Luminosity Determination and Searches for Supersymmetric Sleptons and Gauginos at the ATLAS Experiment Anders Floderus

Total Page:16

File Type:pdf, Size:1020Kb

Luminosity Determination and Searches for Supersymmetric Sleptons and Gauginos at the ATLAS Experiment Anders Floderus Luminosity determination and searches for supersymmetric sleptons and gauginos at the ATLAS experiment Thesis submitted for the degree of Doctor of Philosophy by Anders Floderus CERN-THESIS-2014-241 30/01/2015 DEPARTMENT OF PHYSICS LUND, 2014 Abstract This thesis documents my work in the luminosity and supersymmetry groups of the ATLAS experiment at the Large Hadron Collider. The theory of supersymmetry and the concept of luminosity are introduced. The ATLAS experiment is described with special focus on a luminosity monitor called LUCID. A data- driven luminosity calibration method is presented and evaluated using the LUCID detector. This method allows the luminosity measurement to be calibrated for arbitrary inputs. A study of particle counting using LUCID is then presented. The charge deposited by particles passing through the detector is shown to be directly proportional to the luminosity. Finally, a search for sleptons and gauginos in final states −1 with exactly two oppositely charged leptons is presented. The search is based onp 20.3 fb of pp collision data recorded with the ATLAS detector in 2012 at a center-of-mass energy of s = 8 TeV. No significant excess over the Standard Model expectation is observed. Instead, limits are set on the slepton and gaugino masses. ii Populärvetenskaplig sammanfattning Partikelfysiken är studien av naturens minsta beståndsdelar — De så kallade elementarpartiklarna. All materia i universum består av elementarpartiklar. Den teori som beskriver vilka partiklar som finns och hur de uppför sig heter Standardmodellen. Teorin har historiskt sett varit mycket framgångsrik. Den har gång på gång förutspått existensen av nya partiklar innan de kunnat påvisas experimentellt, och klarar av att beskriva många experimentella resultat med imponerande precision. Men Standardmodellen är inte hela sanningen. Det finns fenomen som den inte kan förklara, och partikelfysiker bygger därför experi- ment för att testa olika utökningar av modellen. En av de mest lovande kallas för supersymmetri. Denna teori postulerar att den finns en ny, ännu oupptäckt, partikel för varje partikel inom Standardmodellen. De nya partiklarna tros vara mycket tyngre än de partiklar som hittills har observerats, och skulle till exempel kunna förklara förekomsten av fenomenet mörk materia. För att skapa tunga partiklar krävs det stora mängder energi. I CERN-laboratoriet utanför Geneve har man byggt världens största partikelaccelerator, vars syfte är just att förse partiklar med hög kinetisk energi. Acceleratorn kallas för LHC (Large Hadron Collider). Den accelererar två protonstrålar till en energi på 7 TeV, eller teraelektronvolt per proton, och låter sedan protonerna kollidera i mitten av en partikeldetektor. I dessa kollisioner skapas nya partiklar ur protonernas kinetiska energi. Detektorns upp- gift är att mäta egenskaperna hos de partiklar som bildas. Exempel på sådana egenskaper är massa och elektrisk laddning. Genom att studera data från detektorn kan partikelfysiker bestämma huruvida några fenomen bortom Standardmodellen har ägt rum. En viktig pusselbit i jakten på ny fysik är mätningen av protonstrålens luminositet. Detta är ett mått på det totala antalet kollisioner som äger rum. Det är nämligen inte tillräckligt att bara observera en ny typ av partikel — Man vill även mäta hur ofta den produceras! Det är inte ovanligt att olika utökningar av Standardmodellen gör snarlika förutsägelser i detta avseende, eller har fria parametrar som gör att antalet producerade partiklar inte kan bestämmas i förväg. För att testa en modell jämförs den teoretiska san- nolikheten (även känt som tvärsnittet) för att producera en viss partikel med en experimentell mätning. Alla modeller som inte stämmer överens med den experimentella mätningen kan sedan uteslutas. För att mäta ett tvärsnitt divideras helt enkelt antalet kollisioner som gav upphov till partikeln i fråga med det totala antalet kollisioner — Det vill säga luminositeten! Förmågan att mäta luminositet med hög preci- sion är också viktig för att kunna göra meningsfulla simuleringar av experimentet. Innan en simulering kan jämföras med riktig data så måste antalet simulerade kollisioner normaliseras till antalet kollisioner som faktiskt ägt rum. Denna avhandling beskriver den allra största partikeldetektorn vid LHC — Det så kallade ATLAS- experimentet. Därefter diskuteras olika metoder för att mäta luminositeten i ATLAS med hjälp av en av experimentets subdetektorer vid namn LUCID. En metod använder data från protonstrålar som tagits under speciella förutsättningar, och korrigerar med hjälp av denna data för det icke-linjära beteende som observeras hos LUCID-detektorn vid höga luminositetsnivåer. En annan metod är baserad på att mäta den totala energin hos partiklarna som passerar genom LUCID. Denna energi visas vara proportionell mot luminositeten, och metoden visas ha vissa egenskaper som är att föredra framför mer konventionella metoder vad gäller mätningar när luminositeten är hög. Slutligen beskrivs en analys vars mål är att hitta två olika typer av supersymmetriska partiklar i de kollisioner som ägt rum inom ATLAS-detektorn. Inga nya partiklar observeras, och resultatet av analysen är därför gränsvärden på vilka modeller av supersymmetri som kan uteslutas. iii To my family iv Contents Preface 1 Acknowledgements 3 1 The Standard Model4 1.1 Overview..........................................4 1.2 Gauge theories.......................................5 1.2.1 Lagrangians.....................................5 1.2.2 Gauge invariance..................................6 1.3 Quantum electrodynamics.................................7 1.3.1 The QED Lagrangian................................7 1.3.2 Vacuum polarization................................9 1.4 Quantum chromodynamics.................................9 1.4.1 The quark model.................................. 10 1.4.2 The QCD Lagrangian................................ 10 1.4.3 Long range behavior................................ 12 1.5 Weak interactions...................................... 13 1.5.1 Chiral fermions................................... 14 1.5.2 Weak iso-doublets................................. 14 1.5.3 A weak Lagrangian................................. 15 1.5.4 Electroweak unification.............................. 15 1.5.5 Spontaneous symmetry breaking.......................... 16 1.5.6 The Higgs mechanism............................... 19 1.5.7 Yukawa couplings................................. 22 1.5.8 The electroweak Lagrangian............................ 23 1.6 An incomplete theory.................................... 24 1.6.1 Dark matter..................................... 24 1.6.2 The hierarchy problem............................... 24 1.6.3 Grand unification.................................. 24 1.6.4 Neutrino masses.................................. 24 2 Supersymmetry 27 2.1 Overview.......................................... 27 2.2 Solving the hierarchy problem............................... 27 2.3 Particles in the MSSM................................... 29 2.3.1 Sparticle mixing.................................. 30 2.4 R-parity........................................... 31 2.5 Supersymmetry breaking.................................. 31 2.5.1 Gravity mediated.................................. 32 2.5.2 Gauge mediated.................................. 33 2.6 Sparticle decays....................................... 34 2.7 The pMSSM......................................... 36 v 3 The Large Hadron Collider 37 3.1 Overview.......................................... 37 3.2 Accelerator system..................................... 38 3.3 Experiments......................................... 39 4 The ATLAS experiment 41 4.1 Overview.......................................... 41 4.2 Coordinate system..................................... 43 4.3 Magnet system....................................... 45 4.4 Inner detector........................................ 46 4.4.1 Pixel detector.................................... 47 4.4.2 Semiconductor tracker............................... 48 4.4.3 Transition radiation tracker............................. 48 4.5 Calorimeters......................................... 48 4.5.1 Electromagnetic calorimeter............................ 50 4.5.2 Hadronic calorimeter................................ 50 4.6 Muon spectrometer..................................... 53 4.7 Forward detectors...................................... 54 4.7.1 BCM........................................ 55 4.7.2 MBTS........................................ 55 4.7.3 LUCID....................................... 55 4.7.4 ZDC........................................ 56 4.7.5 ALFA........................................ 56 4.8 Trigger and Data Acquisition................................ 56 5 The LUCID detector 58 5.1 Overview.......................................... 58 5.2 Detector design....................................... 59 5.3 Readout electronics..................................... 62 5.3.1 The local stream.................................. 63 5.3.2 LUMAT....................................... 64 5.4 Calibration......................................... 65 5.5 Upgrade........................................... 66 6 Luminosity 70 6.1 Overview.......................................... 70 6.2 Luminosity monitoring................................... 71 6.3 Calibration......................................... 72 6.4 Algorithms......................................... 73 6.4.1 EventOR...................................... 74 6.4.2 EventAND....................................
Recommended publications
  • Color Breaking in the Quantum Leaped Stop Decay
    Color breaking in the quantum leaped stop decay Imre Czövek [email protected] Abstract. The superfield propagator contains a measurable quantum leap, which comes from the definition of SUSY. In the sfermion -> Goldstino + fermion vertex change: 1. the spin of sparticle with discrete 1/2, 2. the Grassman superspace with the Goldstino shift operator. 3. the spacetime as the result of extra dimensional leap. The leap nature of SUSY transformations appears in the squark decay, it is the analog definition of SUSY. The quantum leaped outgoing propagators are determined and break locally the energy and the charge. Like to the teleportation the entangled pairs are here the b quark and the Goldstino. The dominant stop production is from gluons. The stop-antistop pair decay to quantum leaped b (c or t) quark, and the decay break the color. I get for the (color breaking) quantum leap: 10^-18 m. 10^-11 m color breaking would be needed for a color breaking chain reaction. The open question is: Are the colliders producing supersymmetry charge? Because some charges in QGP can make long color breaking and a chain reaction. A long color broken QGP state in the re-Big Bang theory could explain the near infinite energy and the near infinite mass of the universe: - at first was random color QGP in the flat space-time, - at twice the color restoration in the curved space-time, which eats the Goldstinos, - and finally the baryon genesis. The re Big Bang make a supernova like collapse and a flat explosion of Universe. This explanation of SUSY hides the Goldstone fermion in the extra dimensions, the Goldstino propagate only in superspace and it is a not observable dark matter.
    [Show full text]
  • Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2010 Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Physics Commons Baas, Alessandra Edda, "Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond" (2010). Masters Theses 1911 - February 2014. 503. Retrieved from https://scholarworks.umass.edu/theses/503 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2010 Department of Physics © Copyright by Alessandra Edda Baas 2010 All Rights Reserved THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Approved as to style and content by: Eugene Golowich, Chair Benjamin Brau, Member Donald Candela, Department Chair Department of Physics To my loving parents. ACKNOWLEDGMENTS Writing a Thesis is never possible without the help of many people. The greatest gratitude goes to my supervisor, Prof. Eugene Golowich who gave my the opportunity of working with him this year.
    [Show full text]
  • The Algebra of Grand Unified Theories
    The Algebra of Grand Unified Theories John Baez and John Huerta Department of Mathematics University of California Riverside, CA 92521 USA May 4, 2010 Abstract The Standard Model is the best tested and most widely accepted theory of elementary particles we have today. It may seem complicated and arbitrary, but it has hidden patterns that are revealed by the relationship between three ‘grand unified theories’: theories that unify forces and particles by extend- ing the Standard Model symmetry group U(1) × SU(2) × SU(3) to a larger group. These three are Georgi and Glashow’s SU(5) theory, Georgi’s theory based on the group Spin(10), and the Pati–Salam model based on the group SU(2)×SU(2)×SU(4). In this expository account for mathematicians, we ex- plain only the portion of these theories that involves finite-dimensional group representations. This allows us to reduce the prerequisites to a bare minimum while still giving a taste of the profound puzzles that physicists are struggling to solve. 1 Introduction The Standard Model of particle physics is one of the greatest triumphs of physics. This theory is our best attempt to describe all the particles and all the forces of nature... except gravity. It does a great job of fitting experiments we can do in the lab. But physicists are dissatisfied with it. There are three main reasons. First, it leaves out gravity: that force is described by Einstein’s theory of general relativity, arXiv:0904.1556v2 [hep-th] 1 May 2010 which has not yet been reconciled with the Standard Model.
    [Show full text]
  • – 1– LEPTOQUARK QUANTUM NUMBERS Revised September
    {1{ LEPTOQUARK QUANTUM NUMBERS Revised September 2005 by M. Tanabashi (Tohoku University). Leptoquarks are particles carrying both baryon number (B) and lepton number (L). They are expected to exist in various extensions of the Standard Model (SM). The possible quantum numbers of leptoquark states can be restricted by assuming that their direct interactions with the ordinary SM fermions are dimensionless and invariant under the SM gauge group. Table 1 shows the list of all possible quantum numbers with this assumption [1]. The columns of SU(3)C,SU(2)W,andU(1)Y in Table 1 indicate the QCD representation, the weak isospin representation, and the weak hypercharge, respectively. The spin of a leptoquark state is taken to be 1 (vector leptoquark) or 0 (scalar leptoquark). Table 1: Possible leptoquarks and their quan- tum numbers. Spin 3B + L SU(3)c SU(2)W U(1)Y Allowed coupling c c 0 −2 311¯ /3¯qL`Loru ¯ReR c 0 −2 314¯ /3 d¯ReR c 0−2331¯ /3¯qL`L cµ c µ 1−2325¯ /6¯qLγeRor d¯Rγ `L cµ 1 −2 32¯ −1/6¯uRγ`L 00327/6¯qLeRoru ¯R`L 00321/6 d¯R`L µ µ 10312/3¯qLγ`Lor d¯Rγ eR µ 10315/3¯uRγeR µ 10332/3¯qLγ`L If we do not require leptoquark states to couple directly with SM fermions, different assignments of quantum numbers become possible [2,3]. The Pati-Salam model [4] is an example predicting the existence of a leptoquark state. In this model a vector lepto- quark appears at the scale where the Pati-Salam SU(4) “color” gauge group breaks into the familiar QCD SU(3)C group (or CITATION: S.
    [Show full text]
  • Color Screening in Quantum Chromodynamics Arxiv
    Color Screening in Quantum Chromodynamics Alexei Bazavov, Johannes H. Weber Department of Computational Mathematics, Science and Engineering and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA October 6, 2020 Abstract We review lattice studies of the color screening in the quark-gluon plasma. We put the phenomena related to the color screening into the context of similar aspects of other physical systems (electromag- netic plasma or cold nuclear matter). We discuss the onset of the color screening and its signature and significance in the QCD transi- tion region, and elucidate at which temperature and to which extent the weak-coupling picture based on hard thermal loop expansion, po- tential nonrelativistic QCD, or dimensionally-reduced QCD quantita- tively captures the key properties of the color screening. We discuss the different regimes pertaining to the color screening and thermal arXiv:2010.01873v1 [hep-lat] 5 Oct 2020 dissociation of the static quarks in depth for various spatial correla- tion functions that are studied on the lattice, and clarify the status of their asymptotic screening masses. We finally discuss the screening correlation functions of dynamical mesons with a wide range of flavor and spin content, and how they conform with expectations for low- and high-temperature behavior. 1 Contents 1 Introduction3 2 Field theoretical foundations7 2.1 Partition function and Lagrangian . .7 2.2 Finite temperature field theory . 11 2.3 Lattice regularization . 14 2.4 Renormalization and weak coupling . 17 2.5 Light quarks . 19 2.6 Heavy quarks . 21 2.7 Implementation of QCD on the lattice .
    [Show full text]
  • Electro-Weak Interactions
    Electro-weak interactions Marcello Fanti Physics Dept. | University of Milan M. Fanti (Physics Dep., UniMi) Fundamental Interactions 1 / 36 The ElectroWeak model M. Fanti (Physics Dep., UniMi) Fundamental Interactions 2 / 36 Electromagnetic vs weak interaction Electromagnetic interactions mediated by a photon, treat left/right fermions in the same way g M = [¯u (eγµ)u ] − µν [¯u (eγν)u ] 3 1 q2 4 2 1 − γ5 Weak charged interactions only apply to left-handed component: = L 2 Fermi theory (effective low-energy theory): GF µ 5 ν 5 M = p u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 Complete theory with a vector boson W mediator: g 1 − γ5 g g 1 − γ5 p µ µν p ν M = u¯3 γ u1 − 2 2 u¯4 γ u2 2 2 q − MW 2 2 2 g µ 5 ν 5 −−−! u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 2 low q 8 MW p 2 2 g −5 −2 ) GF = | and from weak decays GF = (1:1663787 ± 0:0000006) · 10 GeV 8 MW M. Fanti (Physics Dep., UniMi) Fundamental Interactions 3 / 36 Experimental facts e e Electromagnetic interactions γ Conserves charge along fermion lines ¡ Perfectly left/right symmetric e e Long-range interaction electromagnetic µ ) neutral mass-less mediator field A (the photon, γ) currents eL νL Weak charged current interactions Produces charge variation in the fermions, ∆Q = ±1 W ± Acts only on left-handed component, !! ¡ L u Short-range interaction L dL ) charged massive mediator field (W ±)µ weak charged − − − currents E.g.
    [Show full text]
  • Physics 231A Problem Set Number 8 Due Wednesday, November 24, 2004 Note: Some Problems May Be “Review” for Some of You. I Am
    Physics 231a Problem Set Number 8 Due Wednesday, November 24, 2004 Note: Some problems may be “review” for some of you. I am deliberately including problems which are potentially in this category. If the material of the problem is already well-known to you, such that doing the problem would not be instructive, just write “been there, done that”, or suitable equivalent, for that problem, and I’ll give you credit. 40. Standard Model Review(?): Last week you considered the mass matrix and Z coupling for the neutral gauge bosons in the electroweak theory. Let us discuss a little more completely the couplings of the electroweak gauge bosons to fermions. Again, we’ll work in the standard model where the physical Z and photon (A) states are mixtures of neutral gauge bosons. We start with gauge groups “SU(2)L”and“U(1)Y ”. The gauge bosons of SU(2)L are the W1,W2,W3, all with only left-handed coupling to fermions. The U(1)Y gauge boson is denoted B. The Z and A fields are the mixtures: A = B cos θW + W3 sin θW (48) Z = −B sin θW + W3 cos θW , (49) where θW is the “weak mixing angle”. The Lagrangian contains interaction terms with fermions of the form: 1 1 L = −gf¯ γµ τ · W f − g0f¯ YB ψ, (50) int L 2 µ L 2 µ ≡ 1 − 5 · ≡ 3 where fL 2 (1 γ )ψ, τ Wµ Pi=1 τiWµi, τ are the Pauli matrices acting on weak SU(2)L fermion doublets, Y is the weak hypercharge 0 operator, and g and g are the interaction strengths for the SU(2)L and U(1)Y components, respectively.
    [Show full text]
  • String Phenomenology 1 Minimal Supersymmetric Standard Model
    Swedish String/Supergravity Course 2008 String Phenomenology Marcus Berg 1 Minimal Supersymmetric Standard Model A good reference is Martin [2], a review that was first posted on hep-ph in 1997 but which has been updated three times, most recently in 2006. The MSSM consists of a number of chiral and vector supermultiplets, one for each existing quark or 1 lepton or gauge boson Aµ in the Standard Model (SM): spin: 0 1/2 1 N = 1 chiral supermultiplet φ N = 1 vector supermultiplet λ Aµ The new fields, the superpartners of and Aµ, are denoted by tildes and called "s-" for the new scalars, ~, and "-ino" for the new fermions, A~: 0 1/2 1 squarks, sleptons −! ~ − quarks, leptons gauginos−! A~ Aµ − gauge bosons This is just the generic notation; usually one is more specific. So for example, one N = 1 chiral mul- tiplet has the t quark as the fermionic field, and the scalar superpartner is the "stop", t~. We impose that the superpartner masses are around the TeV scale, or even a little lower. The scale of superpartner masses is not \derived" in any real sense2 in the MSSM, but from the point of view of particle phenomenology, an MSSM-like theory with only very heavy superpartners would be indistinguishable from the nonsuper- symmetric standard model at any experiments done in the foreseeable future, so why bother? In fact, even string theorists should have some favored scenario what will happen at near-future experiments and observations, so let's try to understand where people who do experiments for a living have put their money.
    [Show full text]
  • Arxiv:1711.04534V4 [Hep-Ph]
    UCI-HEP-TR-2017-15 Millicharged Scalar Fields, Massive Photons and the Breaking of SU(3)C U(1)EM × Jennifer Rittenhouse West∗ Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA (Dated: April 10, 2019) Under the assumption that the current epoch of the Universe is not special, i.e. is not the final state of a long history of processes in particle physics, the cosmological fate of SU(3)C × U(1)EM is investigated. Spontaneous symmetry breaking of U(1)EM at the temperature of the Universe today is carried out. The charged scalar field φEM which breaks the symmetry is found to be ruled out for the charge of the electron, q = e. − Scalar fields with millicharges are viable and limits on their masses and charges are found to be q . 10 3e and −5 mφEM . 10 eV. Furthermore, it is possible that U(1)EM has already been broken at temperatures higher −18 than T = 2.7K given the nonzero limits on the mass of the photon. A photon mass of mγ = 10 eV, the ∼ −13 current upper limit, is found to require a spontaneous symmetry breaking scalar mass of mφEM 10 eV with charge q = 10−6e, well within the allowed parameter space of the model. Finally, the cosmological fate of the strong interaction is studied. SU(3)C is tested for complementarity in which the confinement phase of QCD + colored scalars is equivalent to a spontaneously broken SU(3) gauge theory.
    [Show full text]
  • A Study of Mesons and Glueballs
    A Study of Mesons and Glueballs Tapashi Das Department of Physics Gauhati University This thesis is submitted to Gauhati University as requirement for the degree of Doctor of Philosophy Faculty of Science July 2017 Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Abstract The main work of the thesis is devoted to the study of heavy flavored mesons using a QCD potential model. Chapter 1 deals with the brief introduction of the theory of Quantum Chro- modynamics (QCD), potential models and the use of perturbation theory. In Chapter 2, the improved potential model is introduced and the solution of the non-relativistic Schro¨dinger’s equation for a Coulomb-plus-linear potential, V(r) = 4αs + br + c, Cornell potential has − 3r been conducted. The first-order wave functions are obtained using Dalgarno’s method. We explicitly consider two quantum mechanical aspects in our improved model: (a) the scale factor ‘c’ in the potential should not affect the wave function of the system even while applying the perturbation theory and (b) the choice of perturbative piece of the Hamiltonian (confinement or linear) should determine the effective radial separation between the quarks and antiquarks. Therefore for the validation of the quantum mechanical idea, the constant factor ‘c’ is considered to be zero and a cut-off rP is obtained from the theory. The model is then tested to calculate the masses, form factors, charge radii, RMS radii of mesons. In Chapter 3, the Isgur-Wise function and its derivatives of semileptonic decays of heavy-light mesons in both HQET limit (m ∞) and finite mass limit are calculated.
    [Show full text]
  • Neutrino Masses-How to Add Them to the Standard Model
    he Oscillating Neutrino The Oscillating Neutrino of spatial coordinates) has the property of interchanging the two states eR and eL. Neutrino Masses What about the neutrino? The right-handed neutrino has never been observed, How to add them to the Standard Model and it is not known whether that particle state and the left-handed antineutrino c exist. In the Standard Model, the field ne , which would create those states, is not Stuart Raby and Richard Slansky included. Instead, the neutrino is associated with only two types of ripples (particle states) and is defined by a single field ne: n annihilates a left-handed electron neutrino n or creates a right-handed he Standard Model includes a set of particles—the quarks and leptons e eL electron antineutrino n . —and their interactions. The quarks and leptons are spin-1/2 particles, or weR fermions. They fall into three families that differ only in the masses of the T The left-handed electron neutrino has fermion number N = +1, and the right- member particles. The origin of those masses is one of the greatest unsolved handed electron antineutrino has fermion number N = 21. This description of the mysteries of particle physics. The greatest success of the Standard Model is the neutrino is not invariant under the parity operation. Parity interchanges left-handed description of the forces of nature in terms of local symmetries. The three families and right-handed particles, but we just said that, in the Standard Model, the right- of quarks and leptons transform identically under these local symmetries, and thus handed neutrino does not exist.
    [Show full text]
  • Standard Model & Beyond
    XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions in the SU(2)W Gauge Theory If fermions are to interact with the , and bosons, they must transform as doublets under , just like the scalar doublet Consider a fermion doublet where the and are two mass-degenerate Dirac fermions. Taking construct the ‘free’ Lagrangian density Sum of two free Dirac fermion Lagrangian densities, with equal masses. 3 Now, under a global gauge transformation, if then It follows that the Lagrangian density must be invariant under global gauge transformations. As before, we try to upgrade this to a local gauge invariance, by writing where as before. Invariance is now guaranteed. 4 Expand the covariant derivate and get the full Lagrangian density free fermion ‘free’ gauge interaction term Expand the interaction term... are ‘charged’ currents (c.c.) is a ‘neutral’ current (n.c.) 5 Write the currents explicitly: 6 c.c. interactions n.c. interactions This leads to vertices 7 Comparing with the IVB hypothesis for the , we should be able to identify or or Q. Can we identify the with the photon (forgetting its mass)? If the are charged, we will have, under Now, if the term is to remain invariant, we must assign charges and to the A and B, s.t. term transforms as To keep the Lagrangian neutral, we require 8 But if we look at the vertices, and consider them to be QED vertices, we must identify i.e.
    [Show full text]