Latin Name to Common Name Index

Total Page:16

File Type:pdf, Size:1020Kb

Latin Name to Common Name Index Latin Name Common Name(s) Acacia melanoxylon Blackwood, Australian Acer Nigrum/Saccharum Maple, Hard (Sugar/Rock) Acer Rubrum/Saccharinum Maple, soft (Red and Silver Maple) Afzelia spp. Afzelia Alnus spp. Alder Aningeria spp. Aniegre Madrone Arbutus Spp. Manzanita Goncalo Alves Astronium graveolens Tigerwood Astronium lecointei Tigerwood Betula Alleghaniensis Birch, Yellow Brosimum rubescens/paraense Bloodwood Verawood Bulnesia Arborea Maracaibo Lignum Vitae Palo Santo Bulnesia Sarmienti Argentine Lignum Vitae Bursera simaruba Gumbo Limbo Australian Cypress Callitris glauca White Cypress Cardwellia Sublimis Lacewood, Australian Carya Illinoiensis Pecan Carya Spp. Hickory Castanea Dentata Chestnut, American Catalpa spp. Catalpa Iroko Chloraphora Excelsa Kambala Chlorocardium Rodiaei/Octotea Rodiaei/Nectandra rodiei Greenheart Cinnamomum camphora Camphor Claophyllum Brasiliense Santa Maria Cordia dodecandra Ziricote Cordia Gerascanthus/Elaeagniodes Bocote Dalbergia melanoxylon Blackwood, African Dalbergia Nigra Rosewood, Brazillian Dalbergia retusa Cocobolo Dalbergia Stevensonii Rosewood, Honduran Tamarindo Dialium Guianense Jutahy Dicorynia Guianensis Angelique Diospyros spp. Ebony, African Diospyros virginiana Persimmon Brazilian Teak Dipteryx Odorata Cumaru Dyera costulata Jelutong Entandrophragma Cylindricum Sapele Eucalyptus diversicolor Karri Eucalyptus grandis+urophylla Lyptus Eucalyptus Marginata Jarrah Fagus Grandifolia Beech, American Fraxinus Americana/Pennsylvanica Ash Lacewood Grevillea robusta Silky Oak Guaiacum Officinale Lignum Vitae Bubinga Guibourtia demeusei African Rosewood Guibourtia Ehie Shedua Jatoba Hymenaea courbaril Brazilian Cherry Ilex spp. Holly Intsia bijuga Merbau Juglans Cinerea Butternut Juglans Neotropica Walnut, Tropical Juglans Nigra Walnut; Black Walnut Mahogany, African Khaya Ivorensis Khaya Sapote Licania spp. Monkey Apple Liriodendron tulipifera Poplar Walnut, African Lovoa Trichilioides Mansonia Rosewood, Bolivian Morado Moradillo Machaerium acutifolium/sclieroxylon/schleroxylon Pau Ferro Maclura pomifera Osage Orange Magnolia spp. Magnolia Cerezo Manilkara bidentata Bolivian Cherry Chechen Black Poisonwood Metopium Brownei Caribbian Rosewood Zebrawood Microberlinia Brazzavillensis/bisulcata Zebrano Millettia laurentii Wenge Makore Mimusops Heckelii African Cherry myroxylon peruiferum Santos Mahogany Ochroma pyramida Balsa Olea hochstetteri Olive Purpleheart Peltogyne spp. Amaranth Pericopsis elata Afrormosia Imbuya Imbuia Phoebe Porosa Brazillian Walnut Phoebe porosa Walnut, Brazilian Pine, Southern Yellow Pinus Shortleaf Pine Pinus echinata/elliottii Heartpine Curupay Brazilian /Patagonian Rosewood Piptadenia Macrocarpa Tiger Mahogany Pirantinera guianesis / Brosimum guianensis Snakewood Platanus Occidentalis Sycamore, American Populus tremuloides Aspen Prosopis Juliflora/Glandulosa Mesquite Prunus Serotina Cherry, Black Pseudotsuga Menziesii Douglas Fir Padauk, Andaman Pterocarpus dalbergioides Vermillion wood Narrah Pterocarpus Indicus Amboyna Pterocarpus macrocarpus Paduak, Burma Pterocarpus soyauxii Padauk, African Quercus Alba Oak, White Quercus Rubra Oak, Red Quercus Virginia Live Oak Rhamnus Zeyheri Pink Ivory Rhizophora mangle Red Mangrove Robinia pseudoacacia Locust, Black Santalum album Sandalwood Sequoia sempervirens Redwood Mahogany, Philipene Shorea spp. Lauan Sideroxylon spp. Mastic Ebony, Brazilian Swartzia tomentosa Wamara Swietenia Macrophylla Mahogany, Honduran Ipe Tabebuia serratifolia Lapacho Tamarindus indica Tamarindo Taxodium distichum Cypress, Bald or Pond Tectona Grandis Teak Tilia Americana Basswood Ulmus americana Elm Yellowheart Zanthoxylum Flavum/Flava West Indian Satinwood.
Recommended publications
  • Physical, Mechanical, and Other Properties Of
    ARC: 634.9 TA/OST 73-24 C559a PHYSICAL, MECHANICAL, AND OTHER PROPERTIES OF SELECTED SECONDARY SPECIES in Surinam, Peru, Colombia, Nigeria, Gabon, Philippines, and Malaysia FPL-AID-PASA TA(Aj)2-73 (Species Properties) * PHYSICAL, MECHANICAL, AND OTHER PROPERTIES OF SELECTED SECONDARY SPECIES LOCATED IN SURINAM, PERU, COLOMBIA, NIGERIA, GABON, PHILIPPINES, AND MALAYSIA MARTIN CHUDNOFF, Forest Products Technologist Forest Products Laboratory Forest Service, U.S. Department of Agriculture Madison, Wisconsin 53705 November 1973 Prepared for AGENCY FOR INTERNATIONAL DEVELOPMENT U.S. Department of State Washington, DC 20523 ARC No. 634.9 - C 559a INTRODUCTION This report is a partial response to a Participating Agency Service Agreement between the Agency for Inter­ national Development and the USDA, Forest Service (PASA Control No. TA(AJ)2-73) and concerns a study of the factors influencing the utilization of the tropical forest resource. The purpose of this portion of the PASA obligation is to present previously published information on the tree and wood characteristics of selected secondary species growing m seven tropical countries. The format is concise and follows the outline developed for the second edition of the "Handbook of Hardwoods" published by HMSO, London. Species selected for review are well known in the source countries, but make up a very small component, if any, of their export trade. The reasons why these species play a secondary role in the timber harvest are discussed in the other accompanying PASA reports. ii INDEX Pages SURINAM 1-11 Audira spp. Eperu falcata Eschweilera spp. Micropholis guyanensis Nectandra spp. Ocotea spp. Parinari campestris Parinari excelsa Pouteria engleri Protium spp.
    [Show full text]
  • Back Grou Di Formatio O the Co Servatio Status of Bubi Ga Ad We Ge Tree
    BACK GROUD IFORMATIO O THE COSERVATIO STATUS OF BUBIGA AD WEGE TREE SPECIES I AFRICA COUTRIES Report prepared for the International Tropical Timber Organization (ITTO). by Dr Jean Lagarde BETTI, ITTO - CITES Project Africa Regional Coordinator, University of Douala, Cameroon Tel: 00 237 77 30 32 72 [email protected] June 2012 1 TABLE OF COTET TABLE OF CONTENT......................................................................................................... 2 ACKNOWLEDGEMENTS................................................................................................... 4 ABREVIATIONS ................................................................................................................. 5 ABSTRACT.......................................................................................................................... 6 0. INTRODUCTION ........................................................................................................10 I. MATERIAL AND METHOD...........................................................................................11 1.1. Study area..................................................................................................................11 1.2. Method ......................................................................................................................12 II. BIOLOGICAL DATA .....................................................................................................14 2.1. Distribution of Bubinga and Wengé species in Africa.................................................14
    [Show full text]
  • Challenges of Conservation and Sustainable Management of African Rosewood (Pterocarpus Erinaceus) in West Africa
    Chapter Challenges of Conservation and Sustainable Management of African Rosewood (Pterocarpus erinaceus) in West Africa Adjonou Kossi, Houetchegnon Towanou, Rabiou Habou, Segla Kossi Novinyo, Abotsi Komla Elikplim, Johnson Benziwa Nathalie, Alaba Pyoabalo, Ouinsavi Christine A.I. Nougbodé, Quashie Akossiwoa Marie-Luce, Kokutse Adzo Dzifa, Mahamane Ali and Kokou Kouami Abstract Pterocarpus erinaceus is an endemic and threatened plant species in arid and semiarid zones of West Africa and is highly exploited for timber, animal feeding, and various medicinal uses. The species is currently native to the Guinean forest- savannah mosaic ecoregion and reported from Senegal to Cameroon. The values of the main characteristics of the P. erinaceus forest stands (density, average diameter, À average height and average stem height) vary significantly (P < 10 3) from the Guinean zone to the Sahelian zone. It has high technological performance and can be classified as heavy and very hard wood with a density of the order of 0.80 Æ 0.07 g/cm3 and an average hardness of 12 Æ 3.7 g/cm3. The species is the subject of large-scale international traffic between West Africa and Asia, which is by far the greatest threat to the species. The various uses induce repeated mutilation and increase pressures on the species resulting in a significant reduction in its natural populations. In response to this situation, measures are proposed, including large-scale plant production strategies, the definition of minimum felling diameters, policy measures, etc., to meet the restoration needs of natural stands of P. erinaceus and the fight against climate change. Keywords: Pterocarpus erinaceus, socioeconomic services, wood properties, uncontrolled logging, sustainable management, West Africa 1.
    [Show full text]
  • Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607)
    Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607) by Nancy Ross Preface Since it was published in 1984, Tropical Timbers of the World has proven to be an extremely valuable reference to the properties and uses of tropical woods. It has been particularly valuable for the selection of species for specific products and as a reference for properties information that is important to effective pro- cessing and utilization of several hundred of the most commercially important tropical wood timbers. If a user of the book has only a common or trade name for a species and wishes to know its properties, the user must use the index of common names beginning on page 451. However, most tropical timbers have numerous common or trade names, depending upon the major region or local area of growth; furthermore, different species may be know by the same common name. Herein lies a minor weakness in Tropical Timbers of the World. The index generally contains only the one or two most frequently used common or trade names. If the common name known to the user is not one of those listed in the index, finding the species in the text is impossible other than by searching the book page by page. This process is too laborious to be practical because some species have 20 or more common names. This supplement provides a complete index of common or trade names. This index will prevent a user from erroneously concluding that the book does not contain a specific species because the common name known to the user does not happen to be in the existing index.
    [Show full text]
  • The Woods of Liberia
    THE WOODS OF LIBERIA October 1959 No. 2159 UNITED STATES DEPARTMENT OF AGRICULTURE FOREST PRODUCTS LABORATORY FOREST SERVICE MADISON 5, WISCONSIN In Cooperation with the University of Wisconsin THE WOODS OF LIBERIA1 By JEANNETTE M. KRYN, Botanist and E. W. FOBES, Forester Forest Products Laboratory,2 Forest Service U. S. Department of Agriculture - - - - Introduction The forests of Liberia represent a valuable resource to that country-- especially so because they are renewable. Under good management, these forests will continue to supply mankind with products long after mined resources are exhausted. The vast treeless areas elsewhere in Africa give added emphasis to the economic significance of the forests of Liberia and its neighboring countries in West Africa. The mature forests of Liberia are composed entirely of broadleaf or hardwood tree species. These forests probably covered more than 90 percent of the country in the past, but only about one-third is now covered with them. Another one-third is covered with young forests or reproduction referred to as low bush. The mature, or "high," forests are typical of tropical evergreen or rain forests where rainfall exceeds 60 inches per year without pro­ longed dry periods. Certain species of trees in these forests, such as the cotton tree, are deciduous even when growing in the coastal area of heaviest rainfall, which averages about 190 inches per year. Deciduous species become more prevalent as the rainfall decreases in the interior, where the driest areas average about 70 inches per year. 1The information here reported was prepared in cooperation with the International Cooperation Administration. 2 Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
    [Show full text]
  • Mechanical Stress in the Inner Bark of 15 Tropical Tree Species and The
    Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras To cite this version: Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure. Botany / Botanique, NRC Research Press, 2019, 10.1139/cjb-2018-0224. hal-02368075 HAL Id: hal-02368075 https://hal.archives-ouvertes.fr/hal-02368075 Submitted on 18 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure1 Romain Lehnebach, Léopold Doumerc, Bruno Clair, and Tancrède Alméras Abstract: Recent studies have shown that the inner bark is implicated in the postural control of inclined tree stems through the interaction between wood radial growth and tangential expansion of a trellis fiber network in bark. Assessing the taxonomic extent of this mechanism requires a screening of the diversity in bark anatomy and mechanical stress. The mechanical state of bark was measured in 15 tropical tree species from various botanical families on vertical mature trees, and related to the anatomical structure of the bark.
    [Show full text]
  • OVENGKOL.Pdf
    OVENGKOL Page 1of 4 Family: FABACEAE-CAESALPINIOIDEAE (angiosperm) Scientific name(s): Guibourtia ehie Commercial restriction: no commercial restriction WOOD DESCRIPTION LOG DESCRIPTION Color: yellow brown Diameter: from 60 to 75 cm Sapwood: clearly demarcated Thickness of sapwood: from 4 to 7 cm Texture: fine Floats: no Grain: interlocked Log durability: good Interlocked grain: slight Note: Wood yellow brown to dark brown, with grey to blackish veins and copper glints. Moiré aspect on quartersawn. White deposits. PHYSICAL PROPERTIES MECHANICAL AND ACOUSTIC PROPERTIES Physical and mechanical properties are based on mature heartwood specimens. These properties can vary greatly depending on origin and growth conditions. Mean Std dev. Mean Std dev. Specific gravity *: 0,82 0,05 Crushing strength *: 69 MPa 9 MPa Monnin hardness *: 7,5 2,3 Static bending strength *: 127 MPa 16 MPa Coeff. of volumetric shrinkage: 0,57 % 0,12 % Modulus of elasticity *: 21470 MPa 2781 MPa Total tangential shrinkage (TS): 8,0 % 1,2 % Total radial shrinkage (RS): 3,9 % 0,7 % (*: at 12% moisture content, with 1 MPa = 1 N/mm²) TS/RS ratio: 2,1 Fiber saturation point: 24 % Musical quality factor: 109,8 measured at 2875 Hz Stability: moderately stable NATURAL DURABILITY AND TREATABILITY Fungi and termite resistance refers to end-uses under temperate climate. Except for special comments on sapwood, natural durability is based on mature heartwood. Sapwood must always be considered as non-durable against wood degrading agents. E.N. = Euro Norm Funghi (according to E.N. standards): class 2 - durable Dry wood borers: durable - sapwood demarcated (risk limited to sapwood) Termites (according to E.N.
    [Show full text]
  • 2018 Issn: 2456-8643 Indigenous Tree Diversity
    International Journal of Agriculture, Environment and Bioresearch Vol. 3, No. 03; 2018 ISSN: 2456-8643 INDIGENOUS TREE DIVERSITY IN MALUKU AND FIJI AS A FUNCTION OF PLANT GROWTH PROMOTING RHIZOBACTERIA Reginawanti Hindersah*1,5, Thomas Melianus Silaya2, Jahangeer Bhat3, Champathi Gunathilake3 and Whippy Taniela4 1Department of Soil Science Faculty of Agriculture Padjadjaran University Jalan Raya Bandung-Sumedang Km. 21, Jatinangor Campus, Sumedang 45363, West Java Indonesia 2Department of Forestry Faculty of Agriculture Pattimura University Jalan Ir. M. Putuhena, Poka Campus, Ambon 97233, Maluku, Indonesia 3College of Agriculture Fishery and Forestry Fiji National University, Koronivia Campus, Kings Road, Nausori, Fiji 4Timber Utilization and Research division, Forestry Training Center Fiji Ministry of Forestry 5Centre of Excellence Maluku Corner Padjadjaran University ABSTRACT: In Maluku and Fiji islands, forest trees are an important vegetation to protect environment quality and provide economical value for community as well as state. In sustainable tree nursery, using Plant Growth Promoting Rhizobacteria (PGPR) to enhance plant growth is recommended. The objective of this assessment was to provide information concerning the diversity and similarity of native forest tree species—based on secondary data—grown in both tropical Melanesian regions; and the possibility to apply PGPR in its seed nursery. The result demonstrated that at least 15 trees genus among them five tree species are naturally grown in both region but the main utilization of those trees in both regions is differed. Tree similarity provides evidence on the same natural factors affecting the process of vegetation establishment in Maluku and Fiji. Timber production in Fiji is more extensive than the one in Maluku, but seed nursery in both regions has not yet applied PGPR as bio fertilizer and bio stimulant.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Intsia Bijuga (Vesi)
    April 2006 Species Profiles for Pacific Island Agroforestry ver. 3.1 www.traditionaltree.org Intsia bijuga (vesi) Fabaceae (legume family) choyo, show, kebuk (Pohnpei); cohu, faux teck (French); dort, thort, zort, zolt, show, wantal (Yap); dort, wantal (Palau); fehi (Tonga); fesi (Rotuma); kwila, iban, mboan, bon, menau (Papua New Guinea); ifilele (Samoa); ifit, ifet, ipil (Guam and Mariana Islands); ipil, Moluccan ironwood, Borneo teak (English); kohu (New Caledonia); kubok, kubuk (Marshall Is- lands); kuren, nityanmis, tuamis (Chuuk); natora (Bislama, pidgin), tora, tor, atora, nator, n‘tor (Vanuatu); u‘ula (Kwara‘ae), nyia nwola, vei, nkengia, kivili, huhula, rurula, gugura (Solomon Islands); vesi, vehi, vesiwai, vesi dina (Fiji) Randolph R. Thaman, Lex A. J. Thomson, Robin DeMeo, Francis Areki, and Craig R. Elevitch IN BRIEF h C vit Distribution Primarily in Southeast Asia E El and found on many islands of Melanesia, Mi- C. cronesia, and Polynesia. Size Typically reaches 7–25 m (23–82 ft) at photo: maturity, usually with a single trunk. Habitat Favors coastal and lowland forest, on well drained or swampy sites, especially on limestone, 0–450 m (0–1480 ft) with rainfall of 1500–2300 mm (60–90 in). Vegetation Associated with mangroves, lime- stone forests, riverine forests, some atoll forests on wetter atolls, and lowland coastal forests. Soils Grows in light, medium, and heavy soils; tolerates soils with impeded drainage and sea- sonally waterlogged, shallow, saline, sodic, and limestone (calcareous) soils, often growing on bare limestone on upraised limestone islands. Growth rate Moderate growth rate, <1.5 m per yr (5 ft/yr). Main agroforestry uses Coastal protection, windbreak, coastal soil stabilization, ornamen- tal, living fence.
    [Show full text]
  • Wood Preservation Manual Wood Preservation Manual
    Wood preservation manual Wood preservation manual Mechanical Wood Products Branch Forest I ndustries Division FAD Forestry Department The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-34 ISBN 92-5-102470-7 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy. © FAD 1986 - i - CONTENTS Page CHAPTER 1 INTRODUCTION 1 Background and the purpose of the manual CHAPTER 2 WHAT IS PRESERVATION? 2 Importance, benefits and economics of wood preservation, protective measures, protection by specification, protection by design detailing CHAPTER 3 NATURE OF WOOD 13 Wood structure, classes of wood, moisture content and natural durability CHAPTER 4 DECAY HAZARDS 21 Fungi, insects, borers, weathering, fire CHAPTER 5 WOOD PRESERVATIVES 32 Properties, ideal preservative, types of preservatives, tar oils,
    [Show full text]
  • Mechanical Properties of Wood
    Mechanical Properties of Wood Course No: S04-004 Credit: 4 PDH Gilbert Gedeon, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 [email protected] Abstract Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses. Keywords: wood structure, physical properties (wood), mechanical properties (wood), lumber, wood-based composites, plywood, panel products, design, fastenings, wood moisture, drying, gluing, fire resistance, finishing, decay, sandwich construction, preservation, and wood- based products On the cover: (Left to right, top to bottom) 1. Research at the Forest Products Laboratory, Madison, Wisconsin, contributes to maximizing benefits of the Nation’s timber resource. 2. Testing the behavior of wood in fire helps enhance fire safety. 3. The all-wood, 162-m (530-ft ) clear-span Tacoma Dome exemplifies the structural and esthetic potential of wood construction (photo courtesy of Western Wood Structures, Inc., Tualatin, Oregon). 4. Bending tests are commonly used to determine the engineering properties of wood. 5. Engineered wood trusses exemplify research that has led to more efficient use of wood. 6. The Teal River stress-laminated deck bridge is March 1999 located in Sawyer County, Wisconsin. 7. Kiln drying of wood is an important procedure Forest Products Laboratory. 1999. Wood handbook—Wood as an during lumber manufacturing. engineering material. Gen. Tech. Rep. FPL–GTR–113. Madison, WI: 8. Legging adhesive (photo courtesy of Air Products U.S.
    [Show full text]