Conservationoffreshwat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Condition of Designated Sites
Scottish Natural Heritage Condition of Designated Sites Contents Chapter Page Summary ii Condition of Designated Sites (Progress to March 2010) Site Condition Monitoring 1 Purpose of SCM 1 Sites covered by SCM 1 How is SCM implemented? 2 Assessment of condition 2 Activities and management measures in place 3 Summary results of the first cycle of SCM 3 Action taken following a finding of unfavourable status in the assessment 3 Natural features in Unfavourable condition – Scottish Government Targets 4 The 2010 Condition Target Achievement 4 Amphibians and Reptiles 6 Birds 10 Freshwater Fauna 18 Invertebrates 24 Mammals 30 Non-vascular Plants 36 Vascular Plants 42 Marine Habitats 48 Coastal 54 Machair 60 Fen, Marsh and Swamp 66 Lowland Grassland 72 Lowland Heath 78 Lowland Raised Bog 82 Standing Waters 86 Rivers and Streams 92 Woodlands 96 Upland Bogs 102 Upland Fen, Marsh and Swamp 106 Upland Grassland 112 Upland Heathland 118 Upland Inland Rock 124 Montane Habitats 128 Earth Science 134 www.snh.gov.uk i Scottish Natural Heritage Summary Background Scotland has a rich and important diversity of biological and geological features. Many of these species populations, habitats or earth science features are nationally and/ or internationally important and there is a series of nature conservation designations at national (Sites of Special Scientific Interest (SSSI)), European (Special Area of Conservation (SAC) and Special Protection Area (SPA)) and international (Ramsar) levels which seek to protect the best examples. There are a total of 1881 designated sites in Scotland, although their boundaries sometimes overlap, which host a total of 5437 designated natural features. -
Oncorhynchus Mykiss)
Growth Genes Are Implicated in The Evolutionary Divergence of Sympatric Piscivorous and Insectivorous Rainbow Trout (Oncorhynchus Mykiss) Jared A. Grummer ( [email protected] ) University of British Columbia Michael Whitlock University of British Columbia Patricia Schulte University of British Columbia Eric Taylor University of British Columbia Research Article Keywords: genome scan, small-effect loci, FST, GO analysis, rainbow trout, ecotype Posted Date: February 5th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-157772/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at BMC Ecology and Evolution on April 22nd, 2021. See the published version at https://doi.org/10.1186/s12862-021-01795-9. RH: GENOMIC DIVERGENCE OF SYMPATRIC TROUT ECOTYPES Growth genes are implicated in the evolutionary divergence of sympatric piscivorous and insectivorous rainbow trout (Oncorhynchus mykiss) Jared A. Grummer1, Michael Whitlock1, Patricia M. Schulte1, and Eric B. Taylor1,2 1Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada 2Beaty Biodiversity Museum, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada Corresponding author: Jared A. Grummer; E-mail: [email protected] 1 1 Abstract.— 2 Background: Identifying ecologically significant phenotypic traits and the genomic 3 mechanisms that underly them are crucial steps in understanding the traits associated with 4 population divergence. We used genome-wide data to identify genomic regions associated 5 with a key trait that distinguishes two ecotypes of rainbow trout (Oncorhynchus mykiss)– 6 insectivores and piscivores – that coexist in Kootenay Lake, southeastern British Columbia, 7 for the non-breeding portion of the year. -
Coregonus Lavaretus Complex 1.4 Alternative Species Scientific Name 1.5 Common Name (In National Language) Whitefish 2
European Community Directive on the Conservation of Natural Habitats and of Wild Fauna and Flora (92/43/EEC) Fourth Report by the United Kingdom under Article 17 on the implementation of the Directive from January 2013 to December 2018 Supporting documentation for the conservation status assessment for the species: S6353 ‐ WhitefishCoregonus ( lavaretus) SCOTLAND IMPORTANT NOTE ‐ PLEASE READ • The information in this document is a country‐level contribution to the UK Reporton the conservation status of this species, submitted to the European Commission aspart of the 2019 UK Reporting under Article 17 of the EU Habitats Directive. • The 2019 Article 17 UK Approach document provides details on how this supporting information was used to produce the UK Report. • The UK Report on the conservation status of this species is provided in a separate doc‐ ument. • The reporting fields and options used are aligned to those set out in the European Com‐ mission guidance. • Explanatory notes (where provided) by the country are included at the end. These pro‐ vide an audit trail of relevant supporting information. • Some of the reporting fields have been left blank because either: (i) there was insuffi‐ cient information to complete the field; (ii) completion of the field was not obligatory; (iii) the field was not relevant to this species (section 12 Natura 2000 coverage forAnnex II species) and/or (iv) the field was only relevant at UK‐level (sections 9 Future prospects and 10 Conclusions). • For technical reasons, the country‐level future trends for Range, Population and Habitat for the species are only available in a separate spreadsheet that contains all the country‐ level supporting information. -
The Nature Conservancy Research in Scotland
The Nature Conservancy Research in Scotland • • a • • to • a • I • • I • • II • I I • á NATURAL ENVIRONMENT RESEARCH COUNCIL The Nature Conservancy Research in Scotland Report for 1968-1970 Thel Nature Co nservancy Scottish Headquar ters 12 Hope Terrace Edinb urgh EH9 2AS 1970 á Cont ents Page STA FF LIST ( V) I NT ROD UCT ION 1 GROUSE RESEARCH GROUP I. Introduction . 6 2. Red gro use populations 7 3. Ptarmigan populations 10 4. Red grouse behaviour . 10 5. N utrition in red grouse and ptarmigan . 11 6. Viability and behaviour of young red grouse and ptarmigan . 15 7. Red gro use in Ireland . 16 8. Telem etry studies of red grouse . 17 9. The effect of rad io tra nsmitter s, carried by red grouse, on their biology . 18 10. Development and aggressive behaviour in the red grouse in ca ptivity . 19 1 l. The feeding ecology of red grouse in N .E. Scotland 20 12. Nutrition and behaviour of ca pt ive red grouse 21 13. M ountain hares . 22 14. M ovements and home range in the black grouse 22 15. Huma n impact on animal populations in the Ca irngorms 23 RA NG E ECOLOG Y RESEARCH GROU P I. Introd uction . 27 2. Conseq uence of species poverty in the uplands 28 3. Effects of herbivores on range vegetation types 30 4. Birch regenera tion in rela tion to Site chara cteristics 31 5. Effect of shade on the growth of birch . 32 6. G razing and the regeneration of shrubs and trees . 33 7. -
Ruffe (Gymnocephalus Cernua) Ecological Risk Screening Summary
U.S. Fish and Wildlife Service Ruffe (Gymnocephalus cernua) Ecological Risk Screening Summary US Fish and Wildlife Service, February 2011 Revised, July 2014 Revised, June 2015 Photo: USFWS 1 Native Range, and Status in the United States Native Range From Fuller et al. (2014): “Northern Europe and Asia (Berg 1949; Holcik and Hensel 1974; Wheeler 1978; Page and Burr 1991).” Status in the United States From Fuller et al. (2014): “The ruffe was first identified by Wisconsin DNR in specimens collected from the St. Louis River at the border of Minnesota and Wisconsin in 1987 (Pratt 1988; Pratt et al. 1992; Czypinski et al. 1999, 2000, 2001, 2003). Following that report, reexamination of archived samples revealed misidentified larval specimens of ruffe had been collected from the same area in 1986 (Pratt 1988). The ruffe subsequently spread into Duluth Harbor in Lake Superior and several tributaries of the lake (Underhill 1989; Czypinski et al. 1999, 2000, 2004; Scheidegger, pers. comm.; J. Slade, pers. comm.). It is found in the Amnicon, Flag, Iron, Middle, Raspberry, and Bad rivers, Chequamegon Bay, and Apostle Islands National Lakeshore in Wisconsin (Czypinski et al. 1999, 2000, 2001, 2003, 2004; Tilmant 1999). In August 1994, it was found in Saxon Harbor, Wisconsin, and in the upper peninsula of Michigan at the mouths of the Black and Ontonagon rivers (K. Kindt, pers. comm.). In the lower Peninsula of Michigan along Lake Huron, the first three specimens were caught at the mouth of the Thunder Bay River in August 1995 (K. Kindt, pers. comm.). This species has also been collected in Michigan in Lake Michigan, Lake Superior, Torch Lake, Little Bay de Noc in Escanaba, Big Bay de Noc, Misery River, Ontonagon River, Thunder Bay, and Sturgeon River Sloughs (Czypinski et al. -
Identification and Modelling of a Representative Vulnerable Fish Species for Pesticide Risk Assessment in Europe
Identification and Modelling of a Representative Vulnerable Fish Species for Pesticide Risk Assessment in Europe Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Lara Ibrahim, M.Sc. aus Mazeraat Assaf, Libanon Berichter: Universitätsprofessor Dr. Andreas Schäffer Prof. Dr. Christoph Schäfers Tag der mündlichen Prüfung: 30. Juli 2015 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar Erklärung Ich versichere, dass ich diese Doktorarbeit selbständig und nur unter Verwendung der angegebenen Hilfsmittel angefertigt habe. Weiterhin versichere ich, die aus benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht zu haben. Lara Ibrahim Aachen, am 18 März 2015 Zusammenfassung Die Zulassung von Pflanzenschutzmitteln in der Europäischen Gemeinschaft verlangt unter anderem eine Abschätzung des Risikos für Organismen in der Umwelt, die nicht Ziel der Anwendung sind. Unvertretbare Auswirkungen auf den Naturhalt sollen vermieden werden. Die ökologische Risikoanalyse stellt die dafür benötigten Informationen durch eine Abschätzung der Exposition der Organismen und der sich daraus ergebenden Effekte bereit. Die Effektabschätzung beruht dabei hauptsächlich auf standardisierten ökotoxikologischen Tests im Labor mit wenigen, oft nicht einheimischen Stellvertreterarten. In diesen Tests werden z. B. Effekte auf das Überleben, das Wachstum und/oder die Reproduktion von Fischen bei verschiedenen Konzentrationen der Testsubstanz gemessen und Endpunkte wie die LC50 (Lethal Concentrations for 50%) oder eine NOEC (No Observed Effect Concentration, z. B. für Wachstum oder Reproduktionsparameter) abgeleitet. Für Fische und Wirbeltiere im Allgemeinen beziehen sich die spezifischen Schutzziele auf das Überleben von Individuen und die Abundanz und Biomasse von Populationen. -
Feeding Selectivity of Brown Trout (Salmo Trutta) in Loch Ness, Scotland Stephen Thackeray, Jonathan Grey and Roger Jones (S
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons FEEDING SELECTIVITY OF BROWN TROUT 47 FEEDING SELECTIVITY OF BROWN TROUT (SALMO TRUTTA) IN LOCH NESS, SCOTLAND STEPHEN THACKERAY, JONATHAN GREY AND ROGER JONES (S. J. Thackeray, Dr J. Grey and Dr R. I. Jones, Department of Biological Sciences, IENS, Lancaster University, Lancaster LAI 4YQ, England.) [E-mail: s.j. thackeray @ lancaster. ac. uk] Introduction Loch Ness (Fig. 1) lies in the Great Glen, a glacially-deepened rift which was originally tectonic in origin. Hence the loch has a very regular trench-like morphometry, with steeply shelving sides sloping down to a flat bed. This produces a restricted littoral zone, where powerful wave action on the steep, rocky shores permits growth of few macrophytes (Burgis & Morris 1987). The loch has the greatest mean depth of any lake in Britain and Ireland (ca. 132 metres) and comprises two basins, the north reaching a maximum depth of 227 metres and the south a maximum of 221 metres (Young & Shine 1993). Consequently, Loch Ness contains the largest volume of water for any lake in the British Isles (74.52 m3 x 108). The loch drains eastwards via the River Ness and has been connected to the west coast by the Caledonian canal since 1822. It is oligotrophic and the water is extensively stained with peat (Burgis & Morris 1987), so that light attenuates rapidly in the Loch Ness water column. Martin & Shine (1988) found that most of the pelagic fish in Loch Ness inhabited the top 30 metres of the water column, with Arctic charr Salvelinus alpinus dominating much of this stratum. -
The Irish Pollan, Coregonus Autumnalis: Options for Its Conservation
Journal of Fish Biology (2001) 59 (Supplement A), 339–355 doi:10.1006/jfbi.2001.1755, available online at http://www.idealibrary.com on The Irish pollan, Coregonus autumnalis: options for its conservation C. H*¶, D. G*, T. K. MC† R. R‡ *School of Environmental Studies, University of Ulster, Coleraine, BT52 1SA, U.K., †Zoology Department, National University of Ireland, Galway, Republic of Ireland and ‡Department of Agriculture and Rural Development, Newforge Lane, Belfast, BT9 5PX, U.K. The ecology of four relict Irish populations of pollan (Coregonus autumnalis) is compared with that of the species elsewhere, and used to advocate conservation. The threats to these populations from introduced/invasive species, habitat degradation, climate warming and commercial exploitation are summarized and the legislation governing conservation of the stocks is reviewed. Conservation options (legislation, habitat restoration, stock translocation and stock augmentation) are outlined and their practicality and efficacy considered. A preliminary search indicates that there are a number of lakes that appear to be suitable for pollan translocation. 2001 The Fisheries Society of the British Isles Key words: Coregonus autumnalis; conservation ecology; legislation; eutrophication; translocation. INTRODUCTION Owing to its recent glacial history, Ireland has a depauperate native freshwater fish fauna of only 14 species, all of euryhaline origin. Human introductions have augmented the Irish ichthyofauna and today 25 species are found in Ireland’s fresh waters (Griffiths, 1997). Of the native species, only one, the pollan Coregonus autumnalis Pallas is not found elsewhere in Europe (Whilde, 1993). Ireland has more than 4000 loughs (lakes) >5 ha, but pollan occur in only four large lowland loughs. -
GIS Screening
Screening Results for: IR EPR discharges to water Date Produced: 16/09/2020 Reference number: KP3236YH NGR of search: SP 86093 68828 Notes: Site centre distance (m): 80 https://easimap2. prodds. ntnl/Html5Viewer/I ndex.html? viewer=Permitting &Extent=484159. 913849983, 266371. 936523897, © Crown Copyright and database right 2020. Ordnance Survey licence number 100024198. Copyright © Natural England. © Crown Copyright. 492626. Launch597450017, EasiMap All rights reserved. Countryside Council for Wales, 100018813, 2020. © Environment Agency copyright and / or database rights 2020. 270889. All rights reserved. © Copyright English Heritage. © The National Assembly for Wales. Easimap Screening Results Click here to download Permit Screening distances Screening Results for: IR EPR discharges to water Date produced: 16/09/2020 Reference number: KP3236YH NGR of search: SP 86093 68828 Notes: Site centre distance (m): 80 Data Details Within Search Direction Action Special Protection Areas - England Site Name: Upper Nene Valley Gravel Pits 9813m Downstream in the HRA Stage 1 Form (App11) consultation with NE may be required (SPA) nearest watercourse Ramsar Sites - England Site Name: Upper Nene Valley Gravel Pits 9813m Downstream in the HRA Stage 1 Form (App11) consultation with NE may be required (Ramsar) nearest watercourse Local Wildlife Sites Name: Park Farm Industrial Estate 424m Downstream in the Take account of the requirements of this site. If there is no data available nearest watercourse consult Area EPR Installation Team EPR Team: Installations -
The Abundance of Large, Piscivorous Ferox Trout (Salmo Trutta) in Loch Rannoch, Scotland
The abundance of large, piscivorous Ferox Trout (Salmo trutta) in Loch Rannoch, Scotland Alastair Thorne1, Alisdair I. MacDonald1 and Joseph L. Thorley2 1 Freshwater Laboratory, Marine Scotland, Pitlochry, Scotland 2 Poisson Consulting, Nelson, British Columbia, Canada ABSTRACT Background. Ferox Trout are large, long-lived piscivorous Brown Trout (Salmo trutta). Due to their exceptionally large size, Ferox Trout are highly sought after by anglers while their life-history strategy, which includes delayed maturation, multiphasic growth and extended longevity, is of interest to ecological and evolutionary modelers. However, despite their recreational and theoretical importance, little is known about the typical abundance of Ferox Trout. Methods. To rectify this situation a 16 year angling-based mark-recapture study was conducted on Loch Rannoch, which at 19 km2 is one of the largest lakes in the United Kingdom. Results. A hierarchical Bayesian Jolly-Seber analysis of the data suggest that if individual differences in catchability are negligible the population of Ferox Trout in Loch Rannoch in 2009 was approximately 71 fish. The results also suggest that a single, often unaccompanied, highly-experienced angler was able to catch roughly 8% of the available fish on an annual basis. Discussion. It is recommended that anglers adopt a precautionary approach and release all trout with a fork length ≥400 mm caught by trolling in Loch Rannoch. There is an urgent need to assess the status of Ferox Trout in other lakes. Subjects Aquaculture, Fisheries and Fish Science, Conservation Biology, Ecology, Statistics Submitted 11 May 2016 Accepted 3 October 2016 Keywords Survival, Hierarchical, Bayesian, Exploitation, Jolly-Seber, Abundance, Ferox Trout, Published 1 November 2016 Brown Trout, Piscivorous Corresponding author Joseph L. -
Monitoring Fish Populations in Lower Lough Erne 65
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons MONITORING FISH POPULATIONS IN LOWER LOUGH ERNE 65 MONITORING FISH POPULATIONS IN LOWER LOUGH ERNE, NORTHERN IRELAND: APPLICABILITY OF CURRENT METHODS AND IMPLICATIONS FOR FUTURE MONITORING UNDER THE EC WATER FRAMEWORK DIRECTIVE ROBERT ROSELL (Dr R. Rosell, Department of Agriculture and Rural Development for Northern Ireland, Agricultural and Environmental Science Division, Newforge Lane, Belfast, N. Ireland.) Introduction The proposed EC Water Framework Directive (WFD), with its emphasis on defining and monitoring for a measure of overall ecological quality, will require member states to monitor both biotic and abiotic components of lake environments, to determine their status against notional "good ecological condition". This will create a fundamental shift in the monitoring requirement from that contained in the current series of directives, which currently only require demonstration that designated waters are of adequate quality when monitored for a limited number of chemical determinands. With adoption of the WFD some measurement of the fish populations will also be required. The measures required are likely to include abundance, species diversity and population age structures for individual species. This paper describes work carried out since 1971, and particularly since 1991, on the status of fish populations in Lower Lough Erne, Northern Ireland, with an emphasis on defining change over time due to human impacts on the lake. This offers a reasonable starting point from which to develop a monitoring programme suitable for the needs of the WFD in this lake and perhaps also in other systems. -
Zooplankton Feeding Induces Macroscopical Gonad Malformations in Whitefish (Coregonus Ssp.) from Lake Thun, Switzerland
fishes Article Zooplankton Feeding Induces Macroscopical Gonad Malformations in Whitefish (Coregonus ssp.) from Lake Thun, Switzerland Daniel Bernet 1,2, Thomas Wahli 1, Christoph Küng 2 and Helmut Segner 1,* 1 Centre for Fish and Wildlife Health, University of Bern, Länggass-Strasse 122, Post-Box, CH-3001 Bern, Switzerland; [email protected] (D.B.); [email protected] (T.W.) 2 Fisheries Inspectorate Bern, Schwand, CH-3110 Münsingen, Switzerland; [email protected] * Correspondence: [email protected] Received: 11 June 2020; Accepted: 10 August 2020; Published: 20 August 2020 Abstract: Alterations in gonad morphology are widespread in wild fish populations. Whitefish (Coregonus spp.) from Lake Thun, Switzerland, display a high prevalence of macroscopical gonad malformations including fusions to the musculature, segmented gonads and intersex condition. The aim of the present study was to evaluate whether the gonad morphological changes in Lake Thun whitefish are caused by genetic factors, environmental factors (water, diet) or “gene environment” × interaction. We performed two independent experiments of a three-year duration in which we reared whitefish from fertilization until adulthood and tested the possible causative factors using a matrix design: (i) genetics—comparing the prevalence of gonad malformations in whitefish of different genetic origin reared under identical environmental conditions (same diet, same water, same experimental facility); (ii) environment—comparing the prevalence of gonad malformations in whitefish of the same genetic origin reared in different water sources and/or fed with different diets; and (iii) gene-environment interaction—comparing the prevalence of gonad morphological alterations in relation to the combinations of genetics and environmental factors.