4kQWYCGZrBTLEtq/KbuACyuhnkqcpzuJqNqbn9at/TEW1vLrtGXORg6WxH14McShnTJHAjT+niZ0rzgacQtvOXrDBUJ3MsEdUnbNPznlI1I4zbDXEPLGZVb0RnrF7PcMo+ZXF2zF7s0O9DPb8Nc/ineftzdeTgc87j5wnTsfxnJfOpvPe2XZ2HeJ+c/+4f91/rS+t762frV8Ndc6d+Dx0LpzW7/+Avl1W X

• The result is written in terms of the polarized dipole amplitude G10 (z). It seems we are done, right? • This is almost correct. The remaining minor technicality is that the above quark OAM depends on the “first moment” of the polarized dipole amplitude k 2 k I (x10,zs)= d x1 x1 G10(zs) AAACTXicbVHRahNBFJ1Ntamx1lgffbkYhBRK2QkFfRGCPlTfKpimkN0us7M37ZCZ2WVmtk1c9nf6NYJPCn6IPok4m+bBpr0w3MM55zJ3zqSFFNaF4c+gtfHg4WZ761Hn8faTnafdZ7snNi8NxxHPZW5OU2ZRCo0jJ5zE08IgU6nEcTp73+jjSzRW5PqzWxQYK3auxVRw5jyVdIcfz2bQr6JSw7xOKhrW+/AF7B7AW4iEdpCdDWCeUIj2m+bNHhwtjdBvjEm3Fx6Ey4K7gK5Aj6zqOOn+jrKclwq145JZO6Fh4eKKGSe4xLoTlRYLxmfsHCceaqbQxtXypTW88kwG09z445dbsv9PVExZu1CpdyrmLuy61pD3aZPSTd/EldBF6VDzm4umpQSXQxMbZMIgd3LhAeNG+F2BXzDDuPPhdiKNVzxXiumsibKe0LjpGZrmX6oereuOD4qux3IXnAwOqMefDnvDd6vItsgL8pL0CSWvyZB8IMdkRDi5Jl/Jd/Ij+Bb8Cv4Ef2+srWA185zcqlb7H/uir9o= Z while all our earlier results for the quark helicity were derived for the “zeroth moment”, the impact-parameter integrated polarized dipole amplitude 2 2 G(x10,zs)= d x1 G10(zs) AAACQHicbVFBSxwxFM5YW3Vr2209enm4FFYQmWwL9VKQetCjgqvCzjhkMm81mGSGJKNuh/kh/hrBk/4E/4G30osHT2bWPVjtByEf3/ce7+VLWkhhXRjeBlNvpt++m5mda72f//DxU/vzlz2bl4Zjn+cyNwcpsyiFxr4TTuJBYZCpVOJ+erLR+PunaKzI9a4bFRgrdqTFUHDmvJS0v21CtzqvD3tJRcN6BX6DXQb4CZHQDrLDHpwnFKIV2Bz70G38pN0JV8Mx4DWhE9IhE2wn7fsoy3mpUDsumbUDGhYurphxgkusW1FpsWD8hB3hwFPNFNq4Gj+uhq9eyWCYG3/8TmP1eUfFlLUjlfpKxdyxfek14v+8QemGa3EldFE61Pxp0LCU4HJokoJMGOROjjxh3Ai/K/BjZhh3Ps9WpPGM50oxnVVRqesBjZs7Q9N8RdWhdd3yQdGXsbwme71V6vnO9876r0lks2SRLJEuoeQHWSdbZJv0CScX5JJck5vgKrgL/gR/n0qngknPAvkHwcMjL5usJA== Z Quark OAM: small-x asymptotics

• It turns out that the “first moment” of the polarized amplitude is subleading. It grows with energy as a smaller power of energy 2p ↵sNc Ik(x ,zs) zsx2 2⇡ AAACbHicbZFdixMxFIbT8WutH1s/7hbhYFG6IMtMEfRy0Ru9kRXs7kIzHTJppg1NMmNyRreG/Dx/hL9B8Eq9NtPthe56IOTlfc/hhCdlo6TDNP3WS65cvXb9xs7N/q3bd+7uDu7dP3Z1a7mY8FrV9rRkTihpxAQlKnHaWMF0qcRJuXrd5SefhHWyNh9w3Yhcs4WRleQMo1UMirezFYw8bQ2chcJnaXgGX8DtA3VSA1AlKhx1Dpxt0tkYqJWLJe7PfJTuo0VPK8u4p0w1S1Y4eFfw4Me0kSEEKAbD9CDdFFwW2VYMybaOisFvOq95q4VBrphz0yxtMPfMouRKhD5tnWgYX7GFmEZpmBYu9xsQAZ5EZw5VbeMxCBv37wnPtHNrXcZOzXDpLmad+b9s2mL1MvfSNC0Kw88XVa0CrKGjCnNpBUe1joJxK+NbgS9ZxIKRfZ8a8ZnXWjMz70iHaZZ391zY7tv8MAuhH0FlF7FcFsfjgyzq98+Hh6+2yHbIHnlMRiQjL8gheUOOyIRw8pV8Jz/Jr96P5GGylzw6b01625kH5J9Knv4BJcK8Ug== 10 ⇠ 10 than the flavor-singlet quark helicity distribution ↵q 4 p ↵s Nc 2.31 p ↵s Nc 1 h 1 p3 2⇡ 1 2⇡ ⌃(x, Q2)= [qf (x, Q2)+q¯f (x, Q2)] = ⇠ x x ⇡ x AAADRnicfVJNb9MwGHYyPkb56uDI5RUVUiemqukmscukCThwQpug26Q6jRzXaa3ZSWo70Mryb+HXIHGCM3+CG3DFbYMY3bRXivL4+XgdvXnTUnBtut3vQbhx4+at25t3Gnfv3X/wsLn16EQXlaKsTwtRqLOUaCZ4zvqGG8HOSsWITAU7Tc9fLfTTD0xpXuTvzbxksSTjnGecEuOpZCvYx6+ZMATwOz6WBNqzHTge9rbhALCuZJLBAGrHdJj9k+E5/OVxSpSduotq7MNcAhYsM22cKUJt5OzMYcXHE7M9tJiIckKSyXDq4KAB1zmX3J6zWE+VsbvOAd6B1WGl1b20b7Mqr79NqLM9wCX3fp8gZamK2TXX9Dq7kQ8ue1zVfL2pg6TZ6na6y4LLIKpBC9V1lDR/4VFBK8lyQwXRehB1SxNbogyngrkGrjQrCT0nYzbwMCeS6dguf7GDZ54ZQVYo/+QGluzFhCVS67lMvVMSM9Hr2oK8ShtUJtuPLc/LyrCcri7KKgGmgMW+wIgrRo2Ye0Co4v5bgU6IH43xW9XAOftICylJPrK4yt0gihfvEVOLhbStyLmGH1S0PpbL4KTXiTw+3msdvqxHtomeoKeojSL0Ah2iN+gI9RENPgWfg6/Bt/BL+CP8Gf5eWcOgzjxG/9UG+gNLvAbC Xf ✓ ◆ ✓ ◆ ✓ ◆ • Since 2.31 > 2, we get (cf. Y. Hatta & D.-J. Yang, 2018) 4 p ↵s Nc 1 p3 2⇡ L (x, Q2)= ⌃(x, Q2) q+¯q x

AAADYXicbVJdb9MwFHVWPrby1Y3HvVirkDqtTE2ZBC9IE/DAA0KboNukuotuXKe16jip7cAqz3+DP8Kv4Zm/wQNOU1SW7UpRTs451766J3EuuDa93q9go3Hv/oOHm1vNR4+fPH3W2t4501mhKBvQTGTqIgbNBJdsYLgR7CJXDNJYsPN49r7Uz78xpXkmv5pFzkYpTCRPOAXjqaj141Nk5/gAkxiUnTuHO1ddfHrZ38f4LX6JyQcmDGDyhU9SWGtE8xQ3MSaCJaZDEgXUhs5eOaL4ZGr2L23FHTlL9FwZ+8qfTLq4+qg0AtqfUJWXPkfU2T4mOfdWF7XavcPesvBtEK5AG63qJNoOfpJxRouUSUMFaD0Me7kZWVCGU8FckxSa5UBnMGFDDyWkTI/scoEOv/DMGCeZ8o80eMn+32Eh1XqRxt6ZgpnqulaSd2nDwiRvRpbLvDBM0uqipBDYZLhMA4+5YtSIhQdAFfezYjoFvx7jM2sSyb7TLE1Bji0ppBuGo/I9ZqqM27ZD5256QPuFg8inEOmaFCuo+svIiAA5EQy3Q1wldl1zz5hZu6/XPqKWjTW3mYJI/M3m34/Qrw9WiDuH9zGH9VBvg7P+Yejx6VH7+N0q8E20i/ZQB4XoNTpGH9EJGiCK/gR7wUHQ3fjd2Gq0GjuVdSNY9TxHN6qx+xcgFRNo ⇠ ✓ ◆ • Note that this is not a complete cancellation, the contribution to the proton spin is 1 2 2 1 2 ⌃(x, Q )+Lq+¯q(x, Q )= ⌃(x, Q ) AAADKnichVFNbxMxEHWWrxK+UjhysYiQiijVboQEF6QKOHDg0ArSVorDataZTax4vVt7Foi2+4+48Rv4A9wqrty4wh3nQwrdVmIk20/z3pNH85JCK0dheNoKLl2+cvXaxvX2jZu3bt/pbN49cHlpJfZlrnN7lIBDrQz2SZHGo8IiZInGw2T6as4ffkTrVG7e06zAYQZjo1IlgXwr7sSCJqBTLrbFa9QEXLxT4wz41udtvv+h94g/5m/j6tg/IgFbHdf1muIv+BP+H3/c6YY74aL4eRCtQJetai/ebH0Vo1yWGRqSGpwbRGFBwwosKamxbovSYQFyCmMceGggQzesFpuo+UPfGfE0t/4Y4ovuv44KMudmWeKVGdDENbl58yJuUFL6fFgpU5SERi4/SkvNKefztfKRsihJzzwAaZWflcsJWJDkl98WBj/JPMvAjCpRmnoQDefvCO08t6ob1fVZDbjaX7qYQOwaVGJh6deYktBgxhp5N+LCqvGEThrqKdJafbLWCbswNtSLLP3PlPrJq6iues3BSn3h8D7mqBnqeXDQ24k83n/a3X25CnyD3WcP2BaL2DO2y96wPdZnkn1jv9hv9if4EnwPToMfS2nQWnnusTMV/PwLNP0D2Q== 2 2 Gluon OAM: definition

• The gluon OAM story is similar. We start with the Wigner distribution definition 2 2 + d b db d k dk L = ? ? (b k) W (k, b) z (2⇡)3 z

AAACmHicbVHfb9MwEHbCBqP8WAtv8HKimtSKMSUFCV6QKngAJB4GouukJo0cx1mt2I5lO6AS+c/kgb+FF5wuD2zjJNvffXenO3+XK86MjaLfQXhrb//2nYO7g3v3Hzw8HI4enZm60YQuSM1rfZ5jQzmTdGGZ5fRcaYpFzukyr9538eV3qg2r5Te7VTQV+EKykhFsPZUN68/ZT3gLCZMWklJj0hbrGeRZoqhWUEC+fgHJMXRk1ZOdC9X6uWsnM0gUm65fuo6ctEkjIffYMkEN7NzKTX0DH13CpDrOp9lwHJ1EO4ObIO7BGPV2mo2CUVLUpBFUWsKxMas4UjZtsbaMcOoGSWOowqTCF3TlocS+d9rulHFw5JkCylr743+4Y/+taLEwZiv80EcC2425HuvI/8VWjS3fpC2TqrFUkstGZcPB1tDJDAXTlFi+9QATzfysQDbY62v9MgaJpD9ILQSWRaeSW8Vp9xZUd3tsx7FzV3Owcf7iaoMz4wZexPi6ZDfB2ewk9vjLq/H8XS/nAXqKnqEJitFrNEcf0SlaIIJ+oT/BXrAfPgnn4Yfw02VqGPQ1j9EVC7/+BTIoxmE= ⇥ Z with the dipole Wigner distribution for gluons

+ Gdip 4 2 ixP ⇠ ik ⇠ W (k, b)= d⇠ d ⇠ e · xP + ? Z +i 1 [+] 1 1 +i 1 [ ] 1 1 tr F (b 2 ⇠) [b 2 ⇠,b+ 2 ⇠] F (b + 2 ⇠) [b + 2 ⇠,b 2 ⇠] AAADunicbVPfa9swEHaSduuyX+32uJdjoSUlaYnTwkbZoGyw7bGDpS1YdpFlORGRZSPLW4vQn7mH/S172dlJR5r2wOj0fXffibtzXEhRmtHoT6vd2dh89HjrSffps+cvXm7vvDov80ozPmG5zPVlTEsuheITI4zkl4XmNIslv4jnn2v+4ifXpcjVD3NT8DCjUyVSwahB6GqnpS4i+xXIEBJROOjPh/E+fASSasrssbPXcBYNXM3D7gL0ne2PSSH2o6Ma7+4BEcpAAuRaRAeNUjRG/4oUXBdATsgJ8MgKaKTqDFiGwgEIIJWycxRiSW6aC3IOECBAjMh4CXt1DpE8NURSNZUcCQ0NEMCXyA4wvh9jZTOjMq2197EqWMKoxFq1TVxkg0HoghhW44bxYOUW1ln/9QYPyS2EDkIHwWrAsClzVxvVtJjOzO1JdPP2q+3e6HDUGNx3/KXT85Z2hhM6IknOqowrwyQty8AfFSa0VBvBJHddUpW8oGxOpzxAV1HsWWibzXCwi0gCaa7xwyE16GqGpVlZ3mQxRmbUzMp1rgYf4oLKpO9DK1RRGa7YolBaSTA51GuG26Q5M/IGHcq0wLcCm1HcH4PL2CWK/2J5llGVWBymsySL82uLnlvj6nYibW5Xb7weUSkX+GF9JlzXf4Ht+c5hm/31pt53zseH/tHh+Ptx7/TTsuFb3hvvrdf3fO+dd+p98868icdav1t/2xvtzc6HTtwRnfkitN1a5rz27ljH/APDMSdO ⇥ U U D h iE • We obtain the following expression for the gluon OAM “PDF” (cf. Hatta et al, 2016)

+ 2 4 2 2 2 ixP ⇠ ik ⇠ LG(x, Q )= d b db d k d⇠ d ⇠ (b k) e · (2⇡)3 x ? ? ? ⇥ Z +i 1 [+] 1 1 +i 1 [ ] 1 1 tr F (b 2 ⇠) [b 2 ⇠,b+ 2 ⇠] F (b + 2 ⇠) [b + 2 ⇠,b 2 ⇠] AAAD73icbVNLb9NAEHYTHiW8WjhyGREVpUpaxWkloBJSBRJw4NBKpEXy2tF6vUlWWT9YryHVan8HN4TEiZ/Ev2H8aGnTrmTvzHwz34xnxmEmRa6Hw79rrfat23furt/r3H/w8NHjjc0nJ3laKMbHLJWp+hLSnEuR8LEWWvIvmeI0DiU/DRfvSvz0G1e5SJPP+izjfkxniZgKRjWaJptrvz9NPkBvOYDjYLQNb4BMFWVm35reiGRiO9gDMoClLd8vgIhEQxSMIJyQjKsMIgiDnRIrjYvGiGonArIUFxDK5xgQyae6B4YUCYTIq0XM81pdoKrEbK630Q94YAQs4SjoI0sHGkLYAQHobEpnFqW6UhCzYNGHlFXWlBhU5SKSJjPJ0azq5B68D0wfA3ohFqjnVE5Lckx6gHUwKjFZecY2MF7ft94Vt0HY/6/4ZcwFW/8msppmx7fgXXYYVElCuEztN59/fhNVVz7Z6A53h9WB64LbCF2nOUc41j0SpayIeaKZpHnuucNM+4YqLZjktkOKnGeULeiMeygmFBvmm2qdLGyhJYJpqvDBeVfWyxGGxnl+FuPwtmKq5/kqVhpvwrxCT1/5RiRZoXnC6kTTQoJOodxNiITiTMszFChTAmsFNqe4jxo3uEMS/p2lcUyTyOAsrSFxmC4NSnYFK/uJsK5W2bVmtOpRJNZz/fKOuCp/HdN1rcU2u6tNvS6cjHbdvd3R8X738G3T8HXnmfPc6Tmu89I5dD46R87YYa1Oa9h63Tpof23/aP9s/6pdW2tNzFPnymn/+QcLqjgB ⇥ U U D h iE Gluon OAM: small-x expression

• Gluon OAM at small x can (similarly to the quark OAM) be rewritten in i terms of the “moment” of the polarized dipole amplitude G10 for the gluon helicity TMD. This object is different from the polarized amplitude for the quark. • We get 2 8iNc Q 2 2 2 ik x10 2 LG(x, Q )= d x10 d k e · (k x10) G5 x10,zs= g2 (2⇡)3 ? x

AAADKnicdVJNj9MwEHXC11I+tgtHLiMqpFYqVZOC2AvSCoSWA0K7Et1dqW4jx3Faq4kT2Q60WP5H/BpuKw5c+CE4aUHQhZGivJn3Jp68cVxmXOnh8NLzr12/cfPW3u3Wnbv37u+3Dx6cqaKSlI1pkRXyIiaKZVywseY6YxelZCSPM3YeL1/X/PlHJhUvxAe9Ltk0J3PBU06JdqWo/f1ddAzdVR9OZ2EPXsJTwKkk1BwCh/cRtWY+CwH3oRvikvdmI1sngLnQkDhmFZlguKnV6TLCJZNlnbcA2MxwwJUwS6egSaHBuAxWtmlqunDGUt39vwiw5POF7oH7npMfR+a5/dW0OXsW9uEzKDf6ZnD3H9asfjdG7c5wMGwCroJgCzpoGyfRgTfCSUGrnAlNM6LUJBiWemqI1JxmzLZwpVhJ6JLM2cRBQXKmpqbZhIUnrpJAWkj3OIua6p8dhuRKrfPYKXOiF2qXq4v/4iaVTg+nhouy0kzQzUFplYEuoF4rJFwyqrO1A4RK7mYFuiDOEO2W38KCfaJFnhORGKylNTiPi5VxyO5wC5KljtaNl4E14a6iEnYSTOt3wmR960wnsNbZHOyaehWchYNgNAhPn3WOXm0N30OP0GPURQF6gY7QW3SCxoh6b7ylp73K/+J/9S/9bxup7217HqK/wv/xEx4d+5s= · Z ✓ ◆ where

2 j i i j 2 jk k 2 d x1 x1 10 G10(zs)=x10 G4(x10,zs)+✏ x10 G5(x10,zs)

AAACcHicbZFdS8MwFIbT+jXn19QbQcXoEKaO0U5Fb4ShF/NSwamwbiXNsi1bmpYkFWfZtf/PO3+EN/4C062CTg8kvHnPc0jOiRcyKpVlvRvm1PTM7FxmPruwuLS8kltdu5dBJDCp4YAF4tFDkjDKSU1RxchjKAjyPUYevP5Vkn94IkLSgN+pQUgaPupw2qYYKW25uVeHcgVbzTJ8dm3oJHuzB50idDjyGGpSN7atYWJUv3XhRR7AC00mpzFcdU9gITXKRZgAR9AhoaQs4M241x9+4/0xfjqJu7m8VbJGAf8KOxV5kMaNm3tzWgGOfMIVZkjKum2FqhEjoShmZJh1IklChPuoQ+pacuQT2YhHAxvCfe20YDsQeun2R+7Pihj5Ug58T5M+Ul05mUvM/3L1SLXPGzHlYaQIx+OL2hGDKoDJ9GGLCoIVG2iBsKD6rRB3kUBY6T/K6iHYky3/Ffflkn1cKt+e5CuX6TgyYBPsgQKwwRmogGtwA2oAgw9j3dgyto1Pc8PcMXfHqGmkNevgV5iHX1QVtIs= r Z

• We write down and solve the equations for G5. Gluon OAM: small-x asymptotics

• We arrive at the following relation ↵q Q2 L (x, Q2)= h ln G(x, Q2) G 4 ⇤2 AAACTnicbVFNa9tAEF05beO4X2567GWJKTgQjOQE2kshpIH2kEMCcRKwHDFaj6wlq5WyOyoxQr+wl9Bbf0YvPaSUdu0I2iYdWHi892Zm921cKGnJ9796rZUHDx+tttc6j588ffa8+2L9xOalETgSucrNWQwWldQ4IkkKzwqDkMUKT+OL9wv99BMaK3N9TPMCJxnMtEykAHJU1MWD6APvX23xo/PhJufveKgwoT4PEwOiCkEVKUTp+WVd7dQ83HKybjTXUFfhgVs1BQd5aOQspc2laR8VAf8zOOr2/IG/LH4fBA3osaYOo+6XcJqLMkNNQoG148AvaFKBISkU1p2wtFiAuIAZjh3UkKGdVMs4av7aMVOe5MYdTXzJ/t1RQWbtPIudMwNK7V1tQf5PG5eUvJ1UUhcloRa3i5JSccr5Ils+lQYFqbkDIIx0d+UiBRcWuR/ouBCCu0++D06Gg2B7MDza6e3uNXG02Su2wfosYG/YLvvIDtmICfaZfWM37Id37X33fnq/bq0tr+l5yf6pVvs3vQewDA== ✓ ◆ where 4 ↵ N ↵q = s c h p AAACMHicbVBLSwMxGMzWV62vVY9egkXwIGW3LehFKHrQk1SwD+iuSzbNdkOzjyZZoSz7k7z4U/SioIhXf4VpuwdtHQhMZuYj+caNGRXSMN60wtLyyupacb20sbm1vaPv7rVFlHBMWjhiEe+6SBBGQ9KSVDLSjTlBgctIxx1eTvzOA+GCRuGdHMfEDtAgpB7FSCrJ0a8sxGIfOf79CJ5Dy+MIp/UstcSIy7SWZdA6gbPLzMvjYqLfODhLq9CKaZY5etmoGFPARWLmpAxyNB392epHOAlIKDFDQvRMI5Z2irikmJGsZCWCxAgP0YD0FA1RQISdThfO4JFS+tCLuDqhhFP190SKAiHGgauSAZK+mPcm4n9eL5HemZ3SME4kCfHsIS9hUEZw0h7sU06wZGNFEOZU/RViH6lipOq4pEow51deJO1qxaxVqrf1cuMir6MIDsAhOAYmOAUNcA2aoAUweAQv4B18aE/aq/apfc2iBS2f2Qd/oH3/AEUlqbg= 3 r 2⇡

• We conclude that ↵G 13 p ↵s Nc 1.88 p ↵s Nc 1 h 1 4p3 2⇡ 1 2⇡ L (x, Q2) G(x, Q2) G x x x

AAAC8nichVJNa9swGJa9j2bZR9P1uItYGKRQgp0UmmPZBt2hjBaWthAnRlbkWFT+mPR6NAj9jF162Bi99tf0tn8zxfaha8r2guHR8/FaeqWoEFyB5/123EePnzzdaD1rP3/x8tVmZ+v1qcpLSdmY5iKX5xFRTPCMjYGDYOeFZCSNBDuLLj6s9LNvTCqeZ19gWbBpShYZjzklYKlwy2kdhYe4d7mLT2aDHYwDxVMcfGQCCL7D17RgMfSCWBKqfaMvTSD5IoGdmQ6IKBISJrNDU1nb+F/mmhsavWfNXyXoobGx3WZRy01HZTvVZfXPITV6gIOCG2P+tyW/PxrZUJV/qPFaw7DT9fpeVXgd+A3ooqaOw85tMM9pmbIMqCBKTXyvgKkmEjgVzLSDUrGC0AuyYBMLM5IyNdXVlRn8zjJzHOfSfhngir2b0CRVaplG1pkSSNR9bUU+pE1KiEdTzbOiBJbR+kdxKTDkeHX/eM4loyCWFhAqud0rpgmxkwH7Stp2CP79I6+D00HfH/YHJ3vdg/fNOFroDXqLeshH++gAfULHaIyokzvfnR/OTxfcK/eXe11bXafJbKO/yr35AwiS54s= ⇠ ⇠ ⇠ ⇠ ✓ ◆ ✓ ◆ ✓ ◆ • Note that with the DLA accuracy we could also simply conclude that L G |AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5JUQZdFhbpwUcE+oAlhMp20QyeTMDMRalL8FTcuFHHrf7jzb5y2WWjrgQuHc+7l3nv8mFGpLOvbKCwtr6yuFddLG5tb2zvm7l5LRonApIkjFomOjyRhlJOmooqRTiwICn1G2v7wauK3H4iQNOL3ahQTN0R9TgOKkdKSZx5kt149gw5jMHOuCVMI1jPPLFsVawq4SOyclEGOhmd+Ob0IJyHhCjMkZde2YuWmSCiKGRmXnESSGOEh6pOuphyFRLrp9PoxPNZKDwaR0MUVnKq/J1IUSjkKfd0ZIjWQ895E/M/rJiq4cFPK40QRjmeLgoRBFcFJFLBHBcGKjTRBWFB9K8QDJBBWOrCSDsGef3mRtKoV+7RSvTsr1y7zOIrgEByBE2CDc1ADN6ABmgCDR/AMXsGb8WS8GO/Gx6y1YOQz++APjM8fTJKUeg== G| ⌧ | | Conclusions for OAM asymptotics

• We have constructed the small-x asymptotics of the quark and gluon OAM (in the Jaffe-Manohar decomposition).

• In the large-NC limit we obtain

4 p ↵s Nc 1 p3 2⇡ L (x, Q2)= ⌃(x, Q2) , q+¯q ⇠ x ✓ ◆ 13 p ↵s Nc 1 4p3 2⇡ L (x, Q2) G(x, Q2) G ⇠ ⇠ x AAADHXicnVLLbhMxFPVMeZTwaFqWbK6IkFIRopkkEmyQqoIEiwq1grSV4nTkcTyJVc8jtqdqZPlH2PArbFiAEAs2iL/ByaSCpiwQV7J0fM59+frGheBKB8FPz1+7dv3GzfVbtdt37t7bqG9uHaq8lJT1aS5yeRwTxQTPWF9zLdhxIRlJY8GO4tMXc/3ojEnF8+ydnhVsmJJxxhNOiXZUtOl19yIzhceAYyLN1Fponrfg4KSzDc/hCeCXTGgC+C0fp+S3hBVPawBYsEQ3cSIJNaE15xZLPp7o7RNTcT1rsJpKbbouL25Bdak0TEQxIZFyaSpz+puIWtMBXHDnb1tzEl/oe9Gry/Uvelul/6GvsGtND/67NRvVG0E7WBhcBeESNNDS9qP6dzzKaZmyTFNBlBqEQaGHhkjNqWC2hkvFCkJPyZgNHMxIytTQLH7XwiPHjCDJpTuZhgX7Z4QhqVKzNHaeKdETtarNyb9pg1Inz4aGZ0WpWUarQkkpQOcwXxUYccmoFjMHCJXc9Qp0QtyEtFuomhtCuPrkq+Cw0w677c5Br7GzuxzHOnqAHqImCtFTtINeo33UR9R77330Pntf/A/+J/+r/61y9b1lzH10yfwfvwDxyPGF ✓ ◆ Helicity PDFs at Small-x

• Theoretical calculations by Bartels, Ermolaev and Ryskin (BER, 1996) and by YK, Pitonyak and Sievert (2015-17, KPS).

• KPS results (large-NC, this talk): ↵q 1 h 4 ↵ N ↵ N q(x, Q2) with ↵q = s c 2.31 s c ⇠ x h p3 2⇡ ⇡ 2⇡ ✓ ◆ G r r 1 ↵h ↵ N ↵ N G(x, Q2) with ↵G = 13 s c 1.88 s c ⇠ x h 4p3 2⇡ ⇡ 2⇡ ✓ ◆ r r

• BER results at large-NC (for both quark and gluon helicity distributions):

↵BER = 17+p97 ↵sNc 3.66 ↵sNc h 2 2⇡ ⇡ 2⇡ q q q For finite NC and Nf=4 BER have 3.66 à 3.45. Helicity PDFs at Small-x 1 ↵ PDF(x) ⇠ x • The summary of the existing powers of x is AAACF3icbVDLSgNBEJz1GeMr6tHLYBCSy7IbBT0GFfEYwTwgG8PsZDY7ZPbBTK8kLPkLL/6KFw+KeNWbf+Mk2YMmFjQUVd10d7mx4Aos69tYWl5ZXVvPbeQ3t7Z3dgt7+w0VJZKyOo1EJFsuUUzwkNWBg2CtWDISuII13cHlxG8+MKl4FN7BKGadgPRD7nFKQEvdglm7usalYRk7igfYEcyDEnY8SWhqj9PhGDuS930o3ztExD7pFoqWaU2BF4mdkSLKUOsWvpxeRJOAhUAFUaptWzF0UiKBU8HGeSdRLCZ0QPqsrWlIAqY66fSvMT7WSg97kdQVAp6qvydSEig1ClzdGRDw1bw3Ef/z2gl4552Uh3ECLKSzRV4iMER4EhLucckoiJEmhEqub8XUJzoU0FHmdQj2/MuLpFEx7ROzcntarF5kceTQITpCJWSjM1RFN6iG6oiiR/SMXtGb8WS8GO/Gx6x1ychmDtAfGJ8/0/mehg== ✓ ◆

• Similar disagreement exists for OAM distributions at small x. • However, even the smaller KPS powers lead to potentially important contributions to the proton spin coming from small x. (next) Comparison with BER

σ1 σ1 p1 − k1 + k2 σ1 p1 − k2 p1 p1 p1

k1 k1 k1 k1 To better understand BER work, k1 − k2 k1 − k2 k1 − k2 we tried calculating one (real)

k2 k2 k2 k2 k2 k2 step of DLA helicity evolution

σ2 σ2 σ2 p2 p2 p2 for the qq->qq scattering.

A B C

p1 − k1 + k2 p1 − k2 p1 − k1 + k2 σ1 σ1 σ1 p1 p1 p1

k1 k1

k1 − k2 It appears that we have identified k1 − k2 k1 − k2 k2 k2 k2 k2 the k2>> k1 (or k1>> k2) regime

σ2 σ2 σ2 p2 p2 p2 in which diagrams A, B, C, D, E, I p2 − k1 + k2 p2 − k1 + k2

D E F are DLA, which was not

σ1 σ1 σ1 considered by BER for B, C, … I. p1 p1 p1

k1 − k2 k1 − k2 k1 − k2

k2 k2 k2 k2 k2 k2

σ2 σ2 σ2 p2 p2 p2

G H I 91