Intel® Itanium® Architecture Software Developer's Manual, Volume 3

Total Page:16

File Type:pdf, Size:1020Kb

Intel® Itanium® Architecture Software Developer's Manual, Volume 3 Intel® Itanium® Architecture Software Developer’s Manual Volume 3: Intel® Itanium® Instruction Set Reference Revision 2.3 May 2010 Document Number: 323207 THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Intel® processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com. Intel, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Copyright © 1999-2010, Intel Corporation *Other names and brands may be claimed as the property of others. Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 644 Contents 1 About this Manual . 3:1 1.1 Overview of Volume 1: Application Architecture . 3:1 1.1.1 Part 1: Application Architecture Guide . 3:1 1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture . 3:1 1.2 Overview of Volume 2: System Architecture. 3:2 1.2.1 Part 1: System Architecture Guide . 3:2 1.2.2 Part 2: System Programmer’s Guide . 3:3 1.2.3 Appendices. 3:4 1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference . 3:4 1.4 Overview of Volume 4: IA-32 Instruction Set Reference. 3:4 1.5 Terminology . 3:5 1.6 Related Documents . 3:5 1.7 Revision History . 3:6 2 Instruction Reference . 3:11 2.1 Instruction Page Conventions. 3:11 2.2 Instruction Descriptions . 3:13 3 Pseudo-Code Functions . 3:281 4 Instruction Formats . 3:293 4.1 Format Summary . 3:294 4.2 A-Unit Instruction Encodings . 3:300 4.2.1 Integer ALU . 3:300 4.2.2 Integer Compare. 3:302 4.2.3 Multimedia . 3:306 4.3 I-Unit Instruction Encodings . 3:310 4.3.1 Multimedia and Variable Shifts . 3:310 4.3.2 Integer Shifts . 3:315 4.3.3 Test Bit . 3:316 4.3.4 Miscellaneous I-Unit Instructions . 3:318 4.3.5 GR/BR Moves. 3:320 4.3.6 GR/Predicate/IP Moves . 3:321 4.3.7 GR/AR Moves (I-Unit). 3:321 4.3.8 Sign/Zero Extend/Compute Zero Index . 3:322 4.3.9 Test Feature . 3:323 4.4 M-Unit Instruction Encodings . 3:323 4.4.1 Loads and Stores . 3:323 4.4.2 Line Prefetch . 3:337 4.4.3 Semaphores . 3:338 4.4.4 Set/Get FR . 3:339 4.4.5 Speculation and Advanced Load Checks. 3:340 4.4.6 Cache/Synchronization/RSE/ALAT . 3:341 4.4.7 GR/AR Moves (M-Unit). 3:342 4.4.8 GR/CR Moves . 3:343 4.4.9 Miscellaneous M-Unit Instructions . 3:344 4.4.10 System/Memory Management . 3:345 4.4.11 Nop/Hint (M-Unit) . 3:349 4.5 B-Unit Instruction Encodings . 3:349 4.5.1 Branches . 3:350 4.5.2 Branch Predict/Nop/Hint . 3:353 4.5.3 Miscellaneous B-Unit Instructions . 3:355 4.6 F-Unit Instruction Encodings. 3:356 4.6.1 Arithmetic . 3:358 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 645 4.6.2 Parallel Floating-point Select. 3:359 4.6.3 Compare and Classify . 3:359 4.6.4 Approximation . 3:361 4.6.5 Minimum/Maximum and Parallel Compare . 3:362 4.6.6 Merge and Logical. 3:363 4.6.7 Conversion . 3:363 4.6.8 Status Field Manipulation . 3:364 4.6.9 Miscellaneous F-Unit Instructions . 3:365 4.7 X-Unit Instruction Encodings . 3:365 4.7.1 Miscellaneous X-Unit Instructions . 3:365 4.7.2 Move Long Immediate64 . 3:366 4.7.3 Long Branches . 3:367 4.7.4 Nop/Hint (X-Unit) . 3:368 4.8 Immediate Formation. 3:368 5 Resource and Dependency Semantics . 3:371 5.1 Reading and Writing Resources . 3:371 5.2 Dependencies and Serialization . 3:371 5.3 Resource and Dependency Table Format Notes . 3:372 5.3.1 Special Case Instruction Rules . 3:374 5.3.2 RAW Dependency Table. 3:374 5.3.3 WAW Dependency Table . 3:383 5.3.4 WAR Dependency Table. 3:387 5.3.5 Listing of Rules Referenced in Dependency Tables . 3:387 5.4 Support Tables . ..
Recommended publications
  • 2. Instruction Set Architecture
    !1 2. ISA Gebotys ECE 222 2. Instruction Set Architecture “Ideally, your initial instruction set should be an exemplar, …” " Instruction set architecture (ISA) defines the interface between the hardware and software# " instruction set is the language of the computer# " RISCV instructions are 32-bits, instruction[31:0]# " RISC-V assembly1 language notation # " uses 64-bit registers, 64-bits refer to double word, 32-bits refers to word (8-bits is byte).# " there are 32 registers, namely x0-x31, where x0 is always zero # " to perform arithmetic operations (add, sub, shift, logical) data must always be in registers # " the number of variables in programs is typically larger than 32, hence ‘less frequently used’ [or those used later] variables are ‘spilled’ into memory [spilling registers]# " registers are faster and more energy e$cient than memory# " for embedded applications where code size is important, a 16-bit instruction set exists, RISC-V compressed (e.g. others exist also ARM Thumb and Thumb2)# " byte addressing is used, little endian (where address of 64-bit word refers to address of ‘little' or rightmost byte, [containing bit 0 of word]) so sequential double word accesses di%er by 8 e.g. byte address 0 holds the first double word and byte address 8 holds next double word. (Byte addressing allows the supports of two byte instructions)# " memory contains 261 memory words - using load/store instructions e.g. 64-bits available (bits 63 downto 0, 3 of those bits are used for byte addressing, leaving 61 bits)# " Program counter register (PC)
    [Show full text]
  • Computer Organization and Architecture Designing for Performance Ninth Edition
    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America.
    [Show full text]
  • Introduction to the Intel® Nios® II Soft Processor
    Introduction to the Intel® Nios® II Soft Processor For Quartus® Prime 18.1 1 Introduction This tutorial presents an introduction the Intel® Nios® II processor, which is a soft processor that can be instantiated on an Intel FPGA device. It describes the basic architecture of Nios II and its instruction set. The Nios II processor and its associated memory and peripheral components are easily instantiated by using Intel’s SOPC Builder or Platform Designer tool in conjunction with the Quartus® Prime software. A full description of the Nios II processor is provided in the Nios II Processor Reference Handbook, which is available in the literature section of the Intel web site. Introductions to the SOPC Builder and Platform Designer tools are given in the tutorials Introduction to the Intel SOPC Builder and Introduction to the Intel Platform Designer Tool, respectively. Both can be found in the University Program section of the web site. Contents: • Nios II System • Overview of Nios II Processor Features • Register Structure • Accessing Memory and I/O Devices • Addressing • Instruction Set • Assembler Directives • Example Program • Exception Processing • Cache Memory • Tightly Coupled Memory Intel Corporation - FPGA University Program 1 March 2019 ® ® INTRODUCTION TO THE INTEL NIOS II SOFT PROCESSOR For Quartus® Prime 18.1 2 Background Intel’s Nios II is a soft processor, defined in a hardware description language, which can be implemented in Intel’s FPGA devices by using the Quartus Prime CAD system. This tutorial provides a basic introduction to the Nios II processor, intended for a user who wishes to implement a Nios II based system on an Intel Development and Education board.
    [Show full text]
  • Computer Organization & Architecture Eie
    COMPUTER ORGANIZATION & ARCHITECTURE EIE 411 Course Lecturer: Engr Banji Adedayo. Reg COREN. The characteristics of different computers vary considerably from category to category. Computers for data processing activities have different features than those with scientific features. Even computers configured within the same application area have variations in design. Computer architecture is the science of integrating those components to achieve a level of functionality and performance. It is logical organization or designs of the hardware that make up the computer system. The internal organization of a digital system is defined by the sequence of micro operations it performs on the data stored in its registers. The internal structure of a MICRO-PROCESSOR is called its architecture and includes the number lay out and functionality of registers, memory cell, decoders, controllers and clocks. HISTORY OF COMPUTER HARDWARE The first use of the word ‘Computer’ was recorded in 1613, referring to a person who carried out calculation or computation. A brief History: Computer as we all know 2day had its beginning with 19th century English Mathematics Professor named Chales Babage. He designed the analytical engine and it was this design that the basic frame work of the computer of today are based on. 1st Generation 1937-1946 The first electronic digital computer was built by Dr John V. Atanasoff & Berry Cliford (ABC). In 1943 an electronic computer named colossus was built for military. 1946 – The first general purpose digital computer- the Electronic Numerical Integrator and computer (ENIAC) was built. This computer weighed 30 tons and had 18,000 vacuum tubes which were used for processing.
    [Show full text]
  • A Modular Soft Processor Core in VHDL
    A Modular Soft Processor Core in VHDL Jack Whitham 2002-2003 This is a Third Year project submitted for the degree of MEng in the Department of Computer Science at the University of York. The project will attempt to demonstrate that a modular soft processor core can be designed and implemented on an FPGA, and that the core can be optimised to run a particular embedded application using a minimal amount of FPGA space. The word count of this project (as counted by the Unix wc command after detex was run on the LaTeX source) is 33647 words. This includes all text in the main report and Appendices A, B and C. Excluding source code, the project is 70 pages in length. i Contents I. Introduction 1 1. Background and Literature 1 1.1. Soft Processor Cores . 1 1.2. A Field Programmable Gate Array . 1 1.3. VHSIC Hardware Definition Language (VHDL) . 2 1.4. The Motorola 68020 . 2 II. High-level Project Decisions 3 2. Should the design be based on an existing one? 3 3. Which processor should the soft core be based upon? 3 4. Which processor should be chosen? 3 5. Restating the aims of the project in terms of the chosen processor 4 III. Modular Processor Design Decisions 4 6. Processor Design 4 6.1. Alternatives to a complete processor implementation . 4 6.2. A real processor . 5 6.3. Instruction Decoder and Control Logic . 5 6.4. Arithmetic and Logic Unit (ALU) . 7 6.5. Register File . 7 6.6. Links between Components .
    [Show full text]
  • Exploiting Branch Target Injection Jann Horn, Google Project Zero
    Exploiting Branch Target Injection Jann Horn, Google Project Zero 1 Outline ● Introduction ● Reverse-engineering branch prediction ● Leaking host memory from KVM 2 Disclaimer ● I haven't worked in CPU design ● I don't really understand how CPUs work ● Large parts of this talk are based on guesses ● This isn't necessarily how all CPUs work 3 Variants overview Spectre Meltdown ● CVE-2017-5753 ● CVE-2017-5715 ● CVE-2017-5754 ● Variant 1 ● Variant 2 ● Variant 3 ● Bounds Check ● Branch Target ● Rogue Data Cache Bypass Injection Load ● Primarily affects ● Primarily affects ● Affects kernels (and interpreters/JITs kernels/hypervisors architecturally equivalent software) 4 Performance ● Modern consumer CPU clock rates: ~4GHz ● Memory is slow: ~170 clock cycles latency on my machine ➢ CPU needs to work around high memory access latencies ● Adding parallelism is easier than making processing faster ➢ CPU needs to do things in parallel for performance ● Performance optimizations can lead to security issues! 5 Performance Optimization Resources ● everyone wants programs to run fast ➢ processor vendors want application authors to be able to write fast code ● architectural behavior requires architecture documentation; performance optimization requires microarchitecture documentation ➢ if you want information about microarchitecture, read performance optimization guides ● Intel: https://software.intel.com/en-us/articles/intel-sdm#optimization ("optimization reference manual") ● AMD: https://developer.amd.com/resources/developer-guides-manuals/ ("Software Optimization Guide") 6 (vaguely based on optimization manuals) Out-of-order execution front end out-of-order engine port (scheduler, renaming, ...) port instruction stream add rax, 9 add rax, 8 inc rbx port inc rbx sub rax, rbx mov [rcx], rax port cmp rax, 16 ..
    [Show full text]
  • Assignment Solutions
    Week 1: Assignment Solutions 1. Which of the following statements are true? a. The ENIAC computer was built using mechanical relays. b. Harvard Mark1 computer was built using mechanical relays. c. PASCALINE computer could multiply and divide numbers by repeated addition and subtraction. d. Charles Babbage built his automatic computing engine in 19th century. Solution: ((b) and (c)) ENIAC was built using vacuum tubes. Charles Babbage designed his automatic computing engine but could not built it. 2. Which of the following statements are true for Moore’s law? a. Moore’s law predicts that power dissipation will double every 18 months. b. Moore’s law predicts that the number of transistors per chip will double every 18 months. c. Moore’s law predicts that the speed of VLSI circuits will double every 18 months. d. None of the above. Solution: (b) Moore’s law only predicts that number of transistors per chip will double every 18 months. 3. Which of the following generates the necessary signals required to execute an instruction in a computer? a. Arithmetic and Logic Unit b. Memory Unit c. Control Unit d. Input/Output Unit Solution: (c) Control unit acts as the nerve center of a computer and generates the necessary control signals required to execute an instruction. 4. An instruction ADD R1, A is stored at memory location 4004H. R1 is a processor register and A is a memory location with address 400CH. Each instruction is 32-bit long. What will be the values of PC, IR and MAR during execution of the instruction? a.
    [Show full text]
  • Register Are Used to Quickly Accept, Store, and Transfer Data And
    Register are used to quickly accept, store, and transfer data and instructions that are being used immediately by the CPU, there are various types of Registers those are used for various purpose. Among of the some Mostly used Registers named as AC or Accumulator, Data Register or DR, the AR or Address Register, program counter (PC), Memory Data Register (MDR) ,Index register,Memory Buffer Register. These Registers are used for performing the various Operations. While we are working on the System then these Registers are used by the CPU for Performing the Operations. When We Gives Some Input to the System then the Input will be Stored into the Registers and When the System will gives us the Results after Processing then the Result will also be from the Registers. So that they are used by the CPU for Processing the Data which is given by the User. Registers Perform:- 1) Fetch: The Fetch Operation is used for taking the instructions those are given by the user and the Instructions those are stored into the Main Memory will be fetch by using Registers. 2) Decode: The Decode Operation is used for interpreting the Instructions means the Instructions are decoded means the CPU will find out which Operation is to be performed on the Instructions. 3) Execute: The Execute Operation is performed by the CPU. And Results those are produced by the CPU are then Stored into the Memory and after that they are displayed on the user Screen. Types of Registers are as Followings 1. MAR stand for Memory Address Register This register holds the memory addresses of data and instructions.
    [Show full text]
  • IAR C/C++ Compiler Reference Guide for V850
    IAR Embedded Workbench® IAR C/C++ Compiler Reference Guide for the Renesas V850 Microcontroller Family CV850-9 COPYRIGHT NOTICE © 1998–2013 IAR Systems AB. No part of this document may be reproduced without the prior written consent of IAR Systems AB. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. DISCLAIMER The information in this document is subject to change without notice and does not represent a commitment on any part of IAR Systems. While the information contained herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors or omissions. In no event shall IAR Systems, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. TRADEMARKS IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, The Code to Success, IAR KickStart Kit, I-jet, I-scope, IAR and the logotype of IAR Systems are trademarks or registered trademarks owned by IAR Systems AB. Microsoft and Windows are registered trademarks of Microsoft Corporation. Renesas is a registered trademark of Renesas Electronics Corporation. V850 is a trademark of Renesas Electronics Corporation. Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated. All other product names are trademarks or registered trademarks of their respective owners. EDITION NOTICE Ninth edition: May 2013 Part number: CV850-9 This guide applies to version 4.x of IAR Embedded Workbench® for the Renesas V850 microcontroller family.
    [Show full text]
  • Simty: Generalized SIMT Execution on RISC-V Caroline Collange
    Simty: generalized SIMT execution on RISC-V Caroline Collange To cite this version: Caroline Collange. Simty: generalized SIMT execution on RISC-V. CARRV 2017: First Work- shop on Computer Architecture Research with RISC-V, Oct 2017, Boston, United States. pp.6, 10.1145/nnnnnnn.nnnnnnn. hal-01622208 HAL Id: hal-01622208 https://hal.inria.fr/hal-01622208 Submitted on 7 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Simty: generalized SIMT execution on RISC-V Caroline Collange Inria [email protected] ABSTRACT and programming languages to target GPU-like SIMT cores. Be- We present Simty, a massively multi-threaded RISC-V processor side simplifying software layers, the unification of CPU and GPU core that acts as a proof of concept for dynamic inter-thread vector- instruction sets eases prototyping and debugging of parallel pro- ization at the micro-architecture level. Simty runs groups of scalar grams. We have implemented Simty in synthesizable VHDL and threads executing SPMD code in lockstep, and assembles SIMD synthesized it for an FPGA target. instructions dynamically across threads. Unlike existing SIMD or We present our approach to generalizing the SIMT model in SIMT processors like GPUs or vector processors, Simty vector- Section 2, then describe Simty’s microarchitecture is Section 3, and izes scalar general-purpose binaries.
    [Show full text]
  • Powerpc User Instruction Set Architecture Book I Version 2.01
    PowerPC User Instruction Set Architecture Book I Version 2.01 September 2003 Manager: Joe Wetzel/Poughkeepsie/IBM Technical Content: Ed Silha/Austin/IBM Cathy May/Watson/IBM Brad Frey/Austin/IBM The following paragraph does not apply to the United Kingdom or any country or state where such provisions are inconsistent with local law. The specifications in this manual are subject to change without notice. This manual is provided “AS IS”. Interna- tional Business Machines Corp. makes no warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. International Business Machines Corp. does not warrant that the contents of this publication or the accompanying source code examples, whether individually or as one or more groups, will meet your requirements or that the publication or the accompanying source code examples are error-free. This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. Address comments to IBM Corporation, Internal Zip 9630, 11400 Burnett Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. The following terms are trademarks of the International Business Machines Corporation in the United States and/or other countries: IBM PowerPC RISC/System 6000 POWER POWER2 POWER4 POWER4+ IBM System/370 Notice to U.S. Government Users—Documentation Related to Restricted Rights—Use, duplication or disclosure is subject to restrictions set fourth in GSA ADP Schedule Contract with IBM Corporation.
    [Show full text]
  • Ep 2182433 A1
    (19) & (11) EP 2 182 433 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 05.05.2010 Bulletin 2010/18 G06F 9/38 (2006.01) (21) Application number: 07768016.3 (86) International application number: PCT/JP2007/063241 (22) Date of filing: 02.07.2007 (87) International publication number: WO 2009/004709 (08.01.2009 Gazette 2009/02) (84) Designated Contracting States: • AOKI, Takashi AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Kawasaki-shi HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE Kanagawa 211-8588 (JP) SI SK TR Designated Extension States: (74) Representative: Ward, James Norman AL BA HR MK RS Haseltine Lake LLP Lincoln House, 5th Floor (71) Applicant: Fujitsu Limited 300 High Holborn Kawasaki-shi, Kanagawa 211-8588 (JP) London WC1V 7JH (GB) (72) Inventors: • TOYOSHIMA, Takashi Kawasaki-shi Kanagawa 211-8588 (JP) (54) INDIRECT BRANCHING PROGRAM, AND INDIRECT BRANCHING METHOD (57) A processor 100 reads an interpreter program the indirect branch instruction in a link register 120c (the 200a to start an interpreter. The interpreter makes branch processor 100 internally stacks the branch destination prediction by executing, in place of an indirect branch addresses also in a return address stack 130) in inverse instruction that is necessary for execution of a source order and reading the addresses from the return address program 200b, storing branch destination addresses in stack 130 in one at a time manner. EP 2 182 433 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 182 433 A1 2 Description vised and brought into practical use.
    [Show full text]