Oncorhynchus Mykiss)

Total Page:16

File Type:pdf, Size:1020Kb

Oncorhynchus Mykiss) Growth Genes Are Implicated in The Evolutionary Divergence of Sympatric Piscivorous and Insectivorous Rainbow Trout (Oncorhynchus Mykiss) Jared A. Grummer ( [email protected] ) University of British Columbia Michael Whitlock University of British Columbia Patricia Schulte University of British Columbia Eric Taylor University of British Columbia Research Article Keywords: genome scan, small-effect loci, FST, GO analysis, rainbow trout, ecotype Posted Date: February 5th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-157772/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at BMC Ecology and Evolution on April 22nd, 2021. See the published version at https://doi.org/10.1186/s12862-021-01795-9. RH: GENOMIC DIVERGENCE OF SYMPATRIC TROUT ECOTYPES Growth genes are implicated in the evolutionary divergence of sympatric piscivorous and insectivorous rainbow trout (Oncorhynchus mykiss) Jared A. Grummer1, Michael Whitlock1, Patricia M. Schulte1, and Eric B. Taylor1,2 1Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada 2Beaty Biodiversity Museum, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada Corresponding author: Jared A. Grummer; E-mail: [email protected] 1 1 Abstract.— 2 Background: Identifying ecologically significant phenotypic traits and the genomic 3 mechanisms that underly them are crucial steps in understanding the traits associated with 4 population divergence. We used genome-wide data to identify genomic regions associated 5 with a key trait that distinguishes two ecotypes of rainbow trout (Oncorhynchus mykiss)– 6 insectivores and piscivores – that coexist in Kootenay Lake, southeastern British Columbia, 7 for the non-breeding portion of the year. “Gerrards” are large-bodied (breeding maturity at 8 >60cm) piscivores that spawn ∼50km north of Kootenay Lake in the Lardeau River, in 9 contrast to the insectivorous populations that are on average smaller in body size, mainly 10 forage on aquatic insects, and spawn in tributaries immediately surrounding Kootenay 11 Lake. We used pool-seq data covering ∼60% of the genome to assess the level of genomic 12 divergence between ecotypes, test for genotype-phenotype associations, and identify loci 13 that may play functional or selective roles in their divergence. 14 Results: Analysis of nearly seven million SNPs provided a genome-wide mean FST 15 estimate of 0.18, indicating a high level of reproductive isolation between populations. The 16 window-based FST analysis did not reveal “islands” of genomic differentiation; however, the 17 window with highest FST estimate did include a gene associated with insulin secretion. 18 Although we explored the use of the “Local score” approach to identify genomic outlier 19 regions, this method was ultimately not used because simulations revealed a high false 20 discovery rate (∼20%). Gene Ontology (GO) analysis identified several growth processes as 21 enriched in genes occurring in the ∼200 most divergent genomic windows, indicating the 22 importance of genetically-based growth and growth-related metabolic functions in the 23 divergence of these ecotypes. 24 Conclusions: In spite of their sympatric coexistence, a high degree of genomic 25 differentiation separates the populations of piscivores and insectivores, indicating little to 26 no contemporary genetic exchange between ecotypes. Our results further indicate that the 2 27 large body piscivorous phenotype is likely not due to one or a few loci of large effect, rather 28 it may be controlled by several loci of small effect, thus highlighting the power of 29 whole-genome low-coverage sequencing in phenotypic association studies. 30 (Keywords: genome scan, small-effect loci, FST , GO analysis, rainbow trout, ecotype) 3 31 Understanding the divergence of populations and the mechanisms responsible for it 32 are important for the fields of speciation, macroevolution, ecology, and conservation (Coyne 33 and Orr 2004). In many cases, population-level divergences are associated with character 34 displacement and phenotypic divergence of sympatric forms (e.g., Kitano et al. 2007). 35 Recent advancements in sequencing technologies have enabled investigations into the 36 genomics underlying traits associated with phenotypic divergences in non-model systems. 37 In some cases, few highly differentiated loci of large effect can be responsible for 38 population-level phenotypic or behavioural divergence in spite of the majority of genomic 39 differentiation being very low between populations as the result of either recent divergence 40 and/or ongoing gene flow (e.g., Heliconius butterflies; Supple et al. 2013, Morris et al. 41 2019). 42 In fishes, this is the case for the phenotypic divergence of two forms of brown trout 43 (Salmo trutta) – piscivores and insectivores – where Jacobs et al. (2018) identified ∼10 44 genomic outlier regions containing several genes involved in development, growth, and gene 45 expression and regulation. In Atlantic cod (Gadus morhua), a ∼17 MB (megabase) region 46 containing two chromosomal inversions is associated with population divergence based on 47 migration phenotype (Kirubakaran et al. 2016). Additionally, in Pacific salmon (genus 48 Oncorhynchus), one small genomic region has been shown to control a vital phenotype for 49 the natural history of two species – adult migration timing (Prince et al. 2017). 50 Theory predicts that the distribution of allelic effects on quantitative traits should 51 be nearly exponential, where few loci have large effects and explain most of the variance in 52 traits, but many loci with smaller effects explain the remaining variation in the trait 53 (Robertson 1967; Mackay 2001). Across taxa, several phenotypes are explained by many 54 loci of small effect. For instance, hundreds of genetic variants explain only ∼10% of the 55 phenotypic variation in human height (Allen et al. 2010). And a genome-wide analysis of 56 50,000 SNPs (single nucleotide polymorphism) in the collared flycatcher (Ficedula 4 57 albicollis) revealed that no SNPs were significantly associated with forehead patch size, a 58 sexually selected trait (Kardos et al. 2016). Furthermore, Kardos et al. (2016) report that 59 thousands of individuals and near-complete genome sequencing are necessary to reliably 60 detect large-effect loci. 61 Identifying the genomic regions underlying ecological forms can provide insights into 62 population divergence, especially with regards to the insectivorous–piscivorous divergence 63 that has been seen in many systems. Arctic charr (Salvelinus alpinus) have repeatedly 64 evolved sympatric forms of zooplanktivores and piscivores on multiple continents (Skúlason 65 1999; Jonsson and Jonsson 2001), including Iceland’s Lake Thingvallavatn (e.g., Skúlason 66 et al. 1993). Additionally, a large and piscivorous form of brown trout (“Ferox” trout; 67 Salmo trutta) exists in Loch Rannoch, Scotland (Thorne et al. 2016). Although individuals 68 usually breed with others of the same morph (assortative mating; Jonsson and Jonsson 69 2001) thereby leading to reproductive isolation between populations, evidence from Lake 70 Thingvallavatn suggests that the piscivorous morph may not be genetically distinguishable 71 from the other morphs (Guðbrandsson et al. 2019). It remains to be seen whether these 72 morphs a) have a genetic basis, b) share a genetic basis in independent waterbodies, and c) 73 are controlled by few loci of large-effect or many loci of small-effect. 74 We assessed whether particular genomic regions, and their putative functions, were 75 associated with the phenotypic differentiation of two sympatric populations of rainbow 76 trout in Kootenay Lake of southeastern British Columbia (Taylor et al. 2019). Phylogenetic 77 analyses suggest that O. mykiss diverged from other Oncorhynchus species (e.g., cutthroat 78 trout and Pacific salmon) in the early Miocene, ∼20 million years ago (Lecaudey et al. 79 2018). Oncorhynchus mykiss spans a broad latitudinal range in western North America 80 from central Mexico to Alaska and likely originated in the south and expanded northward 81 over time (Hendrickson et al. 2002; Penaluna et al. 2016). Fish populations in most of 82 Canada were displaced by Pleistocene glaciations and current populations are therefore 5 83 assumed to be the results of postglacial range expansions in the past ∼15,000 years 84 (Schluter 1996; Taylor 1999). A variety of divergent life-history patterns can be found in 85 populations across the native range of O. mykiss, including migration patterns (resident vs. 86 anadromous), habitat type (lake vs. stream), and diet (piscivory vs. insectivory) (Keeley 87 et al. 2007). While genomic regions have been found that are associated with migration and 88 habitat type (Hess et al. 2016; Prince et al. 2017), little is known about the evolutionary 89 mechanisms promoting divergence of piscivorous and insectivorous O. mykiss populations. 90 In Kootenay Lake, a large piscivorous form (often > 60cm and 5kg, but up to 12kg), 91 locally known as “Gerrards”, has an adult dietary specialization on Kokanee salmon – 92 small, land-locked sockeye salmon (O. nerka) – and spawns near the abandoned town site 93 Gerrard (thus the name “Gerrards”) on the Lardeau River that drains into the north arm of 94 Kootenay Lake (Northcote 1973; Irvine 1978); the size of this population
Recommended publications
  • Identification and Modelling of a Representative Vulnerable Fish Species for Pesticide Risk Assessment in Europe
    Identification and Modelling of a Representative Vulnerable Fish Species for Pesticide Risk Assessment in Europe Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Lara Ibrahim, M.Sc. aus Mazeraat Assaf, Libanon Berichter: Universitätsprofessor Dr. Andreas Schäffer Prof. Dr. Christoph Schäfers Tag der mündlichen Prüfung: 30. Juli 2015 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar Erklärung Ich versichere, dass ich diese Doktorarbeit selbständig und nur unter Verwendung der angegebenen Hilfsmittel angefertigt habe. Weiterhin versichere ich, die aus benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht zu haben. Lara Ibrahim Aachen, am 18 März 2015 Zusammenfassung Die Zulassung von Pflanzenschutzmitteln in der Europäischen Gemeinschaft verlangt unter anderem eine Abschätzung des Risikos für Organismen in der Umwelt, die nicht Ziel der Anwendung sind. Unvertretbare Auswirkungen auf den Naturhalt sollen vermieden werden. Die ökologische Risikoanalyse stellt die dafür benötigten Informationen durch eine Abschätzung der Exposition der Organismen und der sich daraus ergebenden Effekte bereit. Die Effektabschätzung beruht dabei hauptsächlich auf standardisierten ökotoxikologischen Tests im Labor mit wenigen, oft nicht einheimischen Stellvertreterarten. In diesen Tests werden z. B. Effekte auf das Überleben, das Wachstum und/oder die Reproduktion von Fischen bei verschiedenen Konzentrationen der Testsubstanz gemessen und Endpunkte wie die LC50 (Lethal Concentrations for 50%) oder eine NOEC (No Observed Effect Concentration, z. B. für Wachstum oder Reproduktionsparameter) abgeleitet. Für Fische und Wirbeltiere im Allgemeinen beziehen sich die spezifischen Schutzziele auf das Überleben von Individuen und die Abundanz und Biomasse von Populationen.
    [Show full text]
  • Feeding Selectivity of Brown Trout (Salmo Trutta) in Loch Ness, Scotland Stephen Thackeray, Jonathan Grey and Roger Jones (S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons FEEDING SELECTIVITY OF BROWN TROUT 47 FEEDING SELECTIVITY OF BROWN TROUT (SALMO TRUTTA) IN LOCH NESS, SCOTLAND STEPHEN THACKERAY, JONATHAN GREY AND ROGER JONES (S. J. Thackeray, Dr J. Grey and Dr R. I. Jones, Department of Biological Sciences, IENS, Lancaster University, Lancaster LAI 4YQ, England.) [E-mail: s.j. thackeray @ lancaster. ac. uk] Introduction Loch Ness (Fig. 1) lies in the Great Glen, a glacially-deepened rift which was originally tectonic in origin. Hence the loch has a very regular trench-like morphometry, with steeply shelving sides sloping down to a flat bed. This produces a restricted littoral zone, where powerful wave action on the steep, rocky shores permits growth of few macrophytes (Burgis & Morris 1987). The loch has the greatest mean depth of any lake in Britain and Ireland (ca. 132 metres) and comprises two basins, the north reaching a maximum depth of 227 metres and the south a maximum of 221 metres (Young & Shine 1993). Consequently, Loch Ness contains the largest volume of water for any lake in the British Isles (74.52 m3 x 108). The loch drains eastwards via the River Ness and has been connected to the west coast by the Caledonian canal since 1822. It is oligotrophic and the water is extensively stained with peat (Burgis & Morris 1987), so that light attenuates rapidly in the Loch Ness water column. Martin & Shine (1988) found that most of the pelagic fish in Loch Ness inhabited the top 30 metres of the water column, with Arctic charr Salvelinus alpinus dominating much of this stratum.
    [Show full text]
  • The Abundance of Large, Piscivorous Ferox Trout (Salmo Trutta) in Loch Rannoch, Scotland
    The abundance of large, piscivorous Ferox Trout (Salmo trutta) in Loch Rannoch, Scotland Alastair Thorne1, Alisdair I. MacDonald1 and Joseph L. Thorley2 1 Freshwater Laboratory, Marine Scotland, Pitlochry, Scotland 2 Poisson Consulting, Nelson, British Columbia, Canada ABSTRACT Background. Ferox Trout are large, long-lived piscivorous Brown Trout (Salmo trutta). Due to their exceptionally large size, Ferox Trout are highly sought after by anglers while their life-history strategy, which includes delayed maturation, multiphasic growth and extended longevity, is of interest to ecological and evolutionary modelers. However, despite their recreational and theoretical importance, little is known about the typical abundance of Ferox Trout. Methods. To rectify this situation a 16 year angling-based mark-recapture study was conducted on Loch Rannoch, which at 19 km2 is one of the largest lakes in the United Kingdom. Results. A hierarchical Bayesian Jolly-Seber analysis of the data suggest that if individual differences in catchability are negligible the population of Ferox Trout in Loch Rannoch in 2009 was approximately 71 fish. The results also suggest that a single, often unaccompanied, highly-experienced angler was able to catch roughly 8% of the available fish on an annual basis. Discussion. It is recommended that anglers adopt a precautionary approach and release all trout with a fork length ≥400 mm caught by trolling in Loch Rannoch. There is an urgent need to assess the status of Ferox Trout in other lakes. Subjects Aquaculture, Fisheries and Fish Science, Conservation Biology, Ecology, Statistics Submitted 11 May 2016 Accepted 3 October 2016 Keywords Survival, Hierarchical, Bayesian, Exploitation, Jolly-Seber, Abundance, Ferox Trout, Published 1 November 2016 Brown Trout, Piscivorous Corresponding author Joseph L.
    [Show full text]
  • An Analysis of Brown Trout (Salmo Trutta, L.1758) Growth and Diet in Wester Ross, Scotland
    BSc. HONOURS DEGREE IN Biosciences Trophic Status and Ontogeny: An Analysis of Brown Trout (Salmo trutta, L.1758) Growth and Diet in Wester Ross, Scotland Sara Mamo: M00209355 Department of Health and Social Sciences Supervisor: Dr. Stephen Kett 2013 1 Disclaimer This is an undergraduate student project. Views expressed and contents presented in these projects are those of students ONLY. Module leaders, project supervisors, the Natural Sciences Department and Middlesex University are not responsible for any of the views or contents in these projects. 2 Contents Page number Declaration………………………………………………….……………………………………………….............................I Abstract……………………………………………………..…………………………………………………………………………….II Acknowledgment……………………………………………………..……………………………………………………….......III CHAPTER I: Introduction…………………………………..……………………………………………………………………….1 1.1 . Salmonids………………………………………………………………………………………………....................1 1.2 . Trout diet and feeding behaviour…………………………………………………………………………….….2 1.3 . Food supply and growth of trout……………………………………………………………………………..….4 1.4 . Age and growth determination…………………………………………………………………………………...5 1.5 . Plasticity and Genetic control of fish growth……………………………………………………………….8 1.6 . Predation and competition…………………………………………………………………….....................9 1.7 . Aims and objectives…………………………………………………………………………………………………….9 CHAPTER ll: Materials and methods……………………………………………………….……………………………………9 2.1. Study area…………………………………………………………………………………………………………………….9 2.2. Fish diet analysis (gut contents)…………………………………………………………………………………..11
    [Show full text]
  • Morphological and Genetic Concordance of Cutthroat Trout Diversification from Western North America
    Canadian Journal of Zoology Morphological and genetic concordance of cutthroat trout diversification from western North America Journal: Canadian Journal of Zoology Manuscript ID cjz-2020-0106.R2 Manuscript Type: Article Date Submitted by the 27-Nov-2020 Author: Complete List of Authors: Keeley, Ernest; Idaho State University, Department of Biological Sciences Loxterman, Janet; Idaho State University, Department of Biological Sciences Matsaw, Sammy;Draft Idaho State University, Department of Biological Sciences Njoroge, Zacharia; Idaho State University, Department of Biological Sciences Seiler, Meredith; Idaho State University, Department of Biological Sciences Seiler, Steven; Idaho State University, Department of Biological Sciences Is your manuscript invited for consideration in a Special Not applicable (regular submission) Issue?: MORPHOLOGY < Discipline, native distribution, phenotype, diversity, Keyword: intraspecific variation, cutthroat trout, Oncorhynchus clarkii © The Author(s) or their Institution(s) Page 1 of 42 Canadian Journal of Zoology 1 Morphological and genetic concordance of cutthroat trout diversification from western 2 North America 3 4 5 6 7 8 Ernest R. Keeley, Janet L. Loxterman, Sammy L. Matsaw, Zacharia M. Njoroge, Meredith B. 9 Seiler, and Steven M. Seiler 10 11 Draft 12 13 14 15 16 17 18 19 E.R. Keeley, J.L Loxterman, S.L. Matsaw, and Z. M. Njoroge. Department of Biological 20 Sciences, Stop 8007, Idaho State University, Pocatello, ID 83209, USA. 21 M.B. Seiler and S.M. Seiler. Department of Biology, Lock Haven University, Lock Haven, PA 22 17745, USA. 23 Corresponding Author: Ernest Keeley (email: [email protected]). 1 © The Author(s) or their Institution(s) Canadian Journal of Zoology Page 2 of 42 24 Abstract 25 The cutthroat trout, Oncorhynchus clarkii (Richardson, 1836), is one of the most widely 26 distributed species of freshwater fish in western North America.
    [Show full text]
  • Anadromy, Potamodromy and Residency in Brown Trout Salmo Trutta: the Role of Genes and the Environment
    Received: 13 March 2019 Accepted: 9 May 2019 DOI: 10.1111/jfb.14005 REVIEW PAPER FISH Anadromy, potamodromy and residency in brown trout Salmo trutta: the role of genes and the environment Andrew Ferguson1 | Thomas E. Reed2 | Tom F. Cross2 | Philip McGinnity2 | Paulo A. Prodöhl1 1School of Biological Sciences, Queen’s University Belfast, Belfast, UK Abstract 2School of Biological, Earth and Environmental Brown trout Salmo trutta is endemic to Europe, western Asia and north-western Sciences, University College Cork, Cork, Africa; it is a prominent member of freshwater and coastal marine fish faunas. The Ireland species shows two resident (river-resident, lake-resident) and three main facultative Correspondence migratory life histories (downstream–upstream within a river system, fluvial–adfluvial Paulo Prodöhl, Institute for Global Food Security, School of Biological Sciences, potamodromous; to and from a lake, lacustrine–adfluvial (inlet) or allacustrine (outlet) ’ Queen s University Belfast, Belfast BT7 1NN, potamodromous; to and from the sea, anadromous). River-residency v. migration is a Nothern Ireland, UK. Email: [email protected] balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Funding information T.E.R. was funded by an ERC Starting Grant Fluvial–adfluvial migration usually has less feeding improvement, but less mortality (639192-ALH) and an SFI ERC Support Award. risk, than lacustrine–adfluvial or allacustrine and anadromous, but the latter vary P.McG., P.A.P. and T.E.R. were supported in part by Grants from Science Foundation among catchments as to which is favoured.
    [Show full text]
  • (Salmo Trutta) in Loch Rannoch, Scotland
    bioRxiv preprint doi: https://doi.org/10.1101/029801; this version posted January 27, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Low Abundance and High Catchability of Large Piscivorous Ferox Trout (Salmo trutta) in Loch Rannoch, Scotland Alastair Thorne1, Alasdair I. MacDonald1, Joseph L. Thorley2,* 1 Marine Scotland, Freshwater Laboratory, Pitlochry, Perthshire, Scotland 2 Poisson Consulting Ltd., Nelson, British Columbia, Canada * [email protected] Abstract Ferox Trout are large, long-lived piscivorous Brown Trout (Salmo trutta). Due to their exceptionally large size, Ferox Trout are highly sought after by anglers while their life-history strategy, which includes delayed maturation, multiphasic growth and extended longevity, is of interest to ecological and evolutionary modelers. However, despite their recreational and theoretical importance, little is known about the typical abundance of Ferox Trout or their vulnerability to angling. To rectify this situation a 16 year mark-recapture study was conducted on Loch Rannoch, which at 19 km2 is one of the largest lakes in the United Kingdom. A hierarchical Bayesian Jolly-Seber analysis of the data indicates that in 2009 the population of Ferox Trout in Loch Rannoch was approximately 69 individuals. The results also indicate that a single, often unaccompanied, highly-experienced angler was able to catch roughly 8% of the available fish on an annual basis. It is recommended that anglers adopt a precautionary approach and release all trout with a fork length ≥ 400 mm caught by trolling in Loch Rannoch.
    [Show full text]
  • Anadromy, Potamodromy and Residency in Brown Trout Salmo Trutta: the Role of Genes and the Environment
    Anadromy, potamodromy and residency in brown trout Salmo trutta: the role of genes and the environment Ferguson, A., Reed, T. E., Cross, T. F., McGinnity, P., & Prodohl, P. A. (2019). Anadromy, potamodromy and residency in brown trout Salmo trutta: the role of genes and the environment. Journal of Fish Biology. https://doi.org/10.1111/jfb.14005 Published in: Journal of Fish Biology Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2019 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:30. Sep. 2021 Received: 13 March 2019 Accepted: 9 May 2019 DOI: 10.1111/jfb.14005 REVIEW PAPER FISH Anadromy, potamodromy and residency in brown trout Salmo trutta: the role of genes and the environment Andrew Ferguson1 | Thomas E.
    [Show full text]
  • Contrasting Growth Trajectories in Brown Trout (Salmo Trutta) Ecotypes Exhibiting Contrasting Life History Strategies Hughes, M
    Alternative routes to piscivory: Contrasting growth trajectories in brown trout (Salmo trutta) ecotypes exhibiting contrasting life history strategies Hughes, M. R., Hooker, O. E., Van Leeuwen, T. E., Kettle-White, A., Thorne, A., Prodöhl, P., & Adams, C. E. (2018). Alternative routes to piscivory: Contrasting growth trajectories in brown trout (Salmo trutta) ecotypes exhibiting contrasting life history strategies. ECOLOGY OF FRESHWATER FISH. https://doi.org/10.1111/eff.12421 Published in: ECOLOGY OF FRESHWATER FISH Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:24. Sep. 2021 1 Alternative routes to piscivory: Contrasting growth trajectories in brown trout (Salmo 2 trutta) ecotypes exhibiting contrasting life history strategies 3 4 Martin R.
    [Show full text]
  • 1 Title 1 Environmental Influences of Life History Strategies
    1 1 Title 2 Environmental influences of life history strategies in partial anadromous brown trout (Salmo 3 trutta, Salmonidae) 4 5 Running title 6 Life history of brown trout 7 8 Authors 9 Marie Nevoux1,2, Bengt Finstad3, Jan Grimsrud Davidsen4, Ross Finlay5, Quentin Josset6,2, 5 7 8 9 10 10 Russell Poole , Johan Höjesjö , Kim Aarestrup , Lo Persson , Oula Tolvanen & Bror 11 Jonsson11 12 13 Affiliations 14 1UMR ESE, Ecology and Ecosystem Health, Agrocampus Ouest, INRA, Rennes, France 15 2Management of Diadromous Fish in their Environment, AFB, INRA, Agrocampus Ouest 16 Université de Pau et des Pays de l’Adour UPPA, Rennes, France 17 3Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, N-7485 Trondheim, 18 Norway 19 4NTNU University Museum, Department of Natural History, N-7491 Trondheim, Norway 20 5Marine Institute, Furnace, Newport, Co. Mayo, Ireland 21 6DRED, Direction de la Recherche, de l’Expertise et des données, AFB, Observatoire Long 22 Terme de la Bresle, rue des Fontaines 76260 Eu, France 23 7Department of Biological and Environmental Sciences, University of Gothenburg, 24 Gothenburg, Sweden 25 8Technical University of Denmark, National Institute of Aquatic Resources 2 26 Vejlsoevej 39, DK-8600 Silkeborg, Denmark 27 9Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural 28 Sciences, Umeå, Sweden 29 10 The Water Protection Association of the River Vantaa and Helsinki Region, 30 Ratamestarinkatu 7 b (3. krs), 00520 Helsinki, Finland 31 11Norwegian Institute for Nature Research, Department of Landscape Ecology, Gaustadalléen 32 21, 0349 Oslo, Norway 33 3 34 Abstract 35 This paper reviews the life history of brown trout (Salmo trutta, Salmonidae) and factors 36 influencing decisions to migrate.
    [Show full text]
  • An Investigation of Arctic Char (Salvelinus Alpinus) and Lake Trout (Salvelinus Namaycush) in Lake Clark National Park, Alaska
    An Investigation of Arctic Char (Salvelinus alpinus) and Lake Trout (Salvelinus namaycush) in Lake Clark National Park, Alaska A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science with a Major in Fishery Resources in the College of Graduate Studies University of Idaho by Ryan Kreiner November 7, 2006 Major Professor: Dennis Scarnecchia, Ph.D. ii AUTHORIZATION TO SUBMIT THESIS This thesis of Ryan Kreiner, submitted for the degree of Master of Science with a major in Fishery Resources and titled “An Investigation of Two Resident Fish Species in Lake Clark National Park, Alaska: Arctic Char (Salvelinus alpinus) and Lake Trout (Salvelinus namaycush),” has been reviewed in final form. Permission, as indicated by the signatures and dates given below, is now granted to submit final copies to the College of Graduate Studies for approval. Major Professor _____________________________Date______________ Dennis Scarnecchia, Ph.D. Committee Members _____________________________Date______________ Katy Kavanagh, Ph.D. _____________________________Date______________ Chris Peery, Ph.D. _____________________________Date______________ Carol Ann Woody, Ph.D. Department Administrator _____________________________Date______________ Kerry Reese, Ph.D. Discipline's College Dean _____________________________Date_______________ Steven Daley Laursen, Ph.D. Final Approval and Acceptance by the College of Graduate Studies ______________________________Date_______________ Margrit von Braun, Ph.D. iii ABSTRACT Anadromous sockeye salmon (Oncorhynchus nerka) are a keystone species for freshwater ecosystems, and in Lake Clark National Park, Alaska (LCNP), declines in salmon runs over the past 25 years have raised concerns about the health of resident fish species. Data on resident arctic char (Salvelinus alpinus) and lake trout (Salvelinus namaycush) growth and condition from six lakes within LCNP were collected in 2004 and compared with an historical information collected by Russell (1980) during the summers of 1978-79.
    [Show full text]
  • Growth Genes Are Implicated in the Evolutionary Divergence of Sympatric Piscivorous and Insectivorous Rainbow Trout (Oncorhynchus Mykiss) Jared A
    Grummer et al. BMC Ecol Evo (2021) 21:63 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01795-9 RESEARCH Open Access Growth genes are implicated in the evolutionary divergence of sympatric piscivorous and insectivorous rainbow trout (Oncorhynchus mykiss) Jared A. Grummer1*, Michael C. Whitlock1, Patricia M. Schulte1 and Eric B. Taylor1,2 Abstract Background: Identifying ecologically signifcant phenotypic traits and the genomic mechanisms that underly them are crucial steps in understanding traits associated with population divergence. We used genome-wide data to identify genomic regions associated with key traits that distinguish two ecomorphs of rainbow trout (Oncorhyn- chus mykiss)—insectivores and piscivores—that coexist for the non-breeding portion of the year in Kootenay Lake, southeastern British Columbia. “Gerrards” are large-bodied, rapidly growing piscivores with high metabolic rates that spawn north of Kootenay Lake in the Lardeau River, in contrast to the insectivorous populations that are on average smaller in body size, with lower growth and metabolic rates, mainly forage on aquatic insects, and spawn in tributaries immediately surrounding Kootenay Lake. We used pool-seq data representing ~ 60% of the genome and 80 fsh per population to assess the level of genomic divergence between ecomorphs and to identify and interrogate loci that may play functional or selective roles in their divergence. Results: Genomic divergence was high between sympatric insectivores and piscivores ( FST 0.188), and in fact = higher than between insectivorous populations from Kootenay Lake and the Blackwater River ( FST 0.159) that are = > 500 km apart. A window-based FST analysis did not reveal “islands” of genomic diferentiation; however, the window with highest FST estimate did include a gene associated with insulin secretion.
    [Show full text]