Grand Unified Theory

Total Page:16

File Type:pdf, Size:1020Kb

Grand Unified Theory Grand Unified Theory Manuel Br¨andli [email protected] ETH Z¨urich May 29, 2018 Contents 1 Introduction 2 2 Gauge symmetries 2 2.1 Abelian gauge group U(1) . .2 2.2 Non-Abelian gauge group SU(N) . .3 3 The Standard Model of particle physics 4 3.1 Electroweak interaction . .6 3.2 Strong interaction and color symmetry . .7 3.3 General transformation of matter fields . .8 4 Unification of Standard Model Forces: GUT 8 4.1 Motivation of Unification . .8 4.2 Finding the Subgroups . .9 4.2.1 Example: SU(2) U(1) SU(3) . .9 4.3 Branching rules . .× . .⊂ . 10 4.3.1 Example: 3 representation of SU(3) . 11 4.4 Georgi-Glashow model with gauge group SU(5) . 14 4.5 SO(10) . 15 5 Implications of unification 16 5.1 Advantages of Grand Unified Theories . 16 5.2 Proton decay . 16 6 Conclusion 17 Abstract In this article we show how matter fields transform under gauge group symmetries and motivate the idea of Grand Unified Theories. We discuss the implications of Grand Unified Theories in particular for proton decay, which gives us a tool to test Grand Unified Theories. 1 1 Introduction In the 50s and 60s a lot of new particles were discovered. The quark model was a first successful attempt to categorize this particle zoo. It was based on the so-called flavor symmetry, which is an approximate symmetry. This motivated the use of group theory in particle physics [10]. In this article we will make use of gauge symmetries, which are local symmetries, to explain the existence of interaction particles and show how the matter fields transform under these symmetries, section 2. This will lead us to a very success- ful model, the Standard Model of particle physics, section 3. This model has some issues, the most important one is that we have to put a lot of parameters into the model. We would like to find a theory, which already includes these pa- rameters. In an attempt to find such a theory, we use a symmetry group, which includes the gauge groups found in the Standard Model. Theories obtained in such manner are called Grand Unified Theories (GUT), section 4. We will dis- cuss the implications of these models in section 5. In particular Grand Unified Theories predict new interaction particles, which lead to new interactions i.e. proton decay, section 5.2. 2 Gauge symmetries This section is based on Ref. [1]. A symmetry transformation is a transformation of a field φ φ0 which leaves the Lagrangian invariant δ = 0. The idea of a gauge symmetry7! is that this transformation can be a functionL of spacetime. This means that we have a local symmetry. To see this in detail let's have a look at the Abelian gauge group U(1). 2.1 Abelian gauge group U(1) We have a Lagrangian which has the following form: L y µ y = @µφ @ φ V (φ φ); (2.1) L − where the dagger stands for hermitian conjugate. Our global symmetry is the transformation of our field by a phase: φ φ0 = eiαφ, which results in a µ 7! conserved current @µj = 0. This phase factor is a complex number, which means eiα U(1). If we now consider that our phase factor α can be a function of the spacetime2 coordinate, i.e. α(x), we have φ eiα(x)φ. This modification results in an additional term from the derivative7! of α(x). We would like to obtain the same Lagrangian, so to compensate for this term we introduce an electromagnetic potential Aµ which transforms in the following way: Aµ(x) 1 7! Aµ(x) e @µα(x) where e is the coupling constant and stands for the electric charge.− We combine the derivative with the potential to define a new covariant derivative 2 Dµ = (@µ + ieAµ)φ, which transforms as: 0 0 iα(x) Dµφ (Dµφ) = (@µ + ieAµ)(e φ) = 7! (2.2) iα(x) 1 iα(x) iα(x) = @µ(e φ) + ie(Aµ(x) @µα(x))e φ = e Dµφ. − e If we therefore replace the derivatives in the Lagrangian (2.1) with the new covariant ones, we find a Lagrangian which is invariant under the gauge trans- formation: y µ y = (Dµφ) (D φ) V (φ φ): (2.3) L − There is a kinetic term missing for our field Aµ. To find this kinetic term let's have a look at the field strength tensor Fµν , which has the following form: 1 Fµν = [Dµ;Dν ] = @µAν @ν Aµ: (2.4) − e − The change of the field strength tensor under gauge transformation is zero, which follows from: 1 δFµν = @µδAν @ν δAµ = (@µ@ν @ν @µ)α(x) = 0; (2.5) − − e − where we used that derivatives commute. Our kinetic term is, therefore, sim- 1 µν ply A;kin = 4 Fµν F , because it has to be Lorentz invariant. The full LagrangianL is then− given by: y µ 1 µν y = (Dµφ) (D φ) Fµν F V (φ φ): (2.6) L − 4 − 2.2 Non-Abelian gauge group SU(N) We can generalize this idea to non-Abelian gauge groups. We will focus on SU(N) gauge groups, because they will play an important role later on. We have a set of fields: Φ1 Φ = . which transforms as: Φ UΦ with U SU(N): 0 . 1 7! 2 Φ B nC @ A We can also write U as an infinitesimal transformation using its generators T a: a iαaT a U = e 1 + iαaT : (2.7) ≈ These generators have the following commutation relation: [T a;T b] = if abcT c: (2.8) We see, that we again have a global symmetry, if our Lagrangian has the form: y µ y = (@µΦ) (@ Φ) V (Φ Φ): (2.9) L − 3 a Our gauge transformation is then given by: Φ U(x)Φ = eiαa(x)T Φ, where we will get an additional term as before, because7! the derivative acts also on U(x). We again introduce a vector field, which this time needs to be matrix- a a a valued: Aµ = AµT , where T are the generators of the group. Therefore, we get for each generator of SU(N) a vector field. The quantization of these vector fields result in interaction particles. For example the quantization of the Aµ results in the photon. Further, the gluons, the interaction particles for the strong interaction, result from quantization of the non-Abelian gauge symmetry group SU(3)C , section 3.2. Consider the transformation of DµΦ under the gauge transformation: 0 0 0 [DµΦ] = [(@µ + igAµ)Φ] = (@µ + igA )UΦ = µ (2.10) −1 −1 0 = U(@µ + U (@µU) + igU AµU)Φ We would like to be able to pull U(x) out, i.e. −1 −1 0 U(@µ + U (@µU) + igU AµU)Φ = UDµΦ: For this to be true we need: 0 −1 i −1 A = UAµU U@µU ; (2.11) µ − g where g is the so-called coupling constant. The field strength tensor is: i a a Fµν = [Dµ;Dν ] = @µAν @ν Aµ + ig[Aµ;Aν ] = F T : (2.12) −g − µν The components of the field strength tensor are given by: a a a abc b c F = @µA @ν A gf A A : (2.13) µν ν − µ − µ ν The additional term in the field strength tensor comes from the fact that the gauge vector interacts with itself. An example of this is the gluons which have themselves color and therefore interact with each other. To find the kinetic part of the interaction field we can use the trace, because tr(A) tr(A0) = tr(UAU −1) = tr(A). Therefore, this quantity is invariant under gauge7! trans- formation. We finally find our Lagrangian: y µ 1 µν y = (Dµφ) (D φ) tr(Fµν F ) V (Φ Φ): (2.14) L − 2 − 3 The Standard Model of particle physics The Standard Model of particle physics is a very successful model. In figure 1 we see the general structure of the Standard Model. There are six quarks and six leptons which are both fermions and there are 12 interaction particles called vector-bosons, because they have spin 1. These include 8 gluons, the interaction particles for the strong interaction, and the 4 interaction particles of 4 Figure 1: particles in the standard model [20] the electroweak interaction, namely the photon, the W ± bosons and the Z boson. There is also the Higgs particle which is a scalar boson (spin=0), which we will not cover in this article. We can arrange the fermions into three generations, where the fermions of different generations differ only by mass. The Standard Model is a chiral theory, which means that it violates parity. This means if we do a parity inversion of our system, there are processes that have different probability occurring in the two systems [2]. On the way to a full formulation of the Standard Model, Sheldon Glashow, Steven Weinberg and Abdus Salam unified the weak interaction and the elec- tromagnetic interaction into the electroweak interaction the so-called Glashow- Weinberg-Salam model. It predicted the existence of a Z-boson, because this model has the underlying gauge group SU(2)L U(1)Y , which means that we have 4 generators and therefore 4 interaction particles.× In 1974 neutral cur- rent, the interaction mediated by the Z-bosons, was observed in the Gargamelle neutrino experiment at CERN [3]. The GIM mechanism, which is part of the Standard Model, predicted a fourth quark, the charm quark [4] and laid the foundation for the prediction of the top and bottom quark by Makoto Kobayashi and Toshihide Maskawa [5].
Recommended publications
  • Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2010 Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Physics Commons Baas, Alessandra Edda, "Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond" (2010). Masters Theses 1911 - February 2014. 503. Retrieved from https://scholarworks.umass.edu/theses/503 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2010 Department of Physics © Copyright by Alessandra Edda Baas 2010 All Rights Reserved THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Approved as to style and content by: Eugene Golowich, Chair Benjamin Brau, Member Donald Candela, Department Chair Department of Physics To my loving parents. ACKNOWLEDGMENTS Writing a Thesis is never possible without the help of many people. The greatest gratitude goes to my supervisor, Prof. Eugene Golowich who gave my the opportunity of working with him this year.
    [Show full text]
  • 7. Gamma and X-Ray Interactions in Matter
    Photon interactions in matter Gamma- and X-Ray • Compton effect • Photoelectric effect Interactions in Matter • Pair production • Rayleigh (coherent) scattering Chapter 7 • Photonuclear interactions F.A. Attix, Introduction to Radiological Kinematics Physics and Radiation Dosimetry Interaction cross sections Energy-transfer cross sections Mass attenuation coefficients 1 2 Compton interaction A.H. Compton • Inelastic photon scattering by an electron • Arthur Holly Compton (September 10, 1892 – March 15, 1962) • Main assumption: the electron struck by the • Received Nobel prize in physics 1927 for incoming photon is unbound and stationary his discovery of the Compton effect – The largest contribution from binding is under • Was a key figure in the Manhattan Project, condition of high Z, low energy and creation of first nuclear reactor, which went critical in December 1942 – Under these conditions photoelectric effect is dominant Born and buried in • Consider two aspects: kinematics and cross Wooster, OH http://en.wikipedia.org/wiki/Arthur_Compton sections http://www.findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=22551 3 4 Compton interaction: Kinematics Compton interaction: Kinematics • An earlier theory of -ray scattering by Thomson, based on observations only at low energies, predicted that the scattered photon should always have the same energy as the incident one, regardless of h or • The failure of the Thomson theory to describe high-energy photon scattering necessitated the • Inelastic collision • After the collision the electron departs
    [Show full text]
  • The Algebra of Grand Unified Theories
    The Algebra of Grand Unified Theories John Baez and John Huerta Department of Mathematics University of California Riverside, CA 92521 USA May 4, 2010 Abstract The Standard Model is the best tested and most widely accepted theory of elementary particles we have today. It may seem complicated and arbitrary, but it has hidden patterns that are revealed by the relationship between three ‘grand unified theories’: theories that unify forces and particles by extend- ing the Standard Model symmetry group U(1) × SU(2) × SU(3) to a larger group. These three are Georgi and Glashow’s SU(5) theory, Georgi’s theory based on the group Spin(10), and the Pati–Salam model based on the group SU(2)×SU(2)×SU(4). In this expository account for mathematicians, we ex- plain only the portion of these theories that involves finite-dimensional group representations. This allows us to reduce the prerequisites to a bare minimum while still giving a taste of the profound puzzles that physicists are struggling to solve. 1 Introduction The Standard Model of particle physics is one of the greatest triumphs of physics. This theory is our best attempt to describe all the particles and all the forces of nature... except gravity. It does a great job of fitting experiments we can do in the lab. But physicists are dissatisfied with it. There are three main reasons. First, it leaves out gravity: that force is described by Einstein’s theory of general relativity, arXiv:0904.1556v2 [hep-th] 1 May 2010 which has not yet been reconciled with the Standard Model.
    [Show full text]
  • – 1– LEPTOQUARK QUANTUM NUMBERS Revised September
    {1{ LEPTOQUARK QUANTUM NUMBERS Revised September 2005 by M. Tanabashi (Tohoku University). Leptoquarks are particles carrying both baryon number (B) and lepton number (L). They are expected to exist in various extensions of the Standard Model (SM). The possible quantum numbers of leptoquark states can be restricted by assuming that their direct interactions with the ordinary SM fermions are dimensionless and invariant under the SM gauge group. Table 1 shows the list of all possible quantum numbers with this assumption [1]. The columns of SU(3)C,SU(2)W,andU(1)Y in Table 1 indicate the QCD representation, the weak isospin representation, and the weak hypercharge, respectively. The spin of a leptoquark state is taken to be 1 (vector leptoquark) or 0 (scalar leptoquark). Table 1: Possible leptoquarks and their quan- tum numbers. Spin 3B + L SU(3)c SU(2)W U(1)Y Allowed coupling c c 0 −2 311¯ /3¯qL`Loru ¯ReR c 0 −2 314¯ /3 d¯ReR c 0−2331¯ /3¯qL`L cµ c µ 1−2325¯ /6¯qLγeRor d¯Rγ `L cµ 1 −2 32¯ −1/6¯uRγ`L 00327/6¯qLeRoru ¯R`L 00321/6 d¯R`L µ µ 10312/3¯qLγ`Lor d¯Rγ eR µ 10315/3¯uRγeR µ 10332/3¯qLγ`L If we do not require leptoquark states to couple directly with SM fermions, different assignments of quantum numbers become possible [2,3]. The Pati-Salam model [4] is an example predicting the existence of a leptoquark state. In this model a vector lepto- quark appears at the scale where the Pati-Salam SU(4) “color” gauge group breaks into the familiar QCD SU(3)C group (or CITATION: S.
    [Show full text]
  • Abdus Salam United Nations Educational, Scientific and Cultural International XA0101583 Organization Centre
    the 1(72001/34 abdus salam united nations educational, scientific and cultural international XA0101583 organization centre international atomic energy agency for theoretical physics NEW DIMENSIONS NEW HOPES Utpal Sarkar Available at: http://www.ictp.trieste.it/-pub-off IC/2001/34 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NEW DIMENSIONS NEW HOPES Utpal Sarkar1 Physics Department, Visva Bharati University, Santiniketan 731235, India and The Abdus Salam Insternational Centre for Theoretical Physics, Trieste, Italy. Abstract We live in a four dimensional world. But the idea of unification of fundamental interactions lead us to higher dimensional theories. Recently a new theory with extra dimensions has emerged, where only gravity propagates in the extra dimension and all other interactions are confined in only four dimensions. This theory gives us many new hopes. In earlier theories unification of strong, weak and the electromagnetic forces was possible at around 1016 GeV in a grand unified theory (GUT) and it could get unified with gravity at around the Planck scale of 1019 GeV. With this new idea it is possible to bring down all unification scales within the reach of the next generation accelerators, i.e., around 104 GeV. MIRAMARE - TRIESTE May 2001 1 Regular Associate of the Abdus Salam ICTP. E-mail: [email protected] 1 Introduction In particle physics we try to find out what are the fundamental particles and how they interact. This is motivated from the belief that there must be some fundamental law that governs ev- erything.
    [Show full text]
  • Deep Inelastic Scattering
    Particle Physics Michaelmas Term 2011 Prof Mark Thomson e– p Handout 6 : Deep Inelastic Scattering Prof. M.A. Thomson Michaelmas 2011 176 e– p Elastic Scattering at Very High q2 ,At high q2 the Rosenbluth expression for elastic scattering becomes •From e– p elastic scattering, the proton magnetic form factor is at high q2 Phys. Rev. Lett. 23 (1969) 935 •Due to the finite proton size, elastic scattering M.Breidenbach et al., at high q2 is unlikely and inelastic reactions where the proton breaks up dominate. e– e– q p X Prof. M.A. Thomson Michaelmas 2011 177 Kinematics of Inelastic Scattering e– •For inelastic scattering the mass of the final state hadronic system is no longer the proton mass, M e– •The final state hadronic system must q contain at least one baryon which implies the final state invariant mass MX > M p X For inelastic scattering introduce four new kinematic variables: ,Define: Bjorken x (Lorentz Invariant) where •Here Note: in many text books W is often used in place of MX Proton intact hence inelastic elastic Prof. M.A. Thomson Michaelmas 2011 178 ,Define: e– (Lorentz Invariant) e– •In the Lab. Frame: q p X So y is the fractional energy loss of the incoming particle •In the C.o.M. Frame (neglecting the electron and proton masses): for ,Finally Define: (Lorentz Invariant) •In the Lab. Frame: is the energy lost by the incoming particle Prof. M.A. Thomson Michaelmas 2011 179 Relationships between Kinematic Variables •Can rewrite the new kinematic variables in terms of the squared centre-of-mass energy, s, for the electron-proton collision e– p Neglect mass of electron •For a fixed centre-of-mass energy, it can then be shown that the four kinematic variables are not independent.
    [Show full text]
  • Electro-Weak Interactions
    Electro-weak interactions Marcello Fanti Physics Dept. | University of Milan M. Fanti (Physics Dep., UniMi) Fundamental Interactions 1 / 36 The ElectroWeak model M. Fanti (Physics Dep., UniMi) Fundamental Interactions 2 / 36 Electromagnetic vs weak interaction Electromagnetic interactions mediated by a photon, treat left/right fermions in the same way g M = [¯u (eγµ)u ] − µν [¯u (eγν)u ] 3 1 q2 4 2 1 − γ5 Weak charged interactions only apply to left-handed component: = L 2 Fermi theory (effective low-energy theory): GF µ 5 ν 5 M = p u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 Complete theory with a vector boson W mediator: g 1 − γ5 g g 1 − γ5 p µ µν p ν M = u¯3 γ u1 − 2 2 u¯4 γ u2 2 2 q − MW 2 2 2 g µ 5 ν 5 −−−! u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 2 low q 8 MW p 2 2 g −5 −2 ) GF = | and from weak decays GF = (1:1663787 ± 0:0000006) · 10 GeV 8 MW M. Fanti (Physics Dep., UniMi) Fundamental Interactions 3 / 36 Experimental facts e e Electromagnetic interactions γ Conserves charge along fermion lines ¡ Perfectly left/right symmetric e e Long-range interaction electromagnetic µ ) neutral mass-less mediator field A (the photon, γ) currents eL νL Weak charged current interactions Produces charge variation in the fermions, ∆Q = ±1 W ± Acts only on left-handed component, !! ¡ L u Short-range interaction L dL ) charged massive mediator field (W ±)µ weak charged − − − currents E.g.
    [Show full text]
  • Introduction to Flavour Physics
    Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section.
    [Show full text]
  • Physics 231A Problem Set Number 8 Due Wednesday, November 24, 2004 Note: Some Problems May Be “Review” for Some of You. I Am
    Physics 231a Problem Set Number 8 Due Wednesday, November 24, 2004 Note: Some problems may be “review” for some of you. I am deliberately including problems which are potentially in this category. If the material of the problem is already well-known to you, such that doing the problem would not be instructive, just write “been there, done that”, or suitable equivalent, for that problem, and I’ll give you credit. 40. Standard Model Review(?): Last week you considered the mass matrix and Z coupling for the neutral gauge bosons in the electroweak theory. Let us discuss a little more completely the couplings of the electroweak gauge bosons to fermions. Again, we’ll work in the standard model where the physical Z and photon (A) states are mixtures of neutral gauge bosons. We start with gauge groups “SU(2)L”and“U(1)Y ”. The gauge bosons of SU(2)L are the W1,W2,W3, all with only left-handed coupling to fermions. The U(1)Y gauge boson is denoted B. The Z and A fields are the mixtures: A = B cos θW + W3 sin θW (48) Z = −B sin θW + W3 cos θW , (49) where θW is the “weak mixing angle”. The Lagrangian contains interaction terms with fermions of the form: 1 1 L = −gf¯ γµ τ · W f − g0f¯ YB ψ, (50) int L 2 µ L 2 µ ≡ 1 − 5 · ≡ 3 where fL 2 (1 γ )ψ, τ Wµ Pi=1 τiWµi, τ are the Pauli matrices acting on weak SU(2)L fermion doublets, Y is the weak hypercharge 0 operator, and g and g are the interaction strengths for the SU(2)L and U(1)Y components, respectively.
    [Show full text]
  • Physics Beyond the Standard Model (BSM)
    Vorlesung 10: Search for Physics Beyond the Standard Model (BSM) • Standard Model : success and problems • Grand Unified Theories (GUT) • Supersymmetrie (SUSY) – theory – direct searches • other models / ideas for physics BSM Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V10: BSM 1 The Standard Model of particle physics... • fundamental fermions: 3 pairs of quarks plus 3 pairs of leptons • fundamental interactions: through gauge fields, manifested in – W±, Z0 and γ (electroweak: SU(2)xU(1)), – gluons (g) (strong: SU(3)) … successfully describes all experiments and observations! … however ... the standard model is unsatisfactory: • it has conceptual problems • it is incomplete ( ∃ indications for BSM physics) Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V10: BSM 2 Conceptual Problems of the Standard Model: • too many free parameters (~18 masses, couplings, mixing angles) • no unification of elektroweak and strong interaction –> GUT ; E~1016 GeV • quantum gravity not included –> TOE ; E~1019 GeV • family replication (why are there 3 families of fundamental leptons?) • hierarchy problem: need for precise cancellation of –> SUSY ; E~103 GeV radiation corrections • why only 1/3-fractional electric quark charges? –> GUT indications for New Physics BSM: • Dark Matter (n.b.: known from astrophysical and “gravitational” effects) • Dark Energy / Cosmological Constant / Vacuum Energy (n.b.: see above) • neutrinos masses • matter / antimatter asymmetry Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V10: BSM 3 Grand Unified Theory (GUT): • simplest symmetry which contains U(1), SU(2) und SU(3): SU(5) (Georgi, Glashow 1974) • multiplets of (known) leptons and quarks which can transform between each other by exchange of heavy “leptoquark” bosons, X und Y, with -1/3 und -4/3 charges, ± 0 as well as through W , Z und γ.
    [Show full text]
  • The Grand Unified Theory of the Firm and Corporate Strategy: Measures to Build Corporate Competitiveness
    THE GRAND UNIFIED THEORY OF THE FIRM AND CORPORATE STRATEGY: MEASURES TO BUILD CORPORATE COMPETITIVENESS by Hong Y. Park Professor of Economics Department of Economics College of Business and Management Saginaw Valley State University University Center, MI 48710 e-mail: [email protected] Geon-Cheol Shin Professor School of Business Kyung Hee University Seoul, Korea e-mail: [email protected] This study was funded by the Fulbright Foundation, the Korea Economic Research Institute (KERI), and Saginaw Valley State University. Abstract A good understanding of the nature of the firm is essential in developing corporate strategies, building corporate competitiveness, and establishing sound economic policy. Several theories have emerged on the nature of the firm: the neoclassical theory of the firm, the principal agency theory, the transaction cost theory, the property rights theory, the resource-based theory and the evolutionary theory. Each of these theories identify some elements that describe the nature of the firm, but no single theory is comprehensive enough to include all elements of the nature of the firm. Economists began to seek a theory capable of describing the nature of the firm within a single, all- encompassing, coherent framework. We propose a unified theory of the firm, which encompasses all elements of the firm. We then evaluate performances of Korean firms from the unified theory of the firm perspective. Empirical evidences are promising in support of the unified theory of the firm. Introduction A good understanding of the nature of the firm is essential in developing corporate strategies and building corporate competitiveness. Several theories have emerged on the nature of the firm: The neoclassical theory of the firm, the principal agency theory, the transaction cost theory, the property rights theory, the resource-based theory and the evolutionary theory.
    [Show full text]
  • Using the Emission of Muonic X-Rays As a Spectroscopic Tool for the Investigation of the Local Chemistry of Elements
    nanomaterials Article Using the Emission of Muonic X-rays as a Spectroscopic Tool for the Investigation of the Local Chemistry of Elements Matteo Aramini 1, Chiara Milanese 2,* , Adrian D. Hillier 1, Alessandro Girella 2, Christian Horstmann 3, Thomas Klassen 3,4, Katsuo Ishida 1,5, Martin Dornheim 3 and Claudio Pistidda 3,* 1 UKRI Rutherford Appleton Laboratory, ISIS Pulsed Neutron and Muon Facility, Didcot OX11 0QX, UK; [email protected] (M.A.); [email protected] (A.D.H.); [email protected] (K.I.) 2 Pavia Hydrogen Lab, Chemistry Department, Physical Chemistry Section, C.S.G.I. and Pavia University, Viale Taramelli, 16, 27100 Pavia, Italy; [email protected] 3 Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany; [email protected] (C.H.); [email protected] (T.K.); [email protected] (M.D.) 4 Institute of Materials Technology, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany 5 RIKEN Nishina Center, RIKEN, Nishina Bldg., 2-1 Hirosawa, Wako, Saitama 351-0198, Japan * Correspondence: [email protected] (C.M.); [email protected] (C.P.) Received: 4 June 2020; Accepted: 25 June 2020; Published: 28 June 2020 Abstract: There are several techniques providing quantitative elemental analysis, but very few capable of identifying both the concentration and chemical state of elements. This study presents a systematic investigation of the properties of the X-rays emitted after the atomic capture of negatively charged muons. The probability rates of the muonic transitions possess sensitivity to the electronic structure of materials, thus making the muonic X-ray Emission Spectroscopy complementary to the X-ray Absorption and Emission techniques for the study of the chemistry of elements, and able of unparalleled analysis in case of elements bearing low atomic numbers.
    [Show full text]