Capítulo 2 Needham E Spallanzani: a Controvérsia Sobre a Origem Dos Animálculos Nas Infusões

Total Page:16

File Type:pdf, Size:1020Kb

Capítulo 2 Needham E Spallanzani: a Controvérsia Sobre a Origem Dos Animálculos Nas Infusões UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA INSTITUTO DE QUÍMICA INSTITUTO DE BIOCIÊNCIAS FACULDADE DE EDUCAÇÃO EDUARDO CREVELÁRIO DE CARVALHO A CONTROVÉRSIA SOBRE A GERAÇÃO ESPONTÂNEA ENTRE NEEDHAM E SPALLANZANI: IMPLICAÇÕES PARA O ENSINO DE BIOLOGIA SÃO PAULO 2013 EDUARDO CREVELÁRIO DE CARVALHO A CONTROVÉRSIA SOBRE A GERAÇÃO ESPONTÂNEA ENTRE NEEDHAM E SPALLANZANI: IMPLICAÇÕES PARA O ENSINO DE BIOLOGIA Dissertação de mestrado apresentada ao Programa de Pós-Graduação Interunidades em Ensino da Universidade de São Paulo, para obtenção do título de Mestre em Ensino de Ciências. Área de concentração: Ensino de Biologia Orientadora Prof.ª Drª Maria Elice Brzezinski Prestes SÃO PAULO 2013 FICHA CATALOGRÁFICA Preparada pelo Serviço de Biblioteca e Informação do Instituto de Física da Universidade de São Paulo Carvalho, Eduardo Crevelário A controvérsia sobre a geração espontânea entre Needham e Spallanzani: implicações para o ensino de biologia. – São Paulo, 2013. Dissertação (Mestrado) – Universidade de São Paulo, Faculdade de Educação, Instituto de Física, Instituto de Química e Instituto de Biociências. Orientador: Profa. Dra. Maria Elice Brzezinski Prestes Área de Concentração: Ensino de Ciências Unitermos: 1. Biologia (Estudo e ensino); 2. Biologia – História ; 3. Geração espontânea; 4. Controvérsias científicas; 5. Ensino de ciências USP/IF/SBI-032/2013 Autorizo reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte. Nome: CARVALHO, Eduardo Crevelário de Título: A controvérsia sobre a geração espontânea entre Needham e Spallanzani: implicações para o ensino de biologia. Dissertação apresentada ao Programa de Pós-Graduação Interunidades em Ensino de Ciências da Universidade de São Paulo para obtenção do título de Mestre em Ensino de Ciências. Aprovado em: ___ /___/_____ Banca Examinadora Prof. Dr.:_________________________ Instituição:_________________________ Julgamento:______________________ Assinatura:_________________________ Prof. Dr.:_________________________ Instituição:_________________________ Julgamento:______________________ Assinatura:_________________________ Prof. Dr.:_________________________ Instituição:_________________________ Julgamento:______________________ Assinatura:_________________________ Dedicatória À minha mãe Tercília e minha irmã Kamilla, que sempre acreditaram no meu potencial, estiveram sempre ao meu lado e nunca deixaram de me incentivar. Vocês são as grandes responsáveis pela realização deste sonho. Mais que minha família, são minhas melhores amigas. Agradecimentos À minha orientadora Maria Elice Brzezinski Prestes, pela compreensão, paciência, sabedoria e competência para escolher palavras tão delicadas para expressar nossas ideias e, acima de tudo, por todas as conversas inspiradoras, conselhos e críticas que contribuíram para que eu tivesse uma visão menos deformada das Ciências. Ao Prof. Dr. Nélio Marco Vicenzo Bizzo e a Prof.ª Dr.ª Lilian Al-Chueyr Pereira Martins pelas valiosas observações e sugestões durante o Exame de Qualificação. Ao Marcos Rodrigues da Silva, professor do departamento de Filosofia da Universidade Estadual de Londrina, pelas agradáveis conversas durante os Encontros de História e Filosofia da Biologia, mas principalmente por ter realizado a leitura do capítulo 3 desta dissertação, trazendo contribuições significativas à compreensão do papel das controvérsias para a construção do pensamento científico. Aos meus colegas do Grupo de Pesquisa em História da Biologia e Ensino, Alan Dantas, Enios Duarte, Fabrício Barbosa Bittencourt, Gerda Maísa Jensen, João Paulo Di Monaco Durbano, José Franco Monte Sião, Luciana Nogueira, Marcelo Gilde, Miler Rodrigo Pereira, Rosa Andrea Lopes de Souza, Tatiana Tavares da Silva, Taysy Fernandes. A todos vocês agradeço pela parceria, pelas experiências compartilhadas, pela colaboração e, acima de tudo, pela amizade. Para lembrar a convivência ao longo desses três anos gostaria de parafrasear um antigo provérbio presente em um dos primeiros textos que discutimos no grupo: “Nós começamos confusos, e terminamos confusos num nível mais elevado”. À minha irmã pelo carinho com que revisou meus textos e à minha mãe que “sempre” teve paciência para me escutar falando sobre geração espontânea e controvérsias científicas. Não importa que você quase sempre acabava dormindo antes de chegar à terceira página, o que realmente importa é que vocês participaram. Obrigado por tornar a minha vida mais feliz. Aos meus colegas de trabalho, amigos e familiares que sempre perguntavam “e o mestrado, defende quando?”, mesmo sem saber o quanto isso me irritava... De qualquer maneira, esses incansáveis questionamentos me incentivaram a continuar pesquisando. A todos aqueles que, direta ou indiretamente, contribuíram para a execução desta Dissertação de Mestrado. Em especial, a Érica A. Palaria pelo incentivo, por todos os livros que me deu de presente e por me apoiar sempre; ao Frederico Guedes (Fred) – corintiano roxo – por ajudar com a tradução de diversos trechos das fontes primárias; ao Osni Nunes pela amizade e pelos conselhos; ao Felipe Almeida pelas agradáveis discussões sobre a Teoria dos Refúgios Florestais; ao Marcos Henrique dos Santos por me deixar ganhar sempre no vídeo game e me fazer dar risadas entre uma e outra leitura. A todos vocês, meus agradecimentos mais sinceros. A Ciência em si Se toda coincidência Tende a que se entenda E toda lenda Quer chegar aqui A ciência não se aprende A ciência apreende A ciência em si Se toda estrela cadente Cai pra fazer sentido E todo mito Quer ter carne aqui A ciência não se ensina A ciência insemina A ciência em si Se o que se pode ver, ouvir, pegar, medir, pesar Do avião a jato ao jaboti Desperta o que ainda não, não se pôde pensar Do sono eterno ao eterno devir Como a órbita da Terra abraça o vácuo devagar Para alcançar o que já estava aqui Se a crença quer se materializar Tanto quanto a experiência quer se abstrair A ciência não avança A ciência alcança A ciência em si (Arnaldo Antunes) Resumo CARVALHO, Eduardo Crevelário de. A controvérsia sobre a geração espontânea entre Needham e Spallanzani: implicações para o ensino de biologia. Dissertação de Mestrado, Instituto de Física, Instituto de Química, Instituto de Biociências, Faculdade de Educação – Programa Interunidade em Ensino de Ciências, Universidade de São Paulo, 2013. Esta dissertação aborda a controvérsia entre o naturalista inglês John Turberville Needham (1713-1781) e o naturalista italiano Lazzaro Spallanzani (1729- 1799) sobre o tema da “geração” dos seres vivos. Inscrita no âmbito da História da Ciência e inserida na linha de pesquisa História Filosofia e Cultura no Ensino de Ciências, tem os objetivos de contextualizar a controvérsia Needham-Spallanzani a partir de estudos realizados por contemporâneos que desenvolveram trabalhos temática e metodologicamente semelhantes e de apresentar uma discussão sobre a ciência e o papel das controvérsias no desenvolvimento do pensamento científico. Além disso, discute a sua aplicação no ensino de Biologia, com vistas a uma abordagem explícita de questões relacionadas à Natureza da Ciência (NdC). Os resultados experimentais apresentados por Needham à Royal Society em 1748 continham evidências favoráveis à geração espontânea e foram apoiados por Pierre- Louis Moreau de Maupertuis (1698-1759) e Georges-Louis Leclerc de Buffon (1707- 1788). Incentivado por Charles Bonnet (1720-1793) e René Antoine Ferchault de Réaumur (1683-1754), Spallanzani repetiu os experimentos de Needham e publicou os resultados em sua obra mais conhecida, Saggio di osservazioni microscopiche concernenti il sistema della generazione de’ Signori di Needham e Buffon (Ensaio de observações microscópicas sobre o sistema da geração dos Senhores Needham e Buffon) de 1765, em que refutou os resultados do naturalista inglês. A esse livro se seguiram comentários e objeções feitos por Needham em obra publicada em 1769, e uma tréplica de Spallanzani publicada em uma coletânea de trabalhos, Opuscoli di fisica animale e vegetabile (Opúsculos de Física animal e vegetal) de 1776. A análise da controvérsia permitiu concluir que nenhum dos dois autores mudou de posição em função dos experimentos realizados por estarem baseados em pressupostos teóricos distintos. Discutido à luz do papel das controvérsias científicas 10 na ciência, o episódio possibilitou delinear componentes epistêmicos e não- epistêmicos nas situações de conflito entre teorias científicas rivais, aspectos relevantes para a alfabetização científica almejada para o ensino de ciências. Palavras-chave: História da Biologia – Filosofia da Ciência- geração espontânea – controvérsias científicas – Lazzaro Spallanzani – John Tuberville Needham - ensino de Ciências 11 Abstract CARVALHO, Eduardo Crevelário de; The controversy about spontaneous generation between Needham and Spallanzani: implications for the teaching of biology. Dissertation (Master in Science Education – Biology Education), Physics Institute, Chemical Institute, Biosciences Institute and Education Faculty, University of São Paulo, 2013. Abstract This dissertation approaches the controversy between the english naturalist John Turberville Needham (1713-1781) and the Italian naturalist Lazzaro Spallanzani (1729-1799) on the theme of "generation" of living beings. As a work related to the History of Science and inserted in the search topic History, Philosophy and Culture in Science Teaching, it has the purposes to contextualize
Recommended publications
  • La Logica Del Vivente in Maupertuis: Dall’Attrazione Newtoniana Al Determinismo Psicobiologico
    La logica del vivente in Maupertuis: dall’attrazione newtoniana al determinismo psicobiologico Federico Focher (Istituto di Genetica Molecolare “Luigi Luca Cavalli Sforza”, CNR, Pavia) Dopo aver rilanciato con successo la teoria epigenetica della generazione, reinterpretata alla luce dell’attrazione newtoniana e delle affinità chimiche (Vénus physique, 1745), Pierre-Louis Moreau de Maupertuis (1698-1759) approfondì le proprie indagini teoretiche nel campo della genesi degli organismi e delle specie nel Système de la Nature (1754). In quest’opera, al fine di conciliare il postulato di oggettività della scienza - che respinge il ricorso alle cause finali - con le evidenti proprietà teleonomiche degli esseri viventi, e riconoscendo nel contempo inadeguati a tale scopo i pur originali principii meccanicistici avanzati nella Vénus physique, Maupertuis propose un’ardita teoria panpsichista del vivente, di ispirazione spinoziana. Postulando quindi la materia viva, dotata di istinto e di sentimento, Maupertuis immaginò che una qualche forma di intelligenza o di memoria psichica, associata alla materia, dirigesse lo sviluppo dei viventi. Alla luce delle recenti scoperte della biologia, l’originale determinismo psicobiologico avanzato da Maupertuis nel Système de la Nature appare una geniale intuizione della logica dei processi genetici ed evolutivi. Keywords: Maupertuis, teleonomia, scienze della vita, storia della biologia, informazione genetica, panpsichismo, Buffon. Introduzione Mezzo secolo dopo la scoperta della legge della gravitazione universale
    [Show full text]
  • The Spontaneous Generation Controversy (340 BCE–1870 CE)
    270 4. Abstraction and Unification ∗ ∗ ∗ “O`uen ˆetes-vous? Que faites-vous? Il faut travailler” (on his death-bed, to his devoted pupils, watching over him). The Spontaneous Generation Controversy (340 BCE–1870 CE) “Omne vivium ex Vivo.” (Latin proverb) Although the theory of spontaneous generation (abiogenesis) can be traced back at least to the Ionian school (600 B.C.), it was Aristotle (384-322 B.C.) who presented the most complete arguments for and the clearest statement of this theory. In his “On the Origin of Animals”, Aristotle states not only that animals originate from other similar animals, but also that living things do arise and always have arisen from lifeless matter. Aristotle’s theory of sponta- neous generation was adopted by the Romans and Neo-Platonic philosophers and, through them, by the early fathers of the Christian Church. With only minor modifications, these philosophers’ ideas on the origin of life, supported by the full force of Christian dogma, dominated the mind of mankind for more that 2000 years. According to this theory, a great variety of organisms could arise from lifeless matter. For example, worms, fireflies, and other insects arose from morning dew or from decaying slime and manure, and earthworms originated from soil, rainwater, and humus. Even higher forms of life could originate spontaneously according to Aristotle. Eels and other kinds of fish came from the wet ooze, sand, slime, and rotting seaweed; frogs and salamanders came from slime. 1846 CE 271 Rather than examining the claims of spontaneous generation more closely, Aristotle’s followers concerned themselves with the production of even more remarkable recipes.
    [Show full text]
  • New Yorkers Had Been Anticipating His Visit for Months. at Columbia
    INTRODUCTION ew Yorkers had been anticipating his visit for months. At Columbia University, where French intellectual Henri Bergson (1859–1941) Nwas to give twelve lectures in February 1913, expectations were es- pecially high. When first approached by officials at Columbia, he had asked for a small seminar room where he could directly interact with students and faculty—something that fit both his personality and his speaking style. But Columbia sensed a potential spectacle. They instead put him in the three- hundred-plus-seat lecture theater in Havemeyer Hall. That much attention, Bergson insisted, would make him too nervous to speak in English without notes. Columbia persisted. So, because rhetorical presentation was as impor- tant to him as the words themselves, Bergson delivered his first American lec- ture entirely in French.1 Among the standing-room-only throng of professors and editors were New York journalists and “well-dressed” and “overdressed” women, all fumbling to make sense of Bergson’s “Spiritualité et Liberté” that slushy evening. Between their otherwise dry lines of copy, the reporters’ in- credulity was nearly audible as they recorded how hundreds of New Yorkers strained to hear this “frail, thin, small sized man with sunken cheeks” practi- cally whisper an entire lecture on metaphysics in French.2 That was only a prelude. Bergson’s “Free Will versus Determinism” lec- ture on Tuesday, February 4th—once again delivered in his barely audible French—caused the academic equivalent of a riot. Two thousand people attempted to cram themselves into Havemeyer. Hundreds of hopeful New Yorkers were denied access; long queues of the disappointed snaked around the building and lingered in the slush.
    [Show full text]
  • On the Trail of Digestion
    Middle School Science Eating to Live and Living to Eat Movement of Energy Through Living and Non-living Systems; Student Resource Matter, Its Structure and Changes; From Atoms to the Universe Name On the Trail of Digestion Read the following section on the history of medical science and answer the questions: January 17, 2002 SCoPE SC070104 Page 1 of 6 Middle School Science Eating to Live and Living to Eat Movement of Energy Through Living and Non-living Systems; Student Resource Matter, Its Structure and Changes; From Atoms to the Universe Spallanzani Lazzaro Spallanzani lived in the second half of the 18th Century. You may remember Spallanzani’s experiments on spontaneous generation. His work on digestion is also famous. In Spallanzani’s time, people knew that the stomach was a strong muscle that could grind and mash food. Investigations of bodies told scientists that. But Spallanzani believed that the stomach also held a chemical process. He began his studies using his own falcons. He would feed the falcons small pieces of meat attached firmly to a string, and when the meat had been in the birds stomachs for some time, he would remove it. (You might remember that birds regurgitate quite easily, and some birds feed their babies this way.) Spallanzani believed that digestion was a chemical process. Another noted scientist, Rene Reaumur disagreed. He wrote: "the gastric juice has no more effect out of the living body in dissolving or digesting the food than water, mucilage, milk, or any other bland fluid." Reaumur claimed to have done experiments to see if digestion could take place outside the body as well as in it.
    [Show full text]
  • Key Answers) 1
    II PUC BIOLOGY ASSIGNMENT – 11 (KEY ANSWERS) 1. With a schematic representation, explain the life cycle of HIV. (5) The HIV (retro virus) gains entry into the body through sexual contact with an infected person. The virus then enters macrophages. In macrophages RNA genome of the virus replicates to form viral DNA with the help of reverse transcriptase enzyme. The viral DNA is incorporated into the host DNA and direct infected host cells (macrophages to produce viral particle. Therefore macrophages act as HIV factory. Simultaneously HIVB enters into T-lymphocytes (TH – Helper T-cells) where it replicates and produces progeny viruses. The progeny viruses released into the blood, attack the other helper T-lymphocytes. This is repeated leading to progressive decrease in the number of helper T – lymphocytes in the body. Due to decrease in the number of T – lymphocytes, the person suffers from infections such as Mycobacterium, viruses, fungi and even parasites like Toxoplasma. The person becomes immune deficient. This lead to his death. 2. The cells of malignant tumors are considered as dangerous. – Give reason. (1) Malignant tumors grow very rapidly, damage surrounding normal tissues and spread to other parts through blood stream where they get lodged and transform the normal cells into cancer cells. ASC INDEPENDENT P. U. COLLEGE Page 1 of 6 3. Explain the salient features of double helix model of DNA. (5) WATSON AND CRICK MODEL OF DNA (Double helix model) * Rosalind Franklin is best known for her work on the X-ray diffraction images (1952) of DNA, which led to the discovery of the DNA double helix model (1953) for which Francis Crick, James Watson, and Maurice Wilkins shared the Nobel Prize in Physiology or Medicine in 1962.
    [Show full text]
  • History of Microbiology: Spontaneous Generation Theory
    HISTORY OF MICROBIOLOGY: SPONTANEOUS GENERATION THEORY Microbiology often has been defined as the study of organisms and agents too small to be seen clearly by the unaided eye—that is, the study of microorganisms. Because objects less than about one millimeter in diameter cannot be seen clearly and must be examined with a microscope, microbiology is concerned primarily with organisms and agents this small and smaller. Microbial World Microorganisms are everywhere. Almost every natural surface is colonized by microbes (including our skin). Some microorganisms can live quite happily in boiling hot springs, whereas others form complex microbial communities in frozen sea ice. Most microorganisms are harmless to humans. You swallow millions of microbes every day with no ill effects. In fact, we are dependent on microbes to help us digest our food and to protect our bodies from pathogens. Microbes also keep the biosphere running by carrying out essential functions such as decomposition of dead animals and plants. Microbes are the dominant form of life on planet Earth. More than half the biomass on Earth consists of microorganisms, whereas animals constitute only 15% of the mass of living organisms on Earth. This Microbiology course deals with • How and where they live • Their structure • How they derive food and energy • Functions of soil micro flora • Role in nutrient transformation • Relation with plant • Importance in Industries The microorganisms can be divided into two distinct groups based on the nucleus structure: Prokaryotes – The organism lacking true nucleus (membrane enclosed chromosome and nucleolus) and other organelles like mitochondria, golgi body, entoplasmic reticulum etc. are referred as Prokaryotes.
    [Show full text]
  • Regeneration According to Spallanzani
    DEVELOPMENTAL DYNAMICS 238:2357–2363, 2009 REVIEWS–A PEER REVIEWED FORUM Regeneration According to Spallanzani Panagiotis A. Tsonis* and Timothy P. Fox In this report, we elaborate on a letter that Spallanzani wrote to Bonnet reporting his findings on regeneration in worms, snails, tadpoles, and salamanders. The letter (original in French and translated in English; see Supplementary Material, which is available online) was written to discuss whether or not regeneration in these animals supports Bonnet’s theory on germs. The letter includes several drawings by Spallanzani, which were not published in the Prodromo, his book on Animal Reproduction. Spallanzani made important observations, which he described with considerable detail, but overall he was unable to confidently support Bonnet’s theory. This letter reflects the way of thinking in the 18th century that shaped the important scientific fields of regeneration and reproduction. Developmental Dynamics 238:2357–2363, 2009. © 2009 Wiley-Liss, Inc. Key words: Spallanzani; regeneration; animal reproduction Accepted 4 June 2009 INTRODUCTION of Creation. On the contrary, epigene- 1740 and on worm regeneration in sis allowed space for questioning the 1744 (Savioz, 1948; Dinsmore, 1991) Rooted in Aristotelian philosophy, the role of God. As expected when the first shocked the scientific world. Re´aumur belief that lower animals were gener- experiments in the 18th century re- and Bonnet were preformationists ated spontaneously from decay pre- vealed the regenerative power of ani- and, in fact, Re´aumur believed that vailed until the 17th century when mals, these two competing theories germs were contained within parts re- Redi in 1668 carried out well-con- trolled experiments that provided the were called upon to explain this new sponsible for regeneration.
    [Show full text]
  • Science and Its Times Understanding the Social Significance of Scientific Discovery SAIT Frtmttr 8/29/00 1:29 PM Page 3
    SAIT frtmttr 8/29/00 1:29 PM Page 1 VOLUME4 1700-1799 Science and Its Times Understanding the Social Significance of Scientific Discovery SAIT frtmttr 8/29/00 1:29 PM Page 3 VOLUME4 1700-1799 Science and Its Times Understanding the Social Significance of Scientific Discovery Neil Schlager, Editor Josh Lauer, Associate Editor Produced by Schlager Information Group SAIT Vol 4 - FM 8/30/00 2:49 PM Page iv Science GALE GROUP STAFF Amy Loerch Strumolo, Project Coordinator and Its Christine B. Jeryan, Contributing Editor Times Mary K. Fyke, Editorial Technical Specialist Maria Franklin, Permissions Manager Margaret A. Chamberlain, Permissions Specialist Shalice Shah-Caldwell, Permissions Associate VOLUME 4 Mary Beth Trimper, Production Director 1700-1799 Evi Seoud, Assistant Production Manager Wendy Blurton, Senior Buyer NEIL SCHLAGER, Editor Cynthia D. Baldwin, Product Design Manager JOSH LAUER, Associate Editor Tracey Rowens, Senior Art Director Barbara Yarrow, Imaging and Multimedia Content Manager Randy Bassett, Image Database Supervisor Robyn Young, Senior Editor, Imaging and Multimedia Content Pamela A. Reed, Imaging and Multimedia Content Coordinator Leitha Etheridge-Sims, Image Cataloger While every effort has been made to ensure the reliability of the information pre- sented in this publication, Gale Research does not guarantee the accuracy of the data contained herein. Gale accepts no payment for listing, and inclusion in the publication of any organization, agency, institution, publication, service, or individ- ual does not imply endorsement of the editors or publisher. Errors brought to the attention of the publisher and verified to the satisfaction of the publisher will be cor- rected in future editions.
    [Show full text]
  • Oddly Enough, Vallisnieri's Positionat Padua Was Later to Be
    THE SHADOWED SIDE OF SPALLANZANI JAMES B. HAMILTON An historical study of a man tends to emphasize certain char- acteristics to the exclusion of others. This, of course, enables the reader to gain more readily a mental picture, but the question arises as to whether or not a well-rounded conception can be obtained from consideration of a limited number of traits. Lazaro Spal- lanzani has been indelibly traced as a religious scientist whose force of character dominated the scientific world of his time. That is true enough, but fails in the presentation of a balanced perspective. It may be worth while, then, to dispel part of the shadows that dim his character, to portray a tricky, clever man, every bit as prone to fault as other men, one who gained his ends by craftiness when "strong- handed" means failed-a sly, greedy, yet likeable scientist who placed his work foremost. As a boy, Spallanzani exhibited the wiliness that he was to fall back on in later years at times when straight-forward domineering met with obstacles. His father, a lawyer, set the carefree son to follow in paternal footsteps, but the young lad had other indinations, slipping outside to while away the day in skipping stones over nearby waters. The story is told that while wondering what caused the stones to skip, he pondered how he could escape an approaching life of jurisprudence. An idea occurred. He left off skipping stones to study Logic, Greek, and French. After acquiring somewhat of a background, he artfully laid his plight before the great teacher, Vallisnieri, a native of Spallanzani's birthplace, Scandiano, Italy.
    [Show full text]
  • De Felici1371.Pm4
    Int. J. Dev. Biol. 44: 515-521 (2000) The rise of Italian embryology 515 The rise of embryology in Italy: from the Renaissance to the early 20th century MASSIMO DE FELICI* and GREGORIO SIRACUSA Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy. In the present paper, the Italian embryologists and their main the history of developmental biology were performed (see contributions to this science before 1900 will be shortly reviewed. "Molecularising embryology: Alberto Monroy and the origins of During the twentieth century, embryology became progressively Developmental Biology in Italy" by B. Fantini, in the present issue). integrated with cytology and histology and the new sciences of genetics and molecular biology, so that the new discipline of Embryology in the XV and XVI centuries developmental biology arose. The number of investigators directly or indirectly involved in problems concerning developmental biol- After the first embryological observations and theories by the ogy, the variety of problems and experimental models investi- great ancient Greeks Hippocrates, Aristotle and Galen, embryol- gated, became too extensive to be conveniently handled in the ogy remained asleep for almost two thousand years. In Italy at the present short review (see "Molecularising embryology: Alberto beginning of Renaissance, the embryology of Aristotle and Galen Monroy and the origins of Developmental Biology in Italy" by B. was largely accepted and quoted in books like De Generatione Fantini, in the present issue). Animalium and De Animalibus by Alberto Magno (1206-1280), in There is no doubt that from the Renaissance to the early 20th one of the books of the Summa Theologica (De propagatione century, Italian scientists made important contributions to estab- hominis quantum ad corpus) by Tommaso d’Aquino (1227-1274) lishing the morphological bases of human and comparative embry- and even in the Divina Commedia (in canto XXV of Purgatorio) by ology and to the rise of experimental embryology.
    [Show full text]
  • Galileo's Microscope Test
    Galileo's microscope Test This is the Test material for verifying the contents of the History and Explore sections of the web application. Texts prepared by the Institute and Museum of the History of Science in Florence. Why a test? The structured test consists of 40 multiple-choice questions designed to verify the main content of the application. Galileo's microscope was created for the purpose of furnishing, in an attractive but strictly scientific way, a great body of information on microscopy in the 17 th and 18 th centuries. To reinforce the educational effect, it has been deemed useful to provide a tool of evaluation to be used by teachers, or of self-evaluation for others. For each question, reference is made to the section in which the answer can be found, allowing users the chance to verify the content. Standard timing for the answers is generally 1 minute for each multiple-choice question (34) and 30 seconds for each true/false question (6). The whole test should thus be completed within 37 minutes. 2 1. During what period was the microscope invented? a) □ In the late 15 th – early 16 th century. b) □ Around the middle of the 16 th century. c) □ In the late 16 th – early 17 th century . d) □ Around the middle of the 17 th century. Reference: HISTORY section – The compound microscope. 2. During what period was the “Galilean” microscope constructed (IMSS inv. 3429)? a) □ First half of the 17 th century. b) □ Second half of the 17 th century . c) □ First half of the 18 th century.
    [Show full text]
  • A. Antonie Van Leeuwenhoek B. Edward Jenner C. Francesco Redi
    Exam 1, Micr-22, C. Briggs, ver 9.14 (scaled to 100pts) Name: ___________________________ Tip: Answer the questions you know first. At least guess on everything before you turn this in. Words, drawings, charts – all are welcome. 1. Please write a properly-formatted species name. 1pt 2. Please match the following individuals to their major microbiological contribution. 6pts ____ Challenged idea of spontaneous generation by showing that maggots A. Antonie van Leeuwenhoek B. Edward Jenner from fly eggs. C. Francesco Redi ____ Helped popularize smallpox variolation. D. Lazzaro Spallanzani E. Louis Pasteur ____ Improved microscopes, one of first to observe microorganisms. F. Robert Koch ____ Challenged idea of spontaneous generation by showing that boiled and G. Lady Mary Wortley Montague long-necked containers did not grow microbes. ____ Challenged idea of spontaneous generation by showing that boiled and sealed containers did not grow microbes. ____ Helped develop the smallpox vaccine. ____ Developed rules to determine the causes of particular infectious diseases. 3. Name two emerging diseases. 2pts 4. What are two reasons that diseases are still emerging? 2pts 5. Please identify a major benefit and a major drawback / cost of using the following types of microscope or stain. 4pts Benefit Drawback / Cost (a) Fluorescence (b) Gram stain (c) Brightfield (d) Scanning electron 6. What is a difference between a simple stain and a differential stain? 1pt 7. For the following structures, please indicate whether this can be found in a prokaryotic cell (“pro”), in a eukaryotic cell (“euk”), or in both (“both”). 5pts _____ DNA _____ Rotating flagella _____ Rough endoplasmic reticulum _____ RNA _____ Enzymes _____ Plasma membrane _____ Ribosomes _____ Peptidoglycan _____ Cell wall _____ Nucleus 8.
    [Show full text]