The Human Origin Recognition Complex Is Essential for Pre-RC Assembly
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
The Cdc23 (Mcm10) Protein Is Required for the Phosphorylation of Minichromosome Maintenance Complex by the Dfp1-Hsk1 Kinase
The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase Joon-Kyu Lee*†, Yeon-Soo Seo†, and Jerard Hurwitz*‡ *Program in Molecular Biology, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and †Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea Contributed by Jerard Hurwitz, December 4, 2002 Previous studies in Saccharomyces cerevisiae have defined an (9). Furthermore, studies in S. cerevisiae with mcm degron essential role for the Dbf4-Cdc7 kinase complex in the initiation of mutants showed that the Mcm proteins are also required for the DNA replication presumably by phosphorylation of target proteins, progression of the replication fork (10). These observations such as the minichromosome maintenance (Mcm) complex. We suggest that the Mcm complex is the replicative helicase. have examined the phosphorylation of the Mcm complex by the Cdc7, a serine͞threonine kinase conserved from yeast to Dfp1-Hsk1 kinase, the Schizosaccharomyces pombe homologue of humans (reviewed in ref. 11), is activated by the regulatory Dbf4-Cdc7. In vitro, the purified Dfp1-Hsk1 kinase efficiently phos- protein Dbf4. Although the level of Cdc7p is constant through- ͞ phorylated Mcm2p. In contrast, Mcm2p, present in the six-subunit out the cell cycle, the activity of this kinase peaks at the G1 S Mcm complex, was a poor substrate of this kinase and required transition, concomitant with the cellular level of Dbf4p. In S. ͞ Cdc23p (homologue of Mcm10p) for efficient phosphorylation. In cerevisiae, Dbf4p binds to chromatin at the G1 S transition and the presence of Cdc23p, Dfp1-Hsk1 phosphorylated the Mcm2p and remains attached to chromatin during S phase (12). -
ORC3 (1D6): Sc-23888
SANTA CRUZ BIOTECHNOLOGY, INC. ORC3 (1D6): sc-23888 BACKGROUND STORAGE The initiation of DNA replication is a multi-step process that depends on the Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of formation of pre-replication complexes, which trigger initiation. Among the shipment. Non-hazardous. No MSDS required. proteins required for establishing these complexes are the origin recognition complex (ORC) proteins. ORC proteins bind specifically to origins of replication DATA where they serve as scaffold for the assembly of additional initiation factors. A B Human ORC subunits 1-6 are expressed in the nucleus of proliferating cells AB C DE and tissues, such as the testis. ORC1 and ORC2 are both expressed at equiv- 113 K – 89 K – alent concentrations throughout the cell cycle; however, only ORC2 remains < ORC3 stably bound to chromatin. ORC4 and ORC6 are also expressed constantly throughout the cell cycle. ORC2, ORC3, ORC4 and ORC5 form a core complex 49 K – upon which ORC6 and ORC1 assemble. The formation of this core complex suggests that ORC proteins play a crucial role in the G1-S transition in mam- malian cells. ORC3 (1D6): sc-23888. Western blot analysis of ORC3 ORC3 (1D6): sc-23888. Immunoperoxidase staining of expression in HeLa (A), Raji (B), Jurkat (C), WI-38 (D) formalin fixed, paraffin-embedded human ovary tissue CHROMOSOMAL LOCATION and A-549 (E) whole cell lysates. showing nuclear localization (A,B). Genetic locus: ORC3L (human) mapping to 6q15. SELECT PRODUCT CITATIONS SOURCE 1. Braden, W.A., et al. 2006. Distinct action of the retinoblastoma pathway ORC3 (1D6) is a rat monoclonal antibody raised against partially purified on the DNA replication machinery defines specific roles for cyclin-depen- His-tagged bacterially expressed fusion protein corresponding to human ORC3. -
Assembly of the Cdc45-Mcm2–7-GINS Complex in Human Cells Requires the Ctf4/And-1, Recql4, and Mcm10 Proteins
Assembly of the Cdc45-Mcm2–7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins Jun-Sub Ima,1, Sang-Hee Kia,1, Andrea Farinab, Dong-Soo Junga, Jerard Hurwitzb,2, and Joon-Kyu Leea,2 aDepartment of Biology Education, Seoul National University, Seoul, 151-748, Korea; and bProgram in Molecular Biology, Memorial Sloan–Kettering Cancer Center, New York, NY 10021 Contributed by Jerard Hurwitz, July 17, 2009 (sent for review July 1, 2009) In eukaryotes, the activation of the prereplicative complex and Cdc45, and GINS (the CMG complex), purified from Drosophila assembly of an active DNA unwinding complex are critical but embryos, has DNA helicase activity in vitro (12). poorly understood steps required for the initiation of DNA repli- In addition to the above components, the assembly of the DNA cation. In this report, we have used bimolecular fluorescence unwinding complex also depends on additional factors including complementation assays in HeLa cells to examine the interactions Dpb11/Cut5, Sld2, Sld3, and Mcm10. Mcm10 is required for the between Cdc45, Mcm2–7, and the GINS complex (collectively called chromatin binding of Cdc45 and DNA polymerase ␣ in yeast and the CMG complex), which seem to play a key role in the formation Xenopus (13–16). Dpb11/Cut5 is essential for origin binding of and progression of replication forks. Interactions between the GINS in Saccharomyces cerevisiae (17), and reported to be required CMG components were observed only after the G1/S transition of for chromatin binding of Cdc45 and DNA polymerase ␣ in Xenopus the cell cycle and were abolished by treatment of cells with either (18). -
Systemic Analysis of the DNA Replication Regulators Origin Recognition Complex in Lung Adenocarcinomas Identifes Prognostic and Expression Signifcance
Systemic Analysis of the DNA Replication Regulators Origin Recognition Complex in Lung Adenocarcinomas Identies Prognostic and Expression Signicance Juan Chen University of South China Juan Zou University of South China Juan Zeng University of South China Tian Zeng University of South China Qi-hao Hu University of South China Jun-hui Bai University of South China Min Tang University of South China Yu-kun Li ( [email protected] ) University of South China https://orcid.org/0000-0002-8517-9075 Primary research Keywords: lung adenocarcinomas, ORC complex, public databases, prognostic value, comprehensive bioinformatics Posted Date: May 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-487176/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background: Origin recognition complex (ORC) 1, ORC2, ORC3, ORC4, ORC5 and ORC6, form a replication- initiator complex to mediate DNA replication, which play a key role in carcinogenesis, while their role in lung adenocarcinomas (LUAD) remains poorly understood. Methods: We conrmed the transcriptional and post-transcriptional levels, DNA alteration, DNA methylation, miRNA network, protein structure, PPI network, functional enrichment, immune inltration and prognostic value of ORCs in LUAD based on Oncomine, GEPIA, HPA, cBioportal, TCGA, GeneMANIA, Metascape, KM-plot, GENT2, and TIMER database. Results: ORC mRNA and protein were both enhanced obviously based on Oncomine, Ualcan, GEPIA, TCGA and HPA database. Furthermore, ORC1 and ORC6 have signicant prognostic values for LUAD patients based on GEPIA database. Protein structure, PPI network, functional enrichment and immune inltration analysis indicated that ORC complex cooperatively accelerate the LUAD development by promoting DNA replication, cellular senescence and metabolic process. -
Bioinformatics-Based Screening of Key Genes for Transformation of Liver
Jiang et al. J Transl Med (2020) 18:40 https://doi.org/10.1186/s12967-020-02229-8 Journal of Translational Medicine RESEARCH Open Access Bioinformatics-based screening of key genes for transformation of liver cirrhosis to hepatocellular carcinoma Chen Hao Jiang1,2, Xin Yuan1,2, Jiang Fen Li1,2, Yu Fang Xie1,2, An Zhi Zhang1,2, Xue Li Wang1,2, Lan Yang1,2, Chun Xia Liu1,2, Wei Hua Liang1,2, Li Juan Pang1,2, Hong Zou1,2, Xiao Bin Cui1,2, Xi Hua Shen1,2, Yan Qi1,2, Jin Fang Jiang1,2, Wen Yi Gu4, Feng Li1,2,3 and Jian Ming Hu1,2* Abstract Background: Hepatocellular carcinoma (HCC) is the most common type of liver tumour, and is closely related to liver cirrhosis. Previous studies have focussed on the pathogenesis of liver cirrhosis developing into HCC, but the molecular mechanism remains unclear. The aims of the present study were to identify key genes related to the transformation of cirrhosis into HCC, and explore the associated molecular mechanisms. Methods: GSE89377, GSE17548, GSE63898 and GSE54236 mRNA microarray datasets from Gene Expression Omni- bus (GEO) were analysed to obtain diferentially expressed genes (DEGs) between HCC and liver cirrhosis tissues, and network analysis of protein–protein interactions (PPIs) was carried out. String and Cytoscape were used to analyse modules and identify hub genes, Kaplan–Meier Plotter and Oncomine databases were used to explore relationships between hub genes and disease occurrence, development and prognosis of HCC, and the molecular mechanism of the main hub gene was probed using Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis. -
Mcm10 Has Potent Strand-Annealing Activity and Limits Translocase-Mediated Fork Regression
Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression Ryan Maylea, Lance Langstona,b, Kelly R. Molloyc, Dan Zhanga, Brian T. Chaitc,1,2, and Michael E. O’Donnella,b,1,2 aLaboratory of DNA Replication, The Rockefeller University, New York, NY 10065; bHoward Hughes Medical Institute, The Rockefeller University, New York, NY 10065; and cLaboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 Contributed by Michael E. O’Donnell, November 19, 2018 (sent for review November 8, 2018; reviewed by Zvi Kelman and R. Stephen Lloyd) The 11-subunit eukaryotic replicative helicase CMG (Cdc45, Mcm2-7, of function using genetics, cell biology, and cell extracts have GINS) tightly binds Mcm10, an essential replication protein in all identified Mcm10 functions in replisome stability, fork progres- eukaryotes. Here we show that Mcm10 has a potent strand- sion, and DNA repair (21–25). Despite significant advances in the annealing activity both alone and in complex with CMG. CMG- understanding of Mcm10’s functions, mechanistic in vitro studies Mcm10 unwinds and then reanneals single strands soon after they of Mcm10 in replisome and repair reactions are lacking. have been unwound in vitro. Given the DNA damage and replisome The present study demonstrates that Mcm10 on its own rap- instability associated with loss of Mcm10 function, we examined the idly anneals cDNA strands even in the presence of the single- effect of Mcm10 on fork regression. Fork regression requires the strand (ss) DNA-binding protein RPA, a property previously unwinding and pairing of newly synthesized strands, performed by associated with the recombination protein Rad52 (26). -
Characterization of Budding Yeast Orc6 : a Dimerization Domain Is
Characterization of the role of Orc6 in the cell cycle of the budding yeast Saccharomyces cerevisiae by Jeffrey W. Semple A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Biology Waterloo, Ontario, Canada, 2006 © Jeffrey W. Semple 2006 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required finalrevisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The heterohexameric origin recognition complex (ORC) acts as a scaffold for the G1 phase assembly of pre-replicative complexes. Only the Orc1-5 subunits are required for origin binding in budding yeast, yet Orc6 is an essential protein for cell proliferation. In comparison to other eukaryotic Orc6 proteins, budding yeast Orc6 appears to be quite divergent. Two-hybrid analysis revealed that Orc6 only weakly interacts with other ORC subunits. In this assay Orc6 showed a strong ability to self-associate, although the significance of this dimerization or multimerization remains unclear. Imaging of Orc6- eYFP revealed a punctate sub-nuclear localization pattern throughout the cell cycle, representing the first visualization of replication foci in live budding yeast cells. Orc6 was not detected at the site of division between mother and daughter cells, in contrast to observations from metazoans. An essential role for Orc6 in DNA replication was identified by depleting the protein before and during G1 phase. Surprisingly, Orc6 was required for entry into S phase after pre-replicative complex formation, in contrast to what has been observed for other ORC subunits. -
Mcm10 and And-1/CTF4 Recruit DNA Polymerase to Chromatin For
Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Mcm10 and And-1/CTF4 recruit DNA polymerase ␣ to chromatin for initiation of DNA replication Wenge Zhu,1,3 Chinweike Ukomadu,1,3 Sudhakar Jha,1,3 Takeshi Senga,1 Suman K. Dhar,1 James A. Wohlschlegel,1 Leta K. Nutt,2 Sally Kornbluth,2 and Anindya Dutta1,4 1Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; 2Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA The MCM2-7 helicase complex is loaded on DNA replication origins during the G1 phase of the cell cycle to license the origins for replication in S phase. How the initiator primase–polymerase complex, DNA polymerase ␣ (pol ␣), is brought to the origins is still unclear. We show that And-1/Ctf4 (Chromosome transmission fidelity 4) interacts with Mcm10, which associates with MCM2-7, and with the p180 subunit of DNA pol ␣. And-1 is essential for DNA synthesis and the stability of p180 in mammalian cells. In Xenopus egg extracts And-1 is loaded on the chromatin after Mcm10, concurrently with DNA pol ␣, and is required for efficient DNA synthesis. Mcm10 is required for chromatin loading of And-1 and an antibody that disrupts the Mcm10–And-1 interaction interferes with the loading of And-1 and of pol ␣, inhibiting DNA synthesis. And-1/Ctf4 is therefore a new replication initiation factor that brings together the MCM2-7 helicase and the DNA pol ␣–primase complex, analogous to the linker between helicase and primase or helicase and polymerase that is seen in the bacterial replication machinery. -
Chromosome Integrity in Saccharomyces Cerevisiae: the Interplay of DNA Replication Initiation Factors, Elongation Factors, and Origins
Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Chromosome integrity in Saccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins Dongli Huang1,2 and Douglas Koshland1,3 1Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210, USA; 2Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218, USA The integrity of chromosomes during cell division is ensured by both trans-acting factors and cis-acting chromosomal sites. Failure of either these chromosome integrity determinants (CIDs) can cause chromosomes to be broken and subsequently misrepaired to form gross chromosomal rearrangements (GCRs). We developed a simple and rapid assay for GCRs, exploiting yeast artificial chromosomes (YACs) in Saccharomyces cerevisiae. We used this assay to screen a genome-wide pool of mutants for elevated rates of GCR. The analyses of these mutants define new CIDs (Orc3p, Orc5p, and Ycs4p) and new pathways required for chromosome integrity in DNA replication elongation (Dpb11p), DNA replication initiation (Orc3p and Orc5p), and mitotic condensation (Ycs4p). We show that the chromosome integrity function of Orc5p is associated with its ATP-binding motif and is distinct from its function in controlling the efficiency of initiation of DNA replication. Finally, we used our YAC assay to assess the interplay of trans and cis factors in chromosome integrity. Increasing the number of origins on a YAC suppresses GCR formation in our dpb11 mutant but enhances it in our orc mutants. This result provides potential insights into the counterbalancing selective pressures necessary for the evolution of origin density on chromosomes. -
Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice1[W][OA]
Genome Analysis Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice1[W][OA] Randall W. Shultz2, Vinaya M. Tatineni, Linda Hanley-Bowdoin*, and William F. Thompson Department of Plant Biology (R.W.S., W.F.T.), Department of Statistical Genetics and Bioinformatics (V.M.T.), and Department of Molecular and Structural Biochemistry (L.H.-B.), North Carolina State University, Raleigh, North Carolina 27695 Core DNA replication proteins mediate the initiation, elongation, and Okazaki fragment maturation functions of DNA replication. Although this process is generally conserved in eukaryotes, important differences in the molecular architecture of the DNA replication machine and the function of individual subunits have been reported in various model systems. We have combined genome-wide bioinformatic analyses of Arabidopsis (Arabidopsis thaliana)andrice(Oryza sativa)with published experimental data to provide a comprehensive view of the core DNA replication machinery in plants. Many components identified in this analysis have not been studied previously in plant systems, including the GINS (go ichi ni san) complex (PSF1, PSF2, PSF3, and SLD5), MCM8, MCM9, MCM10, NOC3, POLA2, POLA3, POLA4, POLD3, POLD4, and RNASEH2. Our results indicate that the core DNA replication machinery from plants is more similar to vertebrates than single-celled yeasts (Saccharomyces cerevisiae), suggesting that animal models may be more relevant to plant systems. However, we also uncovered some important differences between plants and vertebrate machinery. For example, we did not identify geminin or RNASEH1 genes in plants. Our analyses also indicate that plants may be unique among eukaryotes in that they have multiple copies of numerous core DNA replication genes. -
Signature of Progression and Negative Outcome in Colorectal Cancer
Oncogene (2010) 29, 876–887 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc ORIGINAL ARTICLE A ‘DNA replication’ signature of progression and negative outcome in colorectal cancer M-J Pillaire1,7, J Selves2,7, K Gordien2, P-A Gouraud3, C Gentil3, M Danjoux2,CDo3, V Negre4, A Bieth1, R Guimbaud2, D Trouche5, P Pasero6,MMe´chali6, J-S Hoffmann1 and C Cazaux1 1Genetic Instability and Cancer Group, Department Biology of Cancer, Institute of Pharmacology and Structural Biology, UMR5089 CNRS, University of Toulouse, University Paul Sabatier, Toulouse, France; 2INSERM U563, Federation of Digestive Cancerology and Department of Anatomo-pathology, University of Toulouse, University Paul Sabatier, Toulouse, France; 3Service of Epidemiology, INSERM U558, Faculty of Medicine, University of Toulouse, University Paul Sabatier, Alle´es Jules Guesde, Toulouse, France; 4aCGH GSO Canceropole Platform, INSERM U868, Val d’Aurelle, Montpellier, France; 5Laboratory of Cellular and Molecular Biology of Cell Proliferation Control, UMR 5099 CNRS, University of Toulouse, University Paul Sabatier, Toulouse, France and 6Institute of Human Genetics UPR1142 CNRS, Montpellier, France Colorectal cancer is one of the most frequent cancers Introduction worldwide. As the tumor-node-metastasis (TNM) staging classification does not allow to predict the survival of DNA replication in normal cells is regulated by an patients in many cases, additional prognostic factors are ‘origin licensing’ mechanism that ensures that it occurs needed to better forecast their outcome. Genes involved in just once per cycle. Once cells enter the S-phase, the DNA replication may represent an underexplored source stability of DNA replication forks must be preserved to of such prognostic markers.