History of Microbiology: Spontaneous Generation Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regarding Belief in Primordial Soup to Explain the Origin of Life
Regarding Belief in Primordial Soup to explain the Origin of Life Belief in a primordial soup where life might spontaneously evolve is as wrong as believing the earth is flat, or, as Hoyle and Wickramasinghe (1981) suggest, as wrong as believing that the pre-Copernican idea that the earth is the center of the universe. They state, “It will be no bad thing to abandon this position” (p. 138). The belief in primordial soup goes something like this: “Somehow a brew of appropriate chemicals managed to get together, the organic soup, and somehow the chemicals managed to shuffle themselves into an early primitive life-form. From then on, all appeared to be plain-sailing, natural selection operating on randomly generated mutations would do the rest” (p. 131). Today we know that life does not arise spontaneously. In the 1860s, Louis Pasteur demonstrated that “the concept of spontaneous generation” was incorrect using “carefully designed experiments” (p. 36). Yet many biologists still “believe that life started on Earth through spontaneous processes” (p. 37). “The recourse to an organic soup to cross this biggest hurdle is evidently a blatant recourse to the spontaneous generation theory which Pasteur claimed to have destroyed. Nevertheless, most scientists, even to this day, have been satisfied to accept it” (p. 37). What scientific tests did Louis Pasteur conduct about spontaneous generation of life? How did he set up his experiment? What were his steps? What was his result? _________________________________________________________________ _________________________________________________________________ -
La Logica Del Vivente in Maupertuis: Dall’Attrazione Newtoniana Al Determinismo Psicobiologico
La logica del vivente in Maupertuis: dall’attrazione newtoniana al determinismo psicobiologico Federico Focher (Istituto di Genetica Molecolare “Luigi Luca Cavalli Sforza”, CNR, Pavia) Dopo aver rilanciato con successo la teoria epigenetica della generazione, reinterpretata alla luce dell’attrazione newtoniana e delle affinità chimiche (Vénus physique, 1745), Pierre-Louis Moreau de Maupertuis (1698-1759) approfondì le proprie indagini teoretiche nel campo della genesi degli organismi e delle specie nel Système de la Nature (1754). In quest’opera, al fine di conciliare il postulato di oggettività della scienza - che respinge il ricorso alle cause finali - con le evidenti proprietà teleonomiche degli esseri viventi, e riconoscendo nel contempo inadeguati a tale scopo i pur originali principii meccanicistici avanzati nella Vénus physique, Maupertuis propose un’ardita teoria panpsichista del vivente, di ispirazione spinoziana. Postulando quindi la materia viva, dotata di istinto e di sentimento, Maupertuis immaginò che una qualche forma di intelligenza o di memoria psichica, associata alla materia, dirigesse lo sviluppo dei viventi. Alla luce delle recenti scoperte della biologia, l’originale determinismo psicobiologico avanzato da Maupertuis nel Système de la Nature appare una geniale intuizione della logica dei processi genetici ed evolutivi. Keywords: Maupertuis, teleonomia, scienze della vita, storia della biologia, informazione genetica, panpsichismo, Buffon. Introduzione Mezzo secolo dopo la scoperta della legge della gravitazione universale -
The Spontaneous Generation Controversy (340 BCE–1870 CE)
270 4. Abstraction and Unification ∗ ∗ ∗ “O`uen ˆetes-vous? Que faites-vous? Il faut travailler” (on his death-bed, to his devoted pupils, watching over him). The Spontaneous Generation Controversy (340 BCE–1870 CE) “Omne vivium ex Vivo.” (Latin proverb) Although the theory of spontaneous generation (abiogenesis) can be traced back at least to the Ionian school (600 B.C.), it was Aristotle (384-322 B.C.) who presented the most complete arguments for and the clearest statement of this theory. In his “On the Origin of Animals”, Aristotle states not only that animals originate from other similar animals, but also that living things do arise and always have arisen from lifeless matter. Aristotle’s theory of sponta- neous generation was adopted by the Romans and Neo-Platonic philosophers and, through them, by the early fathers of the Christian Church. With only minor modifications, these philosophers’ ideas on the origin of life, supported by the full force of Christian dogma, dominated the mind of mankind for more that 2000 years. According to this theory, a great variety of organisms could arise from lifeless matter. For example, worms, fireflies, and other insects arose from morning dew or from decaying slime and manure, and earthworms originated from soil, rainwater, and humus. Even higher forms of life could originate spontaneously according to Aristotle. Eels and other kinds of fish came from the wet ooze, sand, slime, and rotting seaweed; frogs and salamanders came from slime. 1846 CE 271 Rather than examining the claims of spontaneous generation more closely, Aristotle’s followers concerned themselves with the production of even more remarkable recipes. -
Aristotle on Chance and Spontaneous Generation. a Discussion Note
FILOZOFIA ___________________________________________________________________________Roč. 68, 2013, č. 2 ARISTOTLE ON CHANCE AND SPONTANEOUS GENERATION. A DISCUSSION NOTE CHRISTOS PANAYIDES, University of Nicosia, Cyprus PANAYIDES, CH.: Aristotle on Chance and Spontaneous Generation. A Discussion Note FILOZOFIA 68, 2013, No 2, p. 114 In Physics II. 4-6 Aristotle deals with the technical concept of chance (τ ατ µατον). Here a number of specific characteristics are ascribed to the chance happenings. At the same time, in his biological works Aristotle presents his notorious theory of ‘spontaneous generation’ (ατ µατος γ9νεσις). Most scholars assume that this theory ought to be in line with the doctrine of chance, as this is presented in his Physics. It is clear, however, that spontaneous generation lacks (at least some of) the features a chance happening ought to have. For instance, spontaneity is not unusual. My pur- pose here is to address the exegetical problem at hand, in particular to sketch out an argument according to which the discrepancy between Aristotle’s doctrine of chance and his theory of spontaneous generation is merely an apparent one. Keywords: Aristotle – Chance (being) for the sake of something – Generation of ani- mals – Incidental causation J. Lennox – Luck – Per se causation – Physics I In Physics (Phys.) II. 4-6 Aristotle deals with the technical concepts of ‘luck’ (Dτχη) and ‘chance’ (τ ατ µατον). In the opening paragraph of Phys. II. 4 (195b31- 36) he states that the ensuing discussion, in the next couple of chapters, is intended to do three things: (a) determine what luck and chance are, (b) resolve how, if at all, these two fit into the scheme of the four causes and (c) specify how luck and chance are related to 1 each other. -
A Production of Amino Acids Under Possible Primitive Earth Conditions
A Production of Amino Acids Under Possible Primitive Earth Conditions Stanley L. Miller Methods and Logic - 2/24/15 Outline for today’s class • The origin of life • Stanley L. Miller and Harold Urey • Background • Landmark Paper • Landmark Experiment • Subsequent Studies There are many theories regarding the origin of life • Theory of spontaneous generation: living organisms can arise suddenly and spontaneously from any kind of non-living matter • Aristotle, ancient Egyptians • Popular until 1600s when it was disproved due to various experiments • Fransisco Redi (1665) http://www.tutorvista.com/content/b iology/biology-iii/origin-life/origin- • Louis Pasteur (1864) life-theories.php# http://bekarice.com/college-spontaneous-generation/ There are many theories regarding the origin of life • Cozmozoic theory (parpermia): life reached Earth from other heavenly bodies such as meteorites, in the form of highly resistance spores of some organisms • Richter (1865) • Arrhenius (1908) • Overall lack of evidence Wikipedia • Living matter cannot survive the extreme cold, dryness and ultra-violet radiation from the sun required to be crossed for reaching the earth. There are many theories regarding the origin of life • Theory of chemical evolution: Origin of life on earth is the result of a slow and gradual process of chemical evolution that probably occurred about 4 billion years ago • Oparin (1923) • Haldone (1928) • Early Earth atmosphere (mixture of gases and solar radiation/lightning) • Miller-Urey Experiment Stanley L. Miller - Biography Born: 1930 in Oakland, CA Died: 2007 in San Diego, CA High school nickname: “a chem whiz” BS: UC Berkley - 1951 PhD: University of Chicago – 1954 (advisor: Harold Urey) California Institute of Technology Columbia University UC San Diego (1960-2007) National Academy of Sciences Landmark Paper: (1953) Production of amino acids under possible primitive earth conditions". -
The Stuff of Youth and Supply Free Ca2+ at the Inner Membrane Surface
NEWS & VIEWS throughout the hydrophobic interior of the bilayer. Release of Ca2+ inside the vesicle occurs when the MATERIAL WITNESS shuttle complex meets the carotinoid radical cation, which oxidizes the complex to form the stable quinone The stuff of youth and supply free Ca2+ at the inner membrane surface. The Ca2+ pumping circuit is completed by recycling of here’s scarcely any scientist, the quinone to the semiquinone form at the outer with the possible exception of membrane surface.This reduction reaction is driven by geneticists and cosmologists, the naphthoquinone radical anion,formed in the who feels that his or her initial electron transfer process. T discipline gets its fair share of There remain several limitations to this approach. the limelight. But materials scientists have The observed photochemical efficiency of Ca2+ the added disadvantage that their science pumping,estimated to be ~0.01,is low. The low value runs perilously close to engineering—and may be a consequence of relying on quinone shuttle when was the last time you saw a popular diffusion within the bilayer to move ions and cycle TV programme on engineering? redox species; if diffusion of these species is slow relative So it is good news that this year’s Christmas Lectures for to competing,non-productive secondary reactions,the children at the UK’s Royal Institution in London, entitled Smart efficiency of the system will suffer. Long-term stability Stuff, will have a heavy focus on materials. Not only that, but of the Ca2+-binding shuttle quinones may also be an they will show something of the grand sweep and diversity of issue under conditions in which many catalytic cycles today’s materials science, ranging from photonics to are required.In addition,Ca2+ transport kinetics in the biomedical materials to food science. -
New Yorkers Had Been Anticipating His Visit for Months. at Columbia
INTRODUCTION ew Yorkers had been anticipating his visit for months. At Columbia University, where French intellectual Henri Bergson (1859–1941) Nwas to give twelve lectures in February 1913, expectations were es- pecially high. When first approached by officials at Columbia, he had asked for a small seminar room where he could directly interact with students and faculty—something that fit both his personality and his speaking style. But Columbia sensed a potential spectacle. They instead put him in the three- hundred-plus-seat lecture theater in Havemeyer Hall. That much attention, Bergson insisted, would make him too nervous to speak in English without notes. Columbia persisted. So, because rhetorical presentation was as impor- tant to him as the words themselves, Bergson delivered his first American lec- ture entirely in French.1 Among the standing-room-only throng of professors and editors were New York journalists and “well-dressed” and “overdressed” women, all fumbling to make sense of Bergson’s “Spiritualité et Liberté” that slushy evening. Between their otherwise dry lines of copy, the reporters’ in- credulity was nearly audible as they recorded how hundreds of New Yorkers strained to hear this “frail, thin, small sized man with sunken cheeks” practi- cally whisper an entire lecture on metaphysics in French.2 That was only a prelude. Bergson’s “Free Will versus Determinism” lec- ture on Tuesday, February 4th—once again delivered in his barely audible French—caused the academic equivalent of a riot. Two thousand people attempted to cram themselves into Havemeyer. Hundreds of hopeful New Yorkers were denied access; long queues of the disappointed snaked around the building and lingered in the slush. -
The Frog in Taffeta Pants
Evolutionary Anthropology 13:5–10 (2004) CROTCHETS & QUIDDITIES The Frog in Taffeta Pants KENNETH WEISS What is the magic that makes dead flesh fly? himself gave up on the preformation view). These various intuitions arise natu- Where does a new life come from? manded explanation. There was no rally, if sometimes fancifully. The nat- Before there were microscopes, and compelling reason to think that what uralist Henry Bates observed that the before the cell theory, this was not a one needed to find was too small to natives in the village of Aveyros, up trivial question. Centuries of answers see. Aristotle hypothesized epigenesis, the Tapajos tributary to the Amazon, were pure guesswork by today’s stan- a kind of spontaneous generation of believed the fire ants, that plagued dards, but they had deep implications life from the required materials (pro- them horribly, sprang up from the for the understanding of life. The vided in the egg), that systematic ob- blood of slaughtered victims of the re- 5 phrase spontaneous generation has servation suggested coalesced into a bellion of 1835–1836 in Brazil. In gone out of our vocabulary except as chick. Such notions persisted for cen- fact, Greek mythology is full of beings an historical relic, reflecting a total turies into what we will see was the spontaneously arising—snakes from success of two centuries of biological critical 17th century, when the follow- Medusa’s blood, Aphrodite from sea- research.1 The realization that a new ing alchemist’s recipe was offered for foam, and others. Even when the organism is always generated from the production of mice:3,4 mix sweaty truth is known, we can be similarly one or more cells shed by parents ex- underwear and wheat husks; store in impressed with the phenomena of plained how something could arise open-mouthed jar for 21 days; the generation. -
Joule's Thermoscope and the Second Law of Thermodynamics
JOULE’S THERMOSCOPE AND THE SECOND LAW OF THERMODYNAMICS Summary This paper describes an instrument devised by Joule in 1863 to detect the energy of moonlight. It is extraordinarily sensitive to heat and must convert heat into mechanical energy with high efficiency. But since the temperature rise caused by moonlight is only 10-4F, the Carnot theorem would give a maximum efficiency of 10-6. JOULE’S THERMOSCOPE SHOWS THAT THE CARNOT EFFICIENCY LIMIT, THE MOST COMMON EXPRESSION OF THE SECOND LAW OF THERMODYNAMICS, IS WRONG The thermoscope uses convection currents and involves an energy cycle at constant volume. These features form the basis of proposals I have made for the efficient conversion of solar energy into electricity that were placed on my website in March 2002, September 2002 and March 2003. Indeed Joule‟s thermoscope is identical to Figure 3 in the latter Simple Solar Engine. It is my view that heat from fossil fuels or from solar energy can be converted into mechanical energy or electricity with an efficiency of up to 100% using energy cycles at constant volume. I would be very grateful for any comments. [E-mail address: williams.a(AT)globalwarmingsolutions.co.uk] Joule’s Thermoscope and the Second Law of Thermodynamics In 1863 James Joule devised an instrument to detect the energy of moonlight1, 2. It was to settle an argument with an adversary John Tyndall over whether the moon was hot or cold. He described the thermoscope as “a sort of wind thermometer”3. I am grateful to the Museum of Science and Industry in Manchester for their efforts to track down the instrument but it does not survive nor is there any detailed drawing. -
On the Trail of Digestion
Middle School Science Eating to Live and Living to Eat Movement of Energy Through Living and Non-living Systems; Student Resource Matter, Its Structure and Changes; From Atoms to the Universe Name On the Trail of Digestion Read the following section on the history of medical science and answer the questions: January 17, 2002 SCoPE SC070104 Page 1 of 6 Middle School Science Eating to Live and Living to Eat Movement of Energy Through Living and Non-living Systems; Student Resource Matter, Its Structure and Changes; From Atoms to the Universe Spallanzani Lazzaro Spallanzani lived in the second half of the 18th Century. You may remember Spallanzani’s experiments on spontaneous generation. His work on digestion is also famous. In Spallanzani’s time, people knew that the stomach was a strong muscle that could grind and mash food. Investigations of bodies told scientists that. But Spallanzani believed that the stomach also held a chemical process. He began his studies using his own falcons. He would feed the falcons small pieces of meat attached firmly to a string, and when the meat had been in the birds stomachs for some time, he would remove it. (You might remember that birds regurgitate quite easily, and some birds feed their babies this way.) Spallanzani believed that digestion was a chemical process. Another noted scientist, Rene Reaumur disagreed. He wrote: "the gastric juice has no more effect out of the living body in dissolving or digesting the food than water, mucilage, milk, or any other bland fluid." Reaumur claimed to have done experiments to see if digestion could take place outside the body as well as in it. -
History and Scope of Microbiology the Story of Invisible Organisms
A study material for M.Sc. Biochemistry (Semester: IV) Students on the topic (EC-1; Unit I) History and Scope of Microbiology The story of invisible organisms Dr. Reena Mohanka Professor & Head Department of Biochemistry Patna University Mob. No.:- +91-9334088879 E. Mail: [email protected] MICROBIOLOGY 1. WHAT IS A MICROBIOLOGY? Micro means very small and biology is the study of living things, so microbiology is the study of very small living things normally too small that are usually unable to be viewed with the naked eye. Need a microscope to see them Virus - 10 →1000 nanometers Bacteria - 0.1 → 5 micrometers (Human eye ) can see 0.1 mm to 1 mm Microbiology has become an umbrella term that encompasses many sub disciplines or fields of study. These include: - Bacteriology: The study of bacteria - Mycology: Fungi - Protozoology: Protozoa - Phycology: Algae - Parasitology: Parasites - Virology: Viruses WHAT IS THE NEED TO STUDY MICROBIOLOGY • Genetic engineering • Recycling sewage • Bioremediation: use microbes to remove toxins (oil spills) • Use of microbes to control crop pests • Maintain balance of environment (microbial ecology) • Basis of food chain • Nitrogen fixation • Manufacture of food and drink • Photosynthesis: Microbes are involved in photosynthesis and accounts for >50% of earth’s oxygen History of Microbiology Anton van Leeuwenhoek (1632-1723) (Dutch Scientist) • The credit of discovery of microbial world goes to Anton van Leeuwenhoek. He made careful observations of microscopic organisms, which he called animalcules (1670s). • Antoni van Leeuwenhoek described live microorganisms that he observed in teeth scrapings and rain water. • Major contributions to the development of microbiology was the invention of the microscope (50-300X magnification) by Anton von Leuwenhoek and the implementation of the scientific method. -
2. Scientific Inquiry-S
Scientific Inquiry What do scientists do? Why? Science is a unique way of learning about the natural world. Scientists work hard to explain events, living organisms, and changes we see around us every day. Model 1 depicts typical activities or stages scientists engage in when conducting their work. The design of the model shows how various steps in scientific inquiry are connected to one another. None of the activities stands alone—they are all interdependent. Model 1 – Scientific Inquiry Observe Communicate Define the with the wider problem community Form a Reflect study on the question findings Questions Research Analyze the problem the results State the Experiment expectations and gather (hypothesis) data Scientific Inquiry 1 1. What is the central theme of all scientific inquiry as shown in Model 1? 2. What are the nine activities that scientists engage in as part of scientific inquiry? 3. Which of the activities would require a scientist to make some observations? 4. Which of the steps would require a scientist to gather data? 5. Considering the activity described as “communicating with the wider community,” in what ways might a scientist communicate? 6. Remembering that scientists often work in teams, which activities would require a scientist to communicate with others? 7. Given your responses to Questions 1–6, do you think these activities must be carried out in a specific order or can multiple activities be carried out at the same time? Justify your response by giving examples to support your answer. 2 POGIL™ Activities for High School Biology Model 2 – Redi’s Experiment Meat Fly eggs and maggots Fly Solid cover Screen cover Container 1 Container 2 Container 3 The table below represents the ideas the Italian scientist Francesco Redi (1626–1698) might have had as he was carrying out his experiments.