Proton Spin at Small X

Proton Spin at Small X

Proton Spin at Small x Yuri Kovchegov The Ohio State University Outilne • Goal: understanding the proton spin coming from helicities and OAM of small-x quarks and gluons. • Brief introduction to small-x physics and evolution equations. • Quark Helicity: • Quark helicity distriBution at small x • Small-x evolution equations for quark helicity • Small-x asymptotics of quark helicity • Gluon Helicity: • Gluon helicity distriBution at small x • Small-x evolution equations for gluon helicity • Small-x asymptotics of quark helicity TMDs • Quark and Gluon OAM at small x • Preliminary phenomenology • Conclusions Goal: Proton Spin at Small x 3 Proton Spin Our understanding of nucleon spin structure has evolved: • In the 1980’s the proton spin was thought of as a sum of constituent quark spins (left panel) • Currently we believe that the proton spin is a sum of the spins of valence and sea quarks and of gluons, along with the orbital angular momenta of quarks and gluons (right panel) 4 Helicity Distributions • To quantify the contributions of quarks and gluons to the proton spin on defines helicity distribution functions: number of quarks/gluons with spin parallel to the proton momentum minus the number of quarks/gluons with the spin opposite to the proton momentum: • The helicity parton distributions are 2 + 2 2 ∆f(x, Q ) f (x, Q ) f −(x, Q ) ⌘ − with the net quark helicity distribution ⌃ ∆u + ∆u¯ + ∆d + ∆d¯+ ∆s + ∆s¯ ⌘ and ∆"($, &') the gluon helicity distribution. 5 Proton Helicity Sum Rule • Helicity sum rule (Jaffe-Manohar form): 1 = S + L + S + L 2 q q g g with the net quark and gluon spin 1 1 2 1 2 2 2 S (Q )= dx ⌃(x, Q ) Sg(Q )= dx ∆G(x, Q ) q 2 Z0 Z0 • Lq and Lg are the quark and gluon orBital angular momenta 6 1 1 S (Q2)= dx ⌃(x, Q2) Proton Spin Puzzle q 2 Z0 • The spin puzzle began when the EMC collaboration measured the proton g1 structure function ca 1988. Their data resulted in ⌃ 0.1 0.2 ⇡ ÷ • It appeared quarks do not carry all of the proton spin (which would have corresponded to ⌃ =1 ). 1 • = Sq + Lq + Sg + Lg Missing spin can be 2 – Carried by gluons – In the orbital angular momenta of quarks and gluons – At small x: 1 1 1 S (Q2)= dx ⌃(x, Q2) S (Q2)= dx ∆G(x, Q2) q 2 g Z0 Z0 Can’t integrate down to zero, use xmin instead! – Or all of the above! Current Knowledge of Proton Spin • The proton spin carried by the quarks is estimated to be (for 0 . 001 <x< 1 ) S (Q2 = 10 GeV2) 0.15 0.20 q ⇡ ÷ • The proton spin carried by the gluons is (for 0 . 05 <x< 1 ) S (Q2 = 10 GeV2) 0.13 0.26 G ⇡ ÷ • Unfortunately the uncertainties are large. Note also that the x-ranges are limited, with more helicity (positive or negative) possible at small x. How much spin is at small x? • E. Aschenaur et al, arXiv:1509.06489 [hep-ph], (DSSV = de Florian, Sassot, Stratmann, Vogelsang, helicity PDF parametrization) • Uncertainties are very large at small x! (EIC may reduce them.) Spin at small x • The goal of this work is to provide theoretical understanding of helicity PDFs at very small x. • Our work would provide guidance for future hPDFs parametrizations of the existing and new data (e.g., the data to be collected at EIC). • Alternatively the data can be analyzed using our small-x evolution formalism. 10 Introduction: small-x physics Quasi-classical approximation Kinematics of DIS Ø Photon carries 4-momentum q µ , its virtuality is Q2 = q qµ − µ Ø Photon hits a quark in the proton carrying momentum x Bj p with p being the protons momentum. Parameter x Bj is the Bjorken x variable. 13 Dipole picture of DIS • In the dipole picture of DIS the virtual photon splits into a quark-antiquark pair, which then interacts with the target. • The total DIS cross section and structure functions are calculated via: q x x ⊥ ⊥ γ∗ 14 Dipole Amplitude • The total DIS cross section is expressed in terms of the (Im part of the) forward quark dipole amplitude N: 1 d2x dz γ⇤A 2 γ⇤ qq¯ 2 ~ σtot = ? d b ! (~x ,z) N(~x , b ,Y) 2 ⇡ ? z (1 z) | ? | ? ? Z Z0 − q z x x ⊥ ⊥ γ∗ 1 z − b ,Y ? with rapidity Y=ln(1/x) 15 DIS in the Classical Approximation The DIS process in the rest frame of the target is shown below. It factorizes into γ A 2 γ qq¯ 2 σtot⇤ (xBj,Q )= ⇤! N(x ,Y =ln1/xBj) | | ⌦ ? with rapidity Y=ln(1/x) 16 Dipole Amplitude • The quark dipole amplitude is defined by 1 N(x1,x2)=1 tr V (x1) V †(x2) − Nc h i • Here we use the Wilson lines along⇥ the light-cone direction⇤ 1 + + V (x)=Pexp ig dx A−(x ,x− =0,x) 2 3 Z • In the classical Glauber4 -Mueller/1 McLerran-Venugopalan5 approach the dipole amplitude resums multiple rescatterings: x1 x ⊥ x2 17 Quasi-classical dipole amplitude x ⊥ A.H. Mueller, 90 Lowest-order interaction with each nucleon – two gluon exchange – the same resummation parameter as in the MV model: 2 1/3 ↵s A 18 DIS in the Classical Approximation The dipole-nucleus amplitude in the classical approximation is 2 2 x Qs 1 N(x ,Y)=1 exp ? ln ? − − 4 x ⇤ ? A.H. Mueller, 90 Black disk limit, 2 sptot < 2 R Color transparency 1/QS 19 Small-x evolution equations Quantum Evolution • The energy (x) dependence comes in through nonlinear small-x BK/JIMWLK evolution, which resums the long-lived s-channel gluon corrections: 1 ↵ ln ↵ Y 1 s x ⇠ s ⇠ These extra gluons bring in powers of aS ln 1/x, such that when aS << 1 and ln 1/x >>1 this parameter is aS ln 1/x ~ 1 (leading logarithmic approximation, LLA). 21 Resumming Gluonic Cascade In the large-NC limit of QCD the gluon corrections become color dipoles. Gluon cascade becomes a dipole cascade. A. H. Mueller, 93-94 We need to resum dipole cascade, with each final state dipole interacting with the target. Yu. K. 99 22 Notation (Large-NC) ⃗x1 ⃗x1 ⊥ ⊥ ⃗x2 ⊥ ⃗x2 ⊥ Real emissions in the ⃗x0 ⃗x0 ⊥ ⊥ ⃗x1 ⃗x1 amplitude squared ⊥ ⊥ ⃗x2 ⊥ ⃗x2 (dashed line – all ⊥ ⃗x0 ⃗x0 Glauber-Mueller exchanges ⊥ ⊥ ⃗x1 at light-cone time =0) ⊥ ⃗x2 ⊥ ⃗x0 ⊥ Virtual corrections in the amplitude (wave function) 23 Nonlinear Evolution To sum up the gluon cascade at large-NC we write the following equation for the dipole S-matrix: 1 1 S ∂ ∂Y S 2 dashed line = S 0 0 all interactions 1 1 with the target 2 2 S S 0 0 ↵ N x2 @ S (Y )= s c d2x 01 [S (Y ) S (Y ) S (Y )] Y x0,x1 2⇡2 2 x2 x2 x0,x2 x2,x1 − x0,x1 Z 02 21 Remembering that S= 1-N we can rewrite this equation in terms of the dipole scattering amplitude N. 24 Nonlinear evolution at large Nc As N=1-S we write 1 1 N ∂ ∂Y N 2 0 0 1 1 1 2 2 N N 0 0 1 dashed line = N 2 all interactions N with the target 0 BFKL ↵ N x2 @ N (Y )= s c d2x 01 [N (Y )+N (Y ) N (Y ) N (Y ) N (Y )] Y x0,x1 2 ⇡2 2 x2 x2 x0,x2 x2,x1 − x0,x1 − x0,x2 x2,x1 Z 02 21 Balitsky ‘96, Yu.K. ‘99 25 Beyond large-Nc: JIMWLK Equation • JIMWLK evolution equation (1997-2002): 2 1 2 2 δ ab @Y WY [↵]=↵s d x d y a b ⌘~x ~y WY [↵] 2 ? ? ↵ (x−, ~x ) ↵ (y−, ~y ) ? ? ( Z ? ? ⇥ ⇤ 2 δ a d x a ⌫~x WY [↵] − ? ↵ (x−, ~x ) ? ) <latexit sha1_base64="MtB0G7AJZxw1Sxk2ypiYWWDGKQQ=">AAADonicbVLbbhMxEHV2uZRwS8sjD4wIoCC1UTYglRekqggJ8QCtIE1RvFl5HW9i1XvR2ltltfJ/8R288Td4LyFN0pEsjY7PmZkztp8ILtVg8Ldl2Xfu3ru/96D98NHjJ087+wcXMs5SykY0FnF66RPJBI/YSHEl2GWSMhL6go39q0/l/fiapZLH0U+VJ8wNyTziAadEGcjbb/3GCUkVJ8L7BWNzJpiIZEFc+Ah15knAh4BP+XyOC3gDOEgJLRxdDDVgHimYTYew9HDC0qQNUJJLJK+RSlsp8IwJRaZD3WRN+SmB3nJ6dAgFvma0LFDGUtfyt5V+g+9DL//Ph3xFNMMIFqhJXQEz06ogvvaKmmcKFhVRr4UNoDd8VxZSPl8oFzA2fo92XG57WjlqWt9ia+1HV+JqUsBRNiXNgCvjcGPSzcHWU1VPob1Od9AfVAG7idMkXdTEmdf5g2cxzUIWKSqIlBNnkCi3KF+fCqbbOJMsIfSKzNnEpBEJmXSL6otpeG2QGQRxao7ZRoXeVBQklDIPfcMMiVrI7bsSvO1ukqngg1vwKMkUi2jdKMgEqBjK/woznjKqRG4SQlNuZgW6IGb5yvzqtlmCs215N7kY9p13/eH5++7JabOOPfQcvUQ95KBjdIK+oDM0QtR6YX22vlnf7Vf2V/vc/lFTrVajeYY2wsb/AFIJHwU=</latexit> Z ? ⇥ ⇤ with ab ab 4 2 ~x21 ~x20 ⌘ = d x · 1 U U † U U † + U U † ~x1 ~x0 2 2 2 2 2 ~x1 ~x2 ~x2 ~x0 ~x1 ~x0 ? ? g ⇡ x x − ? ? − ? ? ? ? <latexit sha1_base64="SLeF4YkGqXovzUMJkva50eY1YA8=">AAADanicnVJda9RAFJ1N/Kir1W0FRfpycRUEdUliwb4IRV98rGDawk52mUwm2aGTD2YmZZch0N/om7/AF3+Es0nspyJ4IXA4554zMzc3rgRX2vO+Dxz31u07dzfuDe8/2Hz4aLS1fajKWlIW0lKU8jgmiglesFBzLdhxJRnJY8GO4pNPa/3olEnFy+KrXlUsyklW8JRToi013xqcYabJzJC4mRuDTxmFpUU+rpisGrhgvI5p4APgVBJqdhuTzQLAb4ZgC1d8FjSAeaEhsfRyvpb61ouUwLc9NCl1l9xaoVO8pjHLtqNNhWXLtaE2R7BUT60pTsFGvIWwv22fAJdv3UA4MzghWcbklVcFv/W/+IN/+M9n8Pr/zj/3Y8mzhY66sY/G3sRrC24Cvwdj1NfBfPQNJyWtc1ZoKohSU9+rdGSI1JwK1gxxrVhF6AnJ2NTCguRMRaZdlQZeWiaBtJT2s7+qZS87DMmVWuWx7cyJXqjr2pr8kzatdboXGV5UtWYF7Q5KawG6hPXeQcIlo1qsLCBUcntXoAtit0Pb7RzaIfjXn3wTHAYT/90k+LI73v/Yj2MD7aDn6BXy0Xu0jz6jAxQiOvjhbDpPnKfOT3fbfebudK3OoPc8RlfKffELTssP6Q==</latexit> 21 20 Z h i 2 a i d x2 a ⌫ = Tr T U U † ~x1 2 2 ~x1 ~x2 ? g ⇡ x ? ? <latexit sha1_base64="3eJ2anX+GsboA61fogGn5WH2FYA=">AAACmHicbVFbi9QwGE3rbR0vOyq+6EtwEHyQoa2CggiDF9S3Vaa7C5O2pOnXTtj0QpIuM4T8Jv+Lb/4bM90urLt7IHByzvfluyTvBFc6CP56/o2bt27f2bs7uXf/wcP96aPHh6rtJYOYtaKVxzlVIHgDseZawHEngda5gKP85PPOPzoFqXjbLPW2g6SmVcNLzqh2Ujb9TZo+pZkx5BQY3tjMhKQD2VmLP2JSSsoMt6bC5DUmHU8jOzDe6NEs0miCHTZZZM0mM1Foz4PqvN2YpXQXAaVe4WVKcXxdpeGBODWkoFUF0l6Mic67IZJXa51k01kwDwbgqyQcyQyNOMimf0jRsr6GRjNBlVqFQacTQ6XmTICdkF5BR9kJrWDlaENrUIkZFmvxS6cUuGylO27kQb2YYWit1LbOXWRN9Vpd9nbidd6q1+X7xPCm6zU07KxQ2QusW7z7JVxwCUyLrSOUSe56xWxN3cK1+8uJW0J4eeSr5DCah2/m0c+3s8WncR176Dl6gV6hEL1DC/QdHaAYMe+p98H74n31n/kL/5v/4yzU98acJ+g/+L/+Adw4yRc=</latexit> 21 Z h i • Here U is the adjoint Wilson line on a light cone, 1 + + U~x =Pexp ig dx− (x =0,x−, ~x ) ? 8 A ? 9 <latexit sha1_base64="aFIsnXqSEI7U5WnkJMr/Tln2QHk=">AAACgnicbVFNbxMxEPUuBUr4CuXIZURUqdA23W2RyoFKBS4cg0TaSnGy8jqziVXvh+zZKpG1P4S/xY1fA94kB9oyksfP78147Jm00spSFP0OwgdbDx893n7Sefrs+YuX3Vc7F7asjcShLHVprlJhUasCh6RI41VlUOSpxsv0+murX96gsaosftCywnEuZoXKlBTkqaT7c5g4x29QwqJJeIWmaoAfwFnreJ6WCzfwBC4q4Boz4g5UK82864A3rgriWuWKbOIO/SmjZTNZ7zCFxeSwDXdcCg2fm8k+7C0m+2fRQausb7hd/R1wo2Zz4k3S7UX9aGVwH8Qb0GMbGyTdX3xayjrHgqQW1o7iqKKxE4aU1Nh0eG2xEvJazHDkYSFytGO3amEDu56ZQlYavwqCFftvhhO5tcs89ZG5oLm9q7Xk/7RRTdnHsVNFVRMWcl0oqzVQCe08YKoMStK+WUpIo/xbQc6FEZL81Dq+CfHdL98HF8f9+KR//P1D7/zLph3b7A17y/ZYzE7ZOfvGBmzIJPsT7Ab94CjcCt+HcXiyDg2DTc5rdsvCT38Bn069JA==</latexit>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    91 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us