Genetic Profiling of Pediatric Brain Gliomas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Systemic Analysis of the DNA Replication Regulators Origin Recognition Complex in Lung Adenocarcinomas Identifes Prognostic and Expression Signifcance
Systemic Analysis of the DNA Replication Regulators Origin Recognition Complex in Lung Adenocarcinomas Identies Prognostic and Expression Signicance Juan Chen University of South China Juan Zou University of South China Juan Zeng University of South China Tian Zeng University of South China Qi-hao Hu University of South China Jun-hui Bai University of South China Min Tang University of South China Yu-kun Li ( [email protected] ) University of South China https://orcid.org/0000-0002-8517-9075 Primary research Keywords: lung adenocarcinomas, ORC complex, public databases, prognostic value, comprehensive bioinformatics Posted Date: May 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-487176/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background: Origin recognition complex (ORC) 1, ORC2, ORC3, ORC4, ORC5 and ORC6, form a replication- initiator complex to mediate DNA replication, which play a key role in carcinogenesis, while their role in lung adenocarcinomas (LUAD) remains poorly understood. Methods: We conrmed the transcriptional and post-transcriptional levels, DNA alteration, DNA methylation, miRNA network, protein structure, PPI network, functional enrichment, immune inltration and prognostic value of ORCs in LUAD based on Oncomine, GEPIA, HPA, cBioportal, TCGA, GeneMANIA, Metascape, KM-plot, GENT2, and TIMER database. Results: ORC mRNA and protein were both enhanced obviously based on Oncomine, Ualcan, GEPIA, TCGA and HPA database. Furthermore, ORC1 and ORC6 have signicant prognostic values for LUAD patients based on GEPIA database. Protein structure, PPI network, functional enrichment and immune inltration analysis indicated that ORC complex cooperatively accelerate the LUAD development by promoting DNA replication, cellular senescence and metabolic process. -
Histone H3.1 (Human) Cell-Based ELISA Kit
Histone H3.1 (Human) Cell-Based ELISA Kit Catalog # : KA2761 規格 : [ 1 Kit ] List All Specification Application Image Product Histone H3.1 (Human) Cell-Based ELISA Kit is an indirect enzyme-linked Qualitative Description: immunoassay for qualitative determination of Histone H3 expression in cultured cells. Reactivity: Human, Mouse, Rat Storage Store the kit at 4°C. Instruction: Protocol: Protocol Download Suitable Attached Cell, Loosely Attached Cell, Suspension Cell Sample: Label: HRP-conjugated Detection Colorimetric Method: Regulation For research use only (RUO) Status: Datasheet: Download Applications Qualitative HIST1H3A HIST1H3D HIST1H3C HIST1H3E HIST1H3I HIST1H3G HIST1H3J HIST1H3H HIST1H3B HIST1H3F Gene Information Entrez GeneID: 8350 Protein P68431 Accession#: Gene Name: HIST1H3A Gene Alias: H3/A,H3FA Gene histone cluster 1, H3a Description: Omim ID: 602810 Gene Ontology: Hyperlink Gene Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a Page 1 of 6 2021/6/18 nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6p22-p21.3. [provided by RefSeq Other H3 histone family, member A,histone 1, H3a Designations: Gene Information Entrez GeneID: 8351 Protein P68431 Accession#: Gene Name: HIST1H3D Gene Alias: H3/b,H3FB Gene histone cluster 1, H3d Description: Omim ID: 602811 Gene Ontology: Hyperlink Gene Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. -
Rap1-Mediated Chromatin and Gene Expression Changes at Senescence
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Rap1-Mediated Chromatin And Gene Expression Changes At Senescence Shufei Song University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons, and the Cell Biology Commons Recommended Citation Song, Shufei, "Rap1-Mediated Chromatin And Gene Expression Changes At Senescence" (2019). Publicly Accessible Penn Dissertations. 3557. https://repository.upenn.edu/edissertations/3557 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3557 For more information, please contact [email protected]. Rap1-Mediated Chromatin And Gene Expression Changes At Senescence Abstract ABSTRACT RAP1-MEDIATED CHROMATIN AND GENE EXPRESSION CHANGES AT SENESCENCE The telomeric protein Rap1 has been extensively studied for its roles as a transcriptional activator and repressor. Indeed, in both yeast and mammals, Rap1 is known to bind throughout the genome to reorganize chromatin and regulate gene transcription. Previously, our lab published evidence that Rap1 plays important roles in cellular senescence. In telomerase-deficient S. cerevisiae, Rap1 relocalizes from telomeres and subtelomeres to new Rap1 target at senescence (NRTS). This leads to two types of histone loss: Rap1 lowers global histone levels by repressing histone gene transcription and it also results in local nucleosome displacement at the promoters of the activated NRTS. Here, I examine mechanisms of site-specific histone loss by presenting evidence that Rap1 can directly interact with histone tetramers H3/H4, and map this interaction to a three-amino-acid-patch within the DNA binding domain. Functional studies are performed in vivo using a mutant form of Rap1 with weakened histone interactions, and deficient promoter clearance as well as blunted gene activation is observed, indicating that direct Rap1-H3/H4 interactions are involved in nucleosome displacement. -
The Expression and Nuclear Deposition of Histone H3.1 In
Journal of Reproduction and Development, Vol. 58, No 5, 2012 —Original Article— The Expression and Nuclear Deposition of Histone H3.1 in Murine Oocytes and Preimplantation Embryos Machika KAWAMURA1), Tomohiko AKIYAMA1)#, Satoshi TSUKAmoto2), Masataka G. SUZUKI1) and Fugaku AokI1) 1)Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan 2)Laboratory of Animal and Genome Science Section, National Institute of Radiological Sciences, Chiba 263-8555, Japan #Present: Laboratory of Genetics, NIH Biomedical Research Center, Baltimore, MD 21224, U.S.A. Abstract. Differentiated oocytes acquire totipotency through fertilization. During this transition, genome-wide chromatin remodeling occurs, which leads to change in gene expression. However, the mechanism that underlies this global change in chromatin structure has not been fully elucidated. Histone variants play a key role in defining chromatin structure and are implicated in inheritance of epigenetic information. In this study, we analyzed the nuclear localization and expression of H3.1 to elucidate the role of this histone variant in chromatin remodeling during oogenesis and preimplantation development. Analysis using Flag-tagged H3.1 transgenic mice revealed that Flag-H3.1 was not present in differentiated oocytes or early preimplantation embryos before the morula stage, although Flag-H3.1 mRNA was expressed at all stages examined. In addition, the expression levels of endogenous H3.1 genes were low at the stages where H3.1 was not present in chromatin. These results suggest that H3.1 is not incorporated into chromatin due to the inactivity of the histone chaperone and low mRNA expression level. The significance of the dynamics of H3.1 is evaluated in terms of chromatin remodeling that takes place during development. -
High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota
cells Article High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota David Dao 1, Bingqing Xie 2,3 , Urooba Nadeem 4, Jason Xiao 1, Asad Movahedan 5, Mark D’Souza 2, Vanessa Leone 6,7 , Seenu M. Hariprasad 1, Eugene B. Chang 7, Dinanath Sulakhe 3 and Dimitra Skondra 1,* 1 Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; [email protected] (D.D.); [email protected] (J.X.); [email protected] (S.M.H.) 2 Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; [email protected] (B.X.); [email protected] (M.D.) 3 Department of Medicine, University of Chicago, Chicago, IL 60637, USA; [email protected] 4 Department of Pathology, University of Chicago, Chicago, IL 60637, USA; [email protected] 5 Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06437, USA; [email protected] 6 Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, WI 53706, USA; [email protected] 7 Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA; [email protected] * Correspondence: [email protected] Abstract: The relationship between retinal disease, diet, and the gut microbiome has shown increasing importance over recent years. In particular, high-fat diets (HFDs) are associated with development and progression of several retinal diseases, including age-related macular degeneration (AMD) and Citation: Dao, D.; Xie, B.; Nadeem, diabetic retinopathy. However, the complex, overlapping interactions between diet, gut microbiome, U.; Xiao, J.; Movahedan, A.; D’Souza, and retinal homeostasis are poorly understood. -
A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response
A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response Alice Lebreton, Goran Lakisic, Viviana Job, Lauriane Fritsch, To Nam Tham, Ana Camejo, Pierre-Jean Matteï, Béatrice Regnault, Marie-Anne Nahori, Didier Cabanes, et al. To cite this version: Alice Lebreton, Goran Lakisic, Viviana Job, Lauriane Fritsch, To Nam Tham, et al.. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science, American Association for the Advancement of Science, 2011, 331 (6022), pp.1319-21. 10.1126/sci- ence.1200120. cea-00819299 HAL Id: cea-00819299 https://hal-cea.archives-ouvertes.fr/cea-00819299 Submitted on 26 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lebreton et al. Science 2011 doi:10.1126/science.1200120 A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response Alice Lebreton1,2,3, Goran Lakisic4, Viviana Job5, Lauriane Fritsch6, To Nam Tham1,2,3, Ana Camejo7, Pierre-Jean Matteï5, Béatrice Regnault8, Marie-Anne Nahori1,2,3, Didier Cabanes7, Alexis Gautreau4, Slimane Ait-Si-Ali6, Andréa Dessen5, Pascale Cossart1,2,3* and Hélène Bierne1,2,3* 1. -
Histone Variants and Their Post-Translational Modifications in Primary Human Fat Cells
Linköping University Post Print Histone Variants and Their Post-Translational Modifications in Primary Human Fat Cells Asa Jufvas, Peter Strålfors and Alexander Vener N.B.: When citing this work, cite the original article. Original Publication: Asa Jufvas, Peter Strålfors and Alexander Vener, Histone Variants and Their Post- Translational Modifications in Primary Human Fat Cells, 2011, PLOS ONE, (6), 1. http://dx.doi.org/10.1371/journal.pone.0015960 Licensee: Public Library of Science (PLoS) http://www.plos.org/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-65933 Histone Variants and Their Post-Translational Modifications in Primary Human Fat Cells A˚ sa Jufvas, Peter Stra˚lfors, Alexander V. Vener* Department of Clinical and Experimental Medicine, Linko¨ping University, Linko¨ping, Sweden Abstract Epigenetic changes related to human disease cannot be fully addressed by studies of cells from cultures or from other mammals. We isolated human fat cells from subcutaneous abdominal fat tissue of female subjects and extracted histones from either purified nuclei or intact cells. Direct acid extraction of whole adipocytes was more efficient, yielding about 100 mg of protein with histone content of 60% –70% from 10 mL of fat cells. Differential proteolysis of the protein extracts by trypsin or ArgC-protease followed by nanoLC/MS/MS with alternating CID/ETD peptide sequencing identified 19 histone variants. Four variants were found at the protein level for the first time; particularly HIST2H4B was identified besides the only H4 isoform earlier known to be expressed in humans. Three of the found H2A potentially organize small nucleosomes in transcriptionally active chromatin, while two H2AFY variants inactivate X chromosome in female cells. -
Research Article Common Expression Quantitative Trait Loci Shared by Histone Genes
Hindawi International Journal of Genomics Volume 2017, Article ID 6202567, 14 pages https://doi.org/10.1155/2017/6202567 Research Article Common Expression Quantitative Trait Loci Shared by Histone Genes Hanseol Kim, Yujin Suh, and Chaeyoung Lee Department of Bioinformatics and Life Science, Soongsil University, Seoul, Republic of Korea Correspondence should be addressed to Chaeyoung Lee; [email protected] Received 29 May 2017; Revised 26 July 2017; Accepted 2 August 2017; Published 27 August 2017 Academic Editor: Marco Gerdol Copyright © 2017 Hanseol Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A genome-wide association study (GWAS) was conducted to examine expression quantitative trait loci (eQTLs) for histone genes. We examined common eQTLs for multiple histone genes in 373 European lymphoblastoid cell lines (LCLs). A linear regression model was employed to identify single-nucleotide polymorphisms (SNPs) associated with expression of the histone genes, and the number of eQTLs was determined by linkage disequilibrium analysis. Additional associations of the identified eQTLs with other genes were also examined. We identified 31 eQTLs for 29 histone genes through genome-wide analysis using 29 histone genes (P <297 × 10−10). Among them, 12 eQTLs were associated with the expression of multiple histone genes. Transcriptome- wide association analysis using the identified eQTLs showed their associations with additional 80 genes (P <475 × 10−6). In particular, expression of RPPH1, SCARNA2, and SCARNA7 genes was associated with 26, 25, and 23 eQTLs, respectively. -
Characterization of Chromatin Interaction in Mammalian Cells Jufen Zhu University of Connecticut - Storrs, [email protected]
University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 1-8-2019 Characterization of Chromatin Interaction in Mammalian Cells Jufen Zhu University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Zhu, Jufen, "Characterization of Chromatin Interaction in Mammalian Cells" (2019). Doctoral Dissertations. 2053. https://opencommons.uconn.edu/dissertations/2053 Characterization of Chromatin Interaction in Mammalian Cells Jacqueline Jufen Zhu, Ph.D. University of Connecticut, 2019 Abstract Higher-order chromatin organization in cell nucleus is mysterious. Microscopy and high- throughput sequencing technologies have been applied to reveal the connections between genome structure and gene transcription, which is the main topic of my thesis. Higher-order chromatin organization differs across cell types and species, giving an insight into disease genesis and tumorigenesis. Despite an enormous progress has been made recently in epigenomic study, lots of things remain unknown. My dissertation reviews the current understanding of epigenomics, characterizes chromatin interaction in mammalian cells using different technologies, investigates chromatin reorganization in breast cancer cells, analyzes integrated genomic and epigenomic data in breast cancer metastasis and discusses results and future directions. Dissertation Jacqueline Jufen Zhu Characterization of Chromatin Interaction in Mammalian Cells Jacqueline Jufen Zhu B.E., Nanjing Agricultural University, 2010 M.S., Chinese Academy of Sciences, 2013 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Connecticut 2019 i Dissertation Jacqueline Jufen Zhu Copyright by Jacqueline Jufen Zhu 2019 ii Dissertation Jacqueline Jufen Zhu Approval Page Doctoral of Philosophy Dissertation Characterization of Chromatin Interaction in Mammalian Cells Presented by Jacqueline Jufen Zhu, M.S. -
Supplemental Data.Pdf
Supplementary material -Table of content Supplementary Figures (Fig 1- Fig 6) Supplementary Tables (1-13) Lists of genes belonging to distinct biological processes identified by GREAT analyses to be significantly enriched with UBTF1/2-bound genes Supplementary Table 14 List of the common UBTF1/2 bound genes within +/- 2kb of their TSSs in NIH3T3 and HMECs. Supplementary Table 15 List of gene identified by microarray expression analysis to be differentially regulated following UBTF1/2 knockdown by siRNA Supplementary Table 16 List of UBTF1/2 binding regions overlapping with histone genes in NIH3T3 cells Supplementary Table 17 List of UBTF1/2 binding regions overlapping with histone genes in HMEC Supplementary Table 18 Sequences of short interfering RNA oligonucleotides Supplementary Table 19 qPCR primer sequences for qChIP experiments Supplementary Table 20 qPCR primer sequences for reverse transcription-qPCR Supplementary Table 21 Sequences of primers used in CHART-PCR Supplementary Methods Supplementary Fig 1. (A) ChIP-seq analysis of UBTF1/2 and Pol I (POLR1A) binding across mouse rDNA. UBTF1/2 is enriched at the enhancer and promoter regions and along the entire transcribed portions of rDNA with little if any enrichment in the intergenic spacer (IGS), which separates the rDNA repeats. This enrichment coincides with the distribution of the largest subunit of Pol I (POLR1A) across the rDNA. All sequencing reads were mapped to the published complete sequence of the mouse rDNA repeat (Gene bank accession number: BK000964). The graph represents the frequency of ribosomal sequences enriched in UBTF1/2 and Pol I-ChIPed DNA expressed as fold change over those of input genomic DNA. -
Identification of Significantly Mutated Regions Across Cancer Types
ANALYSIS Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations Carlos L Araya1,4, Can Cenik1,4, Jason A Reuter1, Gert Kiss2, Vijay S Pande2, Michael P Snyder1 & William J Greenleaf1,3 Cancer sequencing studies have primarily identified cancer Algorithms to identify cancer driver genes often examine non- driver genes by the accumulation of protein-altering mutations. synonymous-to-synonymous mutation rates across the gene body An improved method would be annotation independent, or recurrently mutated amino acids called mutation hotspots5, as sensitive to unknown distributions of functions within proteins observed in BRAF7, IDH1 (ref. 8) and DNA polymerase ε (encoded and inclusive of noncoding drivers. We employed density-based by POLE)9. Yet, these analyses ignore recurrent alterations in the clustering methods in 21 tumor types to detect variably sized vast intermediate scale of functional coding elements, such as significantly mutated regions (SMRs). SMRs reveal recurrent those affecting protein subunits or interfaces. Moreover, where alterations across a spectrum of coding and noncoding elements, mutation clustering within genes has been examined10–12, analyses including transcription factor binding sites and untranslated have employed windows of fixed length or identified clusters of non regions mutated in up to ~15% of specific tumor types. SMRs synonymous mutations, assuming that driver mutations exclusively demonstrate spatial clustering of alterations in molecular influence protein sequence and ignoring the importance of exon- domains and at interfaces, often with associated changes in embedded regulatory elements13–18. signaling. Mutation frequencies in SMRs demonstrate that A significant proportion of regulatory elements in the genome distinct protein regions are differentially mutated across tumor are located proximal to or even in exons15,19, suggesting that many Nature America, Inc. -
Whole-Genome Sequencing Identifies New Genetic Alterations in Meningiomas
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 10), pp: 17070-17080 Research Paper Whole-genome sequencing identifies new genetic alterations in meningiomas Mei Tang1,*, Heng Wei2,*, Lu Han1,*, Jiaojiao Deng3, Yuelong Wang3, Meijia Yang1, Yani Tang1, Gang Guo1, Liangxue Zhou3, Aiping Tong1 1The State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China 2College of Life Science, Sichuan University, Chengdu 610064, China 3Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China *These authors have contributed equally to the work Correspondence to: Aiping Tong, email: [email protected] Liangxue Zhou, email: [email protected] Keywords: whole-genome sequencing, meningioma, chromosome instability, copy number alteration, mutation Received: October 24, 2016 Accepted: January 13, 2017 Published: February 03, 2017 ABSTRACT The major known genetic contributor to meningioma formation was NF2, which is disrupted by mutation or loss in about 50% of tumors. Besides NF2, several recurrent driver mutations were recently uncovered through next-generation sequencing. Here, we performed whole-genome sequencing across 7 tumor-normal pairs to identify somatic genetic alterations in meningioma. As a result, Chromatin regulators, including multiple histone members, histone-modifying enzymes and several epigenetic regulators, are the major category among all of the identified copy number variants and single nucleotide variants. Notably, all samples contained copy number variants in histone members. Recurrent chromosomal rearrangements were detected on chromosome 22q, 6p21-p22 and 1q21, and most of the histone copy number variants occurred in these regions.