Standard Model & Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions in the SU(2)W Gauge Theory If fermions are to interact with the , and bosons, they must transform as doublets under , just like the scalar doublet Consider a fermion doublet where the and are two mass-degenerate Dirac fermions. Taking construct the ‘free’ Lagrangian density Sum of two free Dirac fermion Lagrangian densities, with equal masses. 3 Now, under a global gauge transformation, if then It follows that the Lagrangian density must be invariant under global gauge transformations. As before, we try to upgrade this to a local gauge invariance, by writing where as before. Invariance is now guaranteed. 4 Expand the covariant derivate and get the full Lagrangian density free fermion ‘free’ gauge interaction term Expand the interaction term... are ‘charged’ currents (c.c.) is a ‘neutral’ current (n.c.) 5 Write the currents explicitly: 6 c.c. interactions n.c. interactions This leads to vertices 7 Comparing with the IVB hypothesis for the , we should be able to identify or or Q. Can we identify the with the photon (forgetting its mass)? If the are charged, we will have, under Now, if the term is to remain invariant, we must assign charges and to the A and B, s.t. term transforms as To keep the Lagrangian neutral, we require 8 But if we look at the vertices, and consider them to be QED vertices, we must identify i.e. Now solve the equations: and ... result is Two alternatives: A and B cannot be the Fermi-IVB particles ⇒ defeats whole effort... cannot be the photon... (already hinted by the mass) 9 Electroweak Unification Why not just include the group as a direct product with the group? The can be a new (neutral) gauge boson. The transformation matrix on a fermion of charge will then look like where is the generator of and the direct product means that The gauge field matrix should expand to and give us interaction terms… as before... 10 i.e. to the interaction terms with the W boson we must now add interaction terms with the photon: Working back, we can write this as where 11 This generator of can be rewritten Paradox! which contradicts Glashow (1961) : We cannot treat weak interactions and electromagnetism as separate (direct product) gauge theories i.e. they must be considered together electroweak unification 12 SU(2)W x U(1)y Model Introduce a new which is different from and exists as a direct product with the ... The gauge transformation matrix will become where , which, by construction, commutes with all the We now expand the gauge field matrix as is a new gauge field and is a new quantum number which is clearly same for both the A and B component of the fermion doublet. 13 We now construct the gauge-fermion interaction term as before Expanding as before 14 Glashow (1961): for some reason, the and mix, i.e. the physical states are orthonormal combinations (demanded by gauge kinetic terms) of the and ... In terms of this, the neutral current terms come out to be If we now wish to identify with the photon, we require to set 15 Solving for and we get Recall that . It follows that Choose . Then Note that is some arbitrary angle... it must be nonzero, else We can also obtain Now, these are precisely the eigenvalues of the operator i.e. (Looks like Gell-Mann-Nishijima relation for quarks...) Call the weak isospin and the weak hypercharge 16 This gauge theory works pretty well and can give the correct couplings of all the gauge bosons... up to the angle , which is not determined by the fermion sector... Determination of Back to the gauge boson mass term... (Salam 1966, Weinberg 1967) Glashow theory: include the field in the gauge field matrix, i.e. where is the hypercharge of the field. 17 Thus, and Multiplying these 18 Consider only the neutral bosons: One cannot have mass terms of the form and in a viable field theory, since our starting point is always a theory with free fields. Thus, it is essential to transform to orthogonal states and choose to cancel out cross terms... 19 Rewrite the neutral boson mass terms as The diagonalising matrix will be where How to determine ? 20 Write out the interaction terms for the gauge bosons with the scalar doublet. One finds that once again, to match the couplings to the charges of the W bosons, we get the Gell-Mann-Nishijima relation, i.e. Now, the lower component develops a vacuum expectation value, so it must be neutral, i.e. It follows that Weinberg angle 21 Eigenvalues of the mass matrix: Determinant = 0 ; trace = , i.e. and 22 Determination of parameters: Experimental measurements show that GeV and GeV It follows that We can now calculate: 23 Parity Violation The puzzle Consider the Fermi form of the current-current interaction: Under parity: i.e. parity is conserved in the Fermi theory Before the 1950s, it was thought that parity conservation is as sacred as conservation of energy, momentum and angular momentum... But it was known that some particle are pseudoscalars, e.g. pions and Kaons have intrinsic parity This led to the famous puzzle 24 Through the early 1950s, cosmic ray experiments showed the existence of two degenerate particles and , each with mass around 483 MeV and lifetime around 12 ns. However, it was seen that indicating that and . Note that the phase space for these decays is very different: MeV MeV Since the lifetimes are identical, the strength of weak interactions must be different for these different decays universality is violated 25 Yang & Lee (1956) Maybe parity is not conserved in weak interactions, i.e. is really parity-violating channel is really parity-conserving channel They also showed that none of the earlier experiments had really tested intrinsic parity violation... Suggested that if the mean value of a parity-odd variable was nonzero e.g. if could be found to be nonzero This would be a ‘smoking gun’ signal for parity violation Experiment was actually performed by Wu et al (1957)... 26 Maximal parity violation In 1956, Marshak & Sudarshan, and separately, Feynman & Gell-Mann, assumed the parity-violating weak interactions to be of the form Parity is conserved when (V current), (A current) Parity is maximally violated when (V-A currents) Parity is partially violated for other values of .... Rewrite the leptonic current as 27 If we can measure the chirality of neutrinos emitted in beta decay, then we should have and hence Goldhaber et al did an experiment in 1957 with the electron capture process and found that the neutrino is always left-chiral... It follows that . 28 Thus the weak interactions do have the form V – A and the W boson vertex for electrons is of the form We will have similar interactions for the muon and for the nucleons and for the quarks i.e. couple only to left-handed quarks and leptons 29 Hence, the interaction must be of the form i.e. we must have doublets whereas the right-handed partners must be singlets of and there are no right-handed neutrinos… X X 30 Mass Generation Trouble with the mass terms… Now, for example, is not gauge invariant, because transforms under but does not… gauge invariance demands Appeal to spontaneous symmetry-breaking… Write a Yukawa interaction term Now, after symmetry-breaking, we have to shift 31 Now, so we get i.e. ⇒ quark mass is created by Yukawa coupling and Higgs vev …and Yukawa coupling is 32 For the -quark, Here is the charge conjugate of … When , we will have where Now, we will have i.e. ⇒ ⇒ quark mass is created by Yukawa coupling and Higgs vev 33 Flavour Mixing Above picture is too naïve – assumes only and quarks… Full Yukawa Lagrangian 34 Full mass terms Mass matrices These are, in general, complex 3 x 3 matrices with no special symmetry 35 Consider -quark term: Theorem: Any square complex matrix can be diagonalised by a bi-unitary transfn 36 We say that the and are in the gauge basis (unphysical), while the and are in the mass basis (physical). Similarly, if we define and , or, and we can get 37 The physical quarks are related to the gauge basis by 38 Rewrite the charged current interaction terms... where is the Cabibbo-Kobayashi-Maskawa (CKM) matrix Thus, the physical charged currents can have mixed flavours… (FCCC) 39 What about the electromagnetic current? Now, , so that No flavour-mixing in the e.m. current. Similarly no FCNC. 40 Flavour-mixing occurs solely through the charged current, and the CKM matrix . This can be parametrised as neglecting . Experimentally CKM matrix has hierarchical structure about diagonal 41 CP Violation Charged current interactions Under , we can show that i.e. If , then is not invariant, i.e. is not conserved (violated). Since and we see that the CKM matrix does have violated. Cause of matter-antimatter asymmetry ⇔our very existence .
Recommended publications
  • Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2010 Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Physics Commons Baas, Alessandra Edda, "Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond" (2010). Masters Theses 1911 - February 2014. 503. Retrieved from https://scholarworks.umass.edu/theses/503 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2010 Department of Physics © Copyright by Alessandra Edda Baas 2010 All Rights Reserved THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Approved as to style and content by: Eugene Golowich, Chair Benjamin Brau, Member Donald Candela, Department Chair Department of Physics To my loving parents. ACKNOWLEDGMENTS Writing a Thesis is never possible without the help of many people. The greatest gratitude goes to my supervisor, Prof. Eugene Golowich who gave my the opportunity of working with him this year.
    [Show full text]
  • The Algebra of Grand Unified Theories
    The Algebra of Grand Unified Theories John Baez and John Huerta Department of Mathematics University of California Riverside, CA 92521 USA May 4, 2010 Abstract The Standard Model is the best tested and most widely accepted theory of elementary particles we have today. It may seem complicated and arbitrary, but it has hidden patterns that are revealed by the relationship between three ‘grand unified theories’: theories that unify forces and particles by extend- ing the Standard Model symmetry group U(1) × SU(2) × SU(3) to a larger group. These three are Georgi and Glashow’s SU(5) theory, Georgi’s theory based on the group Spin(10), and the Pati–Salam model based on the group SU(2)×SU(2)×SU(4). In this expository account for mathematicians, we ex- plain only the portion of these theories that involves finite-dimensional group representations. This allows us to reduce the prerequisites to a bare minimum while still giving a taste of the profound puzzles that physicists are struggling to solve. 1 Introduction The Standard Model of particle physics is one of the greatest triumphs of physics. This theory is our best attempt to describe all the particles and all the forces of nature... except gravity. It does a great job of fitting experiments we can do in the lab. But physicists are dissatisfied with it. There are three main reasons. First, it leaves out gravity: that force is described by Einstein’s theory of general relativity, arXiv:0904.1556v2 [hep-th] 1 May 2010 which has not yet been reconciled with the Standard Model.
    [Show full text]
  • – 1– LEPTOQUARK QUANTUM NUMBERS Revised September
    {1{ LEPTOQUARK QUANTUM NUMBERS Revised September 2005 by M. Tanabashi (Tohoku University). Leptoquarks are particles carrying both baryon number (B) and lepton number (L). They are expected to exist in various extensions of the Standard Model (SM). The possible quantum numbers of leptoquark states can be restricted by assuming that their direct interactions with the ordinary SM fermions are dimensionless and invariant under the SM gauge group. Table 1 shows the list of all possible quantum numbers with this assumption [1]. The columns of SU(3)C,SU(2)W,andU(1)Y in Table 1 indicate the QCD representation, the weak isospin representation, and the weak hypercharge, respectively. The spin of a leptoquark state is taken to be 1 (vector leptoquark) or 0 (scalar leptoquark). Table 1: Possible leptoquarks and their quan- tum numbers. Spin 3B + L SU(3)c SU(2)W U(1)Y Allowed coupling c c 0 −2 311¯ /3¯qL`Loru ¯ReR c 0 −2 314¯ /3 d¯ReR c 0−2331¯ /3¯qL`L cµ c µ 1−2325¯ /6¯qLγeRor d¯Rγ `L cµ 1 −2 32¯ −1/6¯uRγ`L 00327/6¯qLeRoru ¯R`L 00321/6 d¯R`L µ µ 10312/3¯qLγ`Lor d¯Rγ eR µ 10315/3¯uRγeR µ 10332/3¯qLγ`L If we do not require leptoquark states to couple directly with SM fermions, different assignments of quantum numbers become possible [2,3]. The Pati-Salam model [4] is an example predicting the existence of a leptoquark state. In this model a vector lepto- quark appears at the scale where the Pati-Salam SU(4) “color” gauge group breaks into the familiar QCD SU(3)C group (or CITATION: S.
    [Show full text]
  • Electro-Weak Interactions
    Electro-weak interactions Marcello Fanti Physics Dept. | University of Milan M. Fanti (Physics Dep., UniMi) Fundamental Interactions 1 / 36 The ElectroWeak model M. Fanti (Physics Dep., UniMi) Fundamental Interactions 2 / 36 Electromagnetic vs weak interaction Electromagnetic interactions mediated by a photon, treat left/right fermions in the same way g M = [¯u (eγµ)u ] − µν [¯u (eγν)u ] 3 1 q2 4 2 1 − γ5 Weak charged interactions only apply to left-handed component: = L 2 Fermi theory (effective low-energy theory): GF µ 5 ν 5 M = p u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 Complete theory with a vector boson W mediator: g 1 − γ5 g g 1 − γ5 p µ µν p ν M = u¯3 γ u1 − 2 2 u¯4 γ u2 2 2 q − MW 2 2 2 g µ 5 ν 5 −−−! u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 2 low q 8 MW p 2 2 g −5 −2 ) GF = | and from weak decays GF = (1:1663787 ± 0:0000006) · 10 GeV 8 MW M. Fanti (Physics Dep., UniMi) Fundamental Interactions 3 / 36 Experimental facts e e Electromagnetic interactions γ Conserves charge along fermion lines ¡ Perfectly left/right symmetric e e Long-range interaction electromagnetic µ ) neutral mass-less mediator field A (the photon, γ) currents eL νL Weak charged current interactions Produces charge variation in the fermions, ∆Q = ±1 W ± Acts only on left-handed component, !! ¡ L u Short-range interaction L dL ) charged massive mediator field (W ±)µ weak charged − − − currents E.g.
    [Show full text]
  • Physics 231A Problem Set Number 8 Due Wednesday, November 24, 2004 Note: Some Problems May Be “Review” for Some of You. I Am
    Physics 231a Problem Set Number 8 Due Wednesday, November 24, 2004 Note: Some problems may be “review” for some of you. I am deliberately including problems which are potentially in this category. If the material of the problem is already well-known to you, such that doing the problem would not be instructive, just write “been there, done that”, or suitable equivalent, for that problem, and I’ll give you credit. 40. Standard Model Review(?): Last week you considered the mass matrix and Z coupling for the neutral gauge bosons in the electroweak theory. Let us discuss a little more completely the couplings of the electroweak gauge bosons to fermions. Again, we’ll work in the standard model where the physical Z and photon (A) states are mixtures of neutral gauge bosons. We start with gauge groups “SU(2)L”and“U(1)Y ”. The gauge bosons of SU(2)L are the W1,W2,W3, all with only left-handed coupling to fermions. The U(1)Y gauge boson is denoted B. The Z and A fields are the mixtures: A = B cos θW + W3 sin θW (48) Z = −B sin θW + W3 cos θW , (49) where θW is the “weak mixing angle”. The Lagrangian contains interaction terms with fermions of the form: 1 1 L = −gf¯ γµ τ · W f − g0f¯ YB ψ, (50) int L 2 µ L 2 µ ≡ 1 − 5 · ≡ 3 where fL 2 (1 γ )ψ, τ Wµ Pi=1 τiWµi, τ are the Pauli matrices acting on weak SU(2)L fermion doublets, Y is the weak hypercharge 0 operator, and g and g are the interaction strengths for the SU(2)L and U(1)Y components, respectively.
    [Show full text]
  • Neutrino Masses-How to Add Them to the Standard Model
    he Oscillating Neutrino The Oscillating Neutrino of spatial coordinates) has the property of interchanging the two states eR and eL. Neutrino Masses What about the neutrino? The right-handed neutrino has never been observed, How to add them to the Standard Model and it is not known whether that particle state and the left-handed antineutrino c exist. In the Standard Model, the field ne , which would create those states, is not Stuart Raby and Richard Slansky included. Instead, the neutrino is associated with only two types of ripples (particle states) and is defined by a single field ne: n annihilates a left-handed electron neutrino n or creates a right-handed he Standard Model includes a set of particles—the quarks and leptons e eL electron antineutrino n . —and their interactions. The quarks and leptons are spin-1/2 particles, or weR fermions. They fall into three families that differ only in the masses of the T The left-handed electron neutrino has fermion number N = +1, and the right- member particles. The origin of those masses is one of the greatest unsolved handed electron antineutrino has fermion number N = 21. This description of the mysteries of particle physics. The greatest success of the Standard Model is the neutrino is not invariant under the parity operation. Parity interchanges left-handed description of the forces of nature in terms of local symmetries. The three families and right-handed particles, but we just said that, in the Standard Model, the right- of quarks and leptons transform identically under these local symmetries, and thus handed neutrino does not exist.
    [Show full text]
  • Luminosity Determination and Searches for Supersymmetric Sleptons and Gauginos at the ATLAS Experiment Anders Floderus
    Luminosity determination and searches for supersymmetric sleptons and gauginos at the ATLAS experiment Thesis submitted for the degree of Doctor of Philosophy by Anders Floderus CERN-THESIS-2014-241 30/01/2015 DEPARTMENT OF PHYSICS LUND, 2014 Abstract This thesis documents my work in the luminosity and supersymmetry groups of the ATLAS experiment at the Large Hadron Collider. The theory of supersymmetry and the concept of luminosity are introduced. The ATLAS experiment is described with special focus on a luminosity monitor called LUCID. A data- driven luminosity calibration method is presented and evaluated using the LUCID detector. This method allows the luminosity measurement to be calibrated for arbitrary inputs. A study of particle counting using LUCID is then presented. The charge deposited by particles passing through the detector is shown to be directly proportional to the luminosity. Finally, a search for sleptons and gauginos in final states −1 with exactly two oppositely charged leptons is presented. The search is based onp 20.3 fb of pp collision data recorded with the ATLAS detector in 2012 at a center-of-mass energy of s = 8 TeV. No significant excess over the Standard Model expectation is observed. Instead, limits are set on the slepton and gaugino masses. ii Populärvetenskaplig sammanfattning Partikelfysiken är studien av naturens minsta beståndsdelar — De så kallade elementarpartiklarna. All materia i universum består av elementarpartiklar. Den teori som beskriver vilka partiklar som finns och hur de uppför sig heter Standardmodellen. Teorin har historiskt sett varit mycket framgångsrik. Den har gång på gång förutspått existensen av nya partiklar innan de kunnat påvisas experimentellt, och klarar av att beskriva många experimentella resultat med imponerande precision.
    [Show full text]
  • On the Origin of the Universe
    ON THE ORIGIN OF THE UNIVERSE AFSAR ABBAS Institute of Physics, Bhubaneswar-751005, India (e-mail : [email protected]) Abstract It has been proven recently that the Standard Model of particle physics has electric charge quantization built into it. It has also been shown by the author that there was no electric charge in the early universe. Further it is shown here that the restoration of the full Standard Model symmetry ( as in the Early Universe ) leads to the result that ‘time’, ‘light’, along with it’s velocity c and the theory of relativity, all lose any physical meaning. The physical Universe as we know it, with its space-time structure, disappears in this phase transition. Hence it is hypothesized here that the Universe came into existence when the Standard Model symmetry SU(3)C ⊗SU(2)L ⊗U(1)Y arXiv:astro-ph/0003065v2 21 Jun 2001 was spontaneously broken to SU(3)C ⊗ U(1)em. This does not require any spurious extensions of the Standard Model and in a simple and consistent manner explains the origin of the Universe within the framework of the Stan- dard Model itself. 1 In the currently popular Standard Model of cosmology the Universe is believed to have originated in a Big Bang. Thereafter it started expanding and cooling. Right in the initial stages, it is believed that models like super- string theories, supergravity, and GUTs etc would be applicable. When the Universe cooled to 100 GeV or so, the Standard Model of particle physics (SM) symmetry of SU(3)C ⊗ SU(2)L ⊗ U(1)Y was spontaneously broken to SU(3)C ⊗ U(1)em.
    [Show full text]
  • Grand Unified Theory
    Grand Unified Theory Manuel Br¨andli [email protected] ETH Z¨urich May 29, 2018 Contents 1 Introduction 2 2 Gauge symmetries 2 2.1 Abelian gauge group U(1) . .2 2.2 Non-Abelian gauge group SU(N) . .3 3 The Standard Model of particle physics 4 3.1 Electroweak interaction . .6 3.2 Strong interaction and color symmetry . .7 3.3 General transformation of matter fields . .8 4 Unification of Standard Model Forces: GUT 8 4.1 Motivation of Unification . .8 4.2 Finding the Subgroups . .9 4.2.1 Example: SU(2) U(1) SU(3) . .9 4.3 Branching rules . .× . .⊂ . 10 4.3.1 Example: 3 representation of SU(3) . 11 4.4 Georgi-Glashow model with gauge group SU(5) . 14 4.5 SO(10) . 15 5 Implications of unification 16 5.1 Advantages of Grand Unified Theories . 16 5.2 Proton decay . 16 6 Conclusion 17 Abstract In this article we show how matter fields transform under gauge group symmetries and motivate the idea of Grand Unified Theories. We discuss the implications of Grand Unified Theories in particular for proton decay, which gives us a tool to test Grand Unified Theories. 1 1 Introduction In the 50s and 60s a lot of new particles were discovered. The quark model was a first successful attempt to categorize this particle zoo. It was based on the so-called flavor symmetry, which is an approximate symmetry. This motivated the use of group theory in particle physics [10]. In this article we will make use of gauge symmetries, which are local symmetries, to explain the existence of interaction particles and show how the matter fields transform under these symmetries, section 2.
    [Show full text]
  • The Algebra of Grand Unified Theories
    The Algebra of Grand Unified Theories John Baez and John Huerta Department of Mathematics University of California Riverside, CA 92521 USA March 21, 2009 1 Introduction The Standard Model of particle physics is one of the greatest triumphs of physics. This theory is our best attempt to describe all the particles and all the forces of nature... except gravity. It does a great job of fitting exper- iments we can do in the lab. But physicists are dissatisfied with it. There are three main reasons. First, it leaves out gravity: that force is described by Einstein's theory of general relativity, which has not yet been reconciled with the Standard Model. Second, astronomical observations suggest that there may be forms of matter not covered by the Standard Model|most notably, `dark matter'. And third, the Standard Model is complicated and seemingly arbitrary. This goes against the cherished notion that the laws of nature, when deeply understood, are simple and beautiful. For the modern theoretical physicist, looking beyond the Standard Model has been an endeavor both exciting and frustrating. Most modern attempts are based on string theory. There are also other interesting approaches, such as loop quantum gravity and theories based on noncommutative ge- ometry. But back in the mid 1970's, before any of these currently popular approaches came to prominence, physicists pursued a program called `grand unification’. This sought to unify the forces and particles of the Standard Model using the mathematics of Lie groups, Lie algebras, and their repre- sentations. Ideas from this era remain influential, because grand unification is still one of the most fascinating attempts to find order and beauty lurking within the Standard Model.
    [Show full text]
  • Kaon Mixing Revisited CKM Matrix Weak Isospin And
    Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 16: More CP Violation and Introduction to Electroweak Theory ★Kaon mixing revisited ★CKM matrix ★Weak Isospin and Weak Hypercharge 1 !"#$%&'()%&*#%*#+,-%.',/)&*%0#1,0(23# ##45#&63,78,#(#*,9)7('#:(&*#6,(-#(#'&*;#)%-,#(5),7#/7&190)%&*#<%=,=#(#'(7;,#1%3)(*0,3># #####%)#?%''#0&*3%3)#&5#(#/97,#@A#0&-/&*,*)# ##H,0(23#)&######################-93)#0&-,#57&-#)D,##########0&-/&*,*)I#(*1#1,0(23#)&# ########################-93)#0&-,#57&-#)D,###########0&-/&*,*)# ##B,39')3#%*##(#3-(''#1%55,7,*0,#%*#1,0(2#7(),3C##)D,#1,0(2#)&#####################%3## ######E=F#G#-&7,#'%:,'2#)D(*#)D,#1,0(2#)&## JD%3#1%55,7,*0,#D(3#6,,*#&63,78,1#(*1#)D93#/7&8%1,3#)D,#5%73)#1%7,0)## ####,8%1,*0,#5&7#(*#(63&'9),#1%55,7,*0,#6,)?,,*#-()),7#(*1#(*)%.-()),7=# #4)#('3&#/7&8%1,3#(*#9*(-6%;9&93#1,5%*%)%&*#&5#-()),7#?D%0D#0&9'1I#5&7#,K(-/',I## #####6,#)7(*3-%)),1#)&#('%,*3#%*#(#1%3)(*)#;('(K2## #JD,#,',0)7&*3#%*#&97#()&-3#D(8,#)D,#3(-,#0D(7;,#(3#)D&3,#,-%)),1# ###',(3)##&5),*#%*#)D,#1,0(23#&5#)D,#'&*;.'%8,1#*,9)7('#:(&*# !"#$%&!'&(&!)*$+,$-! './*012+0,!3455! 676! !"#$%&'()%&*#(*1#)D,#!@L#L()7%K# #M&?#0(*#?,#,K/'(%*############################################################%*#),7-3#&5#)D,#!@L#-()7%K#N#Kaon Mixing Revisited !&*3%1,7#)D,#6&K#1%(;7(-3#7,3/&*3%6',#5&7#-%K%*;I#%=,=# ! " ! " " ! " ! • Indirect?D,7,# CP violation in mixing occurs because the rate between K0 → K̅0 transitions #M(8,#)&#39-#&8,7#(''#/&33%6',#O9(7:#,K0D(*;,3#%*#)D,#6&K=#P&7#3%-/'%0%)2# is smaller than the rate between K̅0 → K0 transition.
    [Show full text]
  • 1. the SM of Particle Physics in a Nutshell the Electroweak And
    1. The SM of Particle Physics in a Nutshell The electroweak and strong interactions of quarks and leptons are described by renormalizable quantum gauge theories. The principle of invariance of the theory under the transformation of a local gauge symmetry group fixes the dynamics. The particles that transmit the forces are thus called gauge bosons. They have spin 1 and have to be quantized according to Bose-Einstein spin statistics (bosons). The matter particles, the quarks and leptons, have spin and have to be quantized ¡ according to Fermi-Dirac spin statistics (fermions). Force acts on transmitted by electromagnetic all electrically charged particles photon (massless, spin 1) £ ¢ ¢¤£ ¥§¦ weak quarks, leptons, ¥§¦ (massive, spin 1) strong all colored particles 8 gluons (quarks and gluons) (massless, spin 1) PHY521 Elementary Particle Physics Symmetries are mathematically formulated using group theoretical methods: ¡ The transformations of local gauge symmetries are described by unitary § £ ¡ ¤¦¥ matrices, ¢ ( H: hermitian, quadratic matrix), with real, space-time dependent elements. The matrices ¢ form a group called U(n), SU(n) (det(U)=1). ¡ ¡ ¨ © U(n) has and SU(n) parameters, , and generators, , and can be £ written in terms of infinitesimal transformations as follows ( ): £ © ¢ U(n): £ © ¢ SU(n): Example: £ © ¢ Gauge group of the electromagnetic interaction: U(1) with ! . ! is the electric charge. Requiring the Dirac equation, which describes free electrons, to be invariant un- der these transformations leads to electron-photon interaction and the existence of massless photons. PHY521 Elementary Particle Physics Interaction symmetry group gauge theory electromagnetic unbroken local U(1): QED invariance under space-time dep. phase transitions generated by the electric charge strong unbroken local SU(3): QCD invariance under space-time dep.
    [Show full text]