Systemic Analysis of the DNA Replication Regulators Origin Recognition Complex in Lung Adenocarcinomas Identifes Prognostic and Expression Signifcance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ORC3 (1D6): Sc-23888
SANTA CRUZ BIOTECHNOLOGY, INC. ORC3 (1D6): sc-23888 BACKGROUND STORAGE The initiation of DNA replication is a multi-step process that depends on the Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of formation of pre-replication complexes, which trigger initiation. Among the shipment. Non-hazardous. No MSDS required. proteins required for establishing these complexes are the origin recognition complex (ORC) proteins. ORC proteins bind specifically to origins of replication DATA where they serve as scaffold for the assembly of additional initiation factors. A B Human ORC subunits 1-6 are expressed in the nucleus of proliferating cells AB C DE and tissues, such as the testis. ORC1 and ORC2 are both expressed at equiv- 113 K – 89 K – alent concentrations throughout the cell cycle; however, only ORC2 remains < ORC3 stably bound to chromatin. ORC4 and ORC6 are also expressed constantly throughout the cell cycle. ORC2, ORC3, ORC4 and ORC5 form a core complex 49 K – upon which ORC6 and ORC1 assemble. The formation of this core complex suggests that ORC proteins play a crucial role in the G1-S transition in mam- malian cells. ORC3 (1D6): sc-23888. Western blot analysis of ORC3 ORC3 (1D6): sc-23888. Immunoperoxidase staining of expression in HeLa (A), Raji (B), Jurkat (C), WI-38 (D) formalin fixed, paraffin-embedded human ovary tissue CHROMOSOMAL LOCATION and A-549 (E) whole cell lysates. showing nuclear localization (A,B). Genetic locus: ORC3L (human) mapping to 6q15. SELECT PRODUCT CITATIONS SOURCE 1. Braden, W.A., et al. 2006. Distinct action of the retinoblastoma pathway ORC3 (1D6) is a rat monoclonal antibody raised against partially purified on the DNA replication machinery defines specific roles for cyclin-depen- His-tagged bacterially expressed fusion protein corresponding to human ORC3. -
Chromosome Integrity in Saccharomyces Cerevisiae: the Interplay of DNA Replication Initiation Factors, Elongation Factors, and Origins
Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Chromosome integrity in Saccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins Dongli Huang1,2 and Douglas Koshland1,3 1Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210, USA; 2Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218, USA The integrity of chromosomes during cell division is ensured by both trans-acting factors and cis-acting chromosomal sites. Failure of either these chromosome integrity determinants (CIDs) can cause chromosomes to be broken and subsequently misrepaired to form gross chromosomal rearrangements (GCRs). We developed a simple and rapid assay for GCRs, exploiting yeast artificial chromosomes (YACs) in Saccharomyces cerevisiae. We used this assay to screen a genome-wide pool of mutants for elevated rates of GCR. The analyses of these mutants define new CIDs (Orc3p, Orc5p, and Ycs4p) and new pathways required for chromosome integrity in DNA replication elongation (Dpb11p), DNA replication initiation (Orc3p and Orc5p), and mitotic condensation (Ycs4p). We show that the chromosome integrity function of Orc5p is associated with its ATP-binding motif and is distinct from its function in controlling the efficiency of initiation of DNA replication. Finally, we used our YAC assay to assess the interplay of trans and cis factors in chromosome integrity. Increasing the number of origins on a YAC suppresses GCR formation in our dpb11 mutant but enhances it in our orc mutants. This result provides potential insights into the counterbalancing selective pressures necessary for the evolution of origin density on chromosomes. -
Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice1[W][OA]
Genome Analysis Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice1[W][OA] Randall W. Shultz2, Vinaya M. Tatineni, Linda Hanley-Bowdoin*, and William F. Thompson Department of Plant Biology (R.W.S., W.F.T.), Department of Statistical Genetics and Bioinformatics (V.M.T.), and Department of Molecular and Structural Biochemistry (L.H.-B.), North Carolina State University, Raleigh, North Carolina 27695 Core DNA replication proteins mediate the initiation, elongation, and Okazaki fragment maturation functions of DNA replication. Although this process is generally conserved in eukaryotes, important differences in the molecular architecture of the DNA replication machine and the function of individual subunits have been reported in various model systems. We have combined genome-wide bioinformatic analyses of Arabidopsis (Arabidopsis thaliana)andrice(Oryza sativa)with published experimental data to provide a comprehensive view of the core DNA replication machinery in plants. Many components identified in this analysis have not been studied previously in plant systems, including the GINS (go ichi ni san) complex (PSF1, PSF2, PSF3, and SLD5), MCM8, MCM9, MCM10, NOC3, POLA2, POLA3, POLA4, POLD3, POLD4, and RNASEH2. Our results indicate that the core DNA replication machinery from plants is more similar to vertebrates than single-celled yeasts (Saccharomyces cerevisiae), suggesting that animal models may be more relevant to plant systems. However, we also uncovered some important differences between plants and vertebrate machinery. For example, we did not identify geminin or RNASEH1 genes in plants. Our analyses also indicate that plants may be unique among eukaryotes in that they have multiple copies of numerous core DNA replication genes. -
Human Origin Recognition Complex Is Essential for HP1 Binding to Chromatin and Heterochromatin Organization
Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization Supriya G. Prasantha,b,1, Zhen Shenb, Kannanganattu V. Prasanthb, and Bruce Stillmana,1 aCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and bDepartment of Cell and Developmental Biology, University of Illinois, Urbana- Champaign, IL 61801 Contributed by Bruce Stillman, July 9, 2010 (sent for review April 10, 2010) The origin recognition complex (ORC) is a DNA replication initiator (15, 22, 23), cytokinesis in human cells and Drosophila (24, 25), protein also known to be involved in diverse cellular functions regulation of dendrite development in postmitotic neurons (26), including gene silencing, sister chromatid cohesion, telomere bi- and neural transmission and synaptic function in Drosophila (27) ology, heterochromatin localization, centromere and centrosome (see reviews in refs. 28, 29). activity, and cytokinesis. We show that, in human cells, multiple ORC The human Orc2 subunit is associated with heterochromatin in subunits associate with hetereochromatin protein 1 (HP1) α-and a cell cycle-dependent manner, being present only at the cen- HP1β-containing heterochromatic foci. Fluorescent bleaching studies tromeres during late G2 and mitosis (15, 30). Furthermore, Orc2 indicate that multiple subcomplexes of ORC exist at heterochroma- biochemically interacts indirectly with the heterochromatin protein tin, with Orc1 stably associating with heterochromatin in G1 phase, 1 (HP1) in mammalian, Drosophila,andXenopus cells (14, 15, 31, whereas other ORC subunits have transient interactions throughout 32). Depletion of Orc2 or Orc3 in HeLa cells results in a mitotic the cell-division cycle. Both Orc1 and Orc3 directly bind to HP1α,and arrest with abnormally condensed chromosomes, lack of chromo- two domains of Orc3, a coiled-coil domain and a mod-interacting some alignment at the metaphase plate, and spindle defects (15). -
Histone H3.1 (Human) Cell-Based ELISA Kit
Histone H3.1 (Human) Cell-Based ELISA Kit Catalog # : KA2761 規格 : [ 1 Kit ] List All Specification Application Image Product Histone H3.1 (Human) Cell-Based ELISA Kit is an indirect enzyme-linked Qualitative Description: immunoassay for qualitative determination of Histone H3 expression in cultured cells. Reactivity: Human, Mouse, Rat Storage Store the kit at 4°C. Instruction: Protocol: Protocol Download Suitable Attached Cell, Loosely Attached Cell, Suspension Cell Sample: Label: HRP-conjugated Detection Colorimetric Method: Regulation For research use only (RUO) Status: Datasheet: Download Applications Qualitative HIST1H3A HIST1H3D HIST1H3C HIST1H3E HIST1H3I HIST1H3G HIST1H3J HIST1H3H HIST1H3B HIST1H3F Gene Information Entrez GeneID: 8350 Protein P68431 Accession#: Gene Name: HIST1H3A Gene Alias: H3/A,H3FA Gene histone cluster 1, H3a Description: Omim ID: 602810 Gene Ontology: Hyperlink Gene Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a Page 1 of 6 2021/6/18 nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6p22-p21.3. [provided by RefSeq Other H3 histone family, member A,histone 1, H3a Designations: Gene Information Entrez GeneID: 8351 Protein P68431 Accession#: Gene Name: HIST1H3D Gene Alias: H3/b,H3FB Gene histone cluster 1, H3d Description: Omim ID: 602811 Gene Ontology: Hyperlink Gene Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. -
Rap1-Mediated Chromatin and Gene Expression Changes at Senescence
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Rap1-Mediated Chromatin And Gene Expression Changes At Senescence Shufei Song University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons, and the Cell Biology Commons Recommended Citation Song, Shufei, "Rap1-Mediated Chromatin And Gene Expression Changes At Senescence" (2019). Publicly Accessible Penn Dissertations. 3557. https://repository.upenn.edu/edissertations/3557 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3557 For more information, please contact [email protected]. Rap1-Mediated Chromatin And Gene Expression Changes At Senescence Abstract ABSTRACT RAP1-MEDIATED CHROMATIN AND GENE EXPRESSION CHANGES AT SENESCENCE The telomeric protein Rap1 has been extensively studied for its roles as a transcriptional activator and repressor. Indeed, in both yeast and mammals, Rap1 is known to bind throughout the genome to reorganize chromatin and regulate gene transcription. Previously, our lab published evidence that Rap1 plays important roles in cellular senescence. In telomerase-deficient S. cerevisiae, Rap1 relocalizes from telomeres and subtelomeres to new Rap1 target at senescence (NRTS). This leads to two types of histone loss: Rap1 lowers global histone levels by repressing histone gene transcription and it also results in local nucleosome displacement at the promoters of the activated NRTS. Here, I examine mechanisms of site-specific histone loss by presenting evidence that Rap1 can directly interact with histone tetramers H3/H4, and map this interaction to a three-amino-acid-patch within the DNA binding domain. Functional studies are performed in vivo using a mutant form of Rap1 with weakened histone interactions, and deficient promoter clearance as well as blunted gene activation is observed, indicating that direct Rap1-H3/H4 interactions are involved in nucleosome displacement. -
The Expression and Nuclear Deposition of Histone H3.1 In
Journal of Reproduction and Development, Vol. 58, No 5, 2012 —Original Article— The Expression and Nuclear Deposition of Histone H3.1 in Murine Oocytes and Preimplantation Embryos Machika KAWAMURA1), Tomohiko AKIYAMA1)#, Satoshi TSUKAmoto2), Masataka G. SUZUKI1) and Fugaku AokI1) 1)Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan 2)Laboratory of Animal and Genome Science Section, National Institute of Radiological Sciences, Chiba 263-8555, Japan #Present: Laboratory of Genetics, NIH Biomedical Research Center, Baltimore, MD 21224, U.S.A. Abstract. Differentiated oocytes acquire totipotency through fertilization. During this transition, genome-wide chromatin remodeling occurs, which leads to change in gene expression. However, the mechanism that underlies this global change in chromatin structure has not been fully elucidated. Histone variants play a key role in defining chromatin structure and are implicated in inheritance of epigenetic information. In this study, we analyzed the nuclear localization and expression of H3.1 to elucidate the role of this histone variant in chromatin remodeling during oogenesis and preimplantation development. Analysis using Flag-tagged H3.1 transgenic mice revealed that Flag-H3.1 was not present in differentiated oocytes or early preimplantation embryos before the morula stage, although Flag-H3.1 mRNA was expressed at all stages examined. In addition, the expression levels of endogenous H3.1 genes were low at the stages where H3.1 was not present in chromatin. These results suggest that H3.1 is not incorporated into chromatin due to the inactivity of the histone chaperone and low mRNA expression level. The significance of the dynamics of H3.1 is evaluated in terms of chromatin remodeling that takes place during development. -
A Free-Living Protist That Lacks Canonical Eukaryotic DNA Replication and Segregation Systems
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435266; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems 2 Dayana E. Salas-Leiva1, Eelco C. Tromer2,3, Bruce A. Curtis1, Jon Jerlström-Hultqvist1, Martin 3 Kolisko4, Zhenzhen Yi5, Joan S. Salas-Leiva6, Lucie Gallot-Lavallée1, Geert J. P. L. Kops3, John M. 4 Archibald1, Alastair G. B. Simpson7 and Andrew J. Roger1* 5 1Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 6 Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 2 7 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 3Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) 9 and University Medical Centre Utrecht, Utrecht, The Netherlands 10 4Institute of Parasitology Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic 11 5Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, 12 South China Normal University, Guangzhou 510631, China 13 6CONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y 14 energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., México 15 7Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 16 Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 17 *corresponding author: [email protected] 18 D.E.S-L ORCID iD: 0000-0003-2356-3351 19 E.C.T. -
High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota
cells Article High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota David Dao 1, Bingqing Xie 2,3 , Urooba Nadeem 4, Jason Xiao 1, Asad Movahedan 5, Mark D’Souza 2, Vanessa Leone 6,7 , Seenu M. Hariprasad 1, Eugene B. Chang 7, Dinanath Sulakhe 3 and Dimitra Skondra 1,* 1 Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; [email protected] (D.D.); [email protected] (J.X.); [email protected] (S.M.H.) 2 Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; [email protected] (B.X.); [email protected] (M.D.) 3 Department of Medicine, University of Chicago, Chicago, IL 60637, USA; [email protected] 4 Department of Pathology, University of Chicago, Chicago, IL 60637, USA; [email protected] 5 Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06437, USA; [email protected] 6 Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, WI 53706, USA; [email protected] 7 Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA; [email protected] * Correspondence: [email protected] Abstract: The relationship between retinal disease, diet, and the gut microbiome has shown increasing importance over recent years. In particular, high-fat diets (HFDs) are associated with development and progression of several retinal diseases, including age-related macular degeneration (AMD) and Citation: Dao, D.; Xie, B.; Nadeem, diabetic retinopathy. However, the complex, overlapping interactions between diet, gut microbiome, U.; Xiao, J.; Movahedan, A.; D’Souza, and retinal homeostasis are poorly understood. -
A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response
A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response Alice Lebreton, Goran Lakisic, Viviana Job, Lauriane Fritsch, To Nam Tham, Ana Camejo, Pierre-Jean Matteï, Béatrice Regnault, Marie-Anne Nahori, Didier Cabanes, et al. To cite this version: Alice Lebreton, Goran Lakisic, Viviana Job, Lauriane Fritsch, To Nam Tham, et al.. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science, American Association for the Advancement of Science, 2011, 331 (6022), pp.1319-21. 10.1126/sci- ence.1200120. cea-00819299 HAL Id: cea-00819299 https://hal-cea.archives-ouvertes.fr/cea-00819299 Submitted on 26 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lebreton et al. Science 2011 doi:10.1126/science.1200120 A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response Alice Lebreton1,2,3, Goran Lakisic4, Viviana Job5, Lauriane Fritsch6, To Nam Tham1,2,3, Ana Camejo7, Pierre-Jean Matteï5, Béatrice Regnault8, Marie-Anne Nahori1,2,3, Didier Cabanes7, Alexis Gautreau4, Slimane Ait-Si-Ali6, Andréa Dessen5, Pascale Cossart1,2,3* and Hélène Bierne1,2,3* 1. -
Genetic Profiling of Pediatric Brain Gliomas
Universidade de Lisboa Faculdade de Medicina de Lisboa Genetic Profiling of Pediatric Brain Gliomas Laura Passos Morgado Franco Frazão Orientadores: Doutora Maria Lúcia Primo Nobre de Oliveira Roque Professor Doutor José Guilherme de Brito Cortez Pimentel Dissertação especialmente elaborada para obtenção do grau de Mestre em Neurociências 2016 Universidade de Lisboa Faculdade de Medicina de Lisboa Genetic Profiling of Pediatric Brain Gliomas Laura Passos Morgado Franco Frazão Orientadores: Doutora Maria Lúcia Primo Nobre de Oliveira Roque Professor Doutor José Guilherme de Brito Cortez Pimentel Dissertação especialmente elaborada para obtenção do grau de Mestre em Neurociências 2016 A impressão desta dissertação foi aprovada pelo Conselho Cientifico da Faculdade de Medicina de Lisboa em reunião de 22 de Março de 2016 Agradecimentos À Doutora Lúcia Roque, pela oportunidade, pelo conhecimento transmitido, pela disponibilidade e pela paciência. Ao Professor Doutor José Pimentel pela disponibilidade e interesse no trabalho. Também pela classificação histológica dos tumores e pela cedência dos mesmos, sem os quais este trabalho não seria possível. À Doutora Carmo Martins, pela disponibilidade constante, pelo apoio e pelo que me ensinou. Ao Dr. Vasco e à Joaquina pelo acompanhamento e ajuda no laboratório. À Doutora Ana Rita Silvestre pela ajuda na obtenção dos tumores e pelo interesse que sempre demonstrou sobre o trabalho. À Doutora Manuela Mafra pela classificação histológica de alguns tumores. Ao Dr. Duarte Salgado e à Dra. Sofia Nunes por terem cedido os dados clínicos dos pacientes, pela disponibilidade e interesse no trabalho. Ao Dr. José Miguens, Dra. Cláudia Faria, Dr. Amets Sagarribay e Dr. Mário Matos por de forma indirecta terem participado neste trabalho, cedendo amostras de tumores e dados clínicos dos pacientes. -
Histone Variants and Their Post-Translational Modifications in Primary Human Fat Cells
Linköping University Post Print Histone Variants and Their Post-Translational Modifications in Primary Human Fat Cells Asa Jufvas, Peter Strålfors and Alexander Vener N.B.: When citing this work, cite the original article. Original Publication: Asa Jufvas, Peter Strålfors and Alexander Vener, Histone Variants and Their Post- Translational Modifications in Primary Human Fat Cells, 2011, PLOS ONE, (6), 1. http://dx.doi.org/10.1371/journal.pone.0015960 Licensee: Public Library of Science (PLoS) http://www.plos.org/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-65933 Histone Variants and Their Post-Translational Modifications in Primary Human Fat Cells A˚ sa Jufvas, Peter Stra˚lfors, Alexander V. Vener* Department of Clinical and Experimental Medicine, Linko¨ping University, Linko¨ping, Sweden Abstract Epigenetic changes related to human disease cannot be fully addressed by studies of cells from cultures or from other mammals. We isolated human fat cells from subcutaneous abdominal fat tissue of female subjects and extracted histones from either purified nuclei or intact cells. Direct acid extraction of whole adipocytes was more efficient, yielding about 100 mg of protein with histone content of 60% –70% from 10 mL of fat cells. Differential proteolysis of the protein extracts by trypsin or ArgC-protease followed by nanoLC/MS/MS with alternating CID/ETD peptide sequencing identified 19 histone variants. Four variants were found at the protein level for the first time; particularly HIST2H4B was identified besides the only H4 isoform earlier known to be expressed in humans. Three of the found H2A potentially organize small nucleosomes in transcriptionally active chromatin, while two H2AFY variants inactivate X chromosome in female cells.