Mechanical Properties of Wood

Total Page:16

File Type:pdf, Size:1020Kb

Mechanical Properties of Wood Mechanical Properties of Wood Course No: S04-004 Credit: 4 PDH Gilbert Gedeon, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 [email protected] Abstract Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses. Keywords: wood structure, physical properties (wood), mechanical properties (wood), lumber, wood-based composites, plywood, panel products, design, fastenings, wood moisture, drying, gluing, fire resistance, finishing, decay, sandwich construction, preservation, and wood- based products On the cover: (Left to right, top to bottom) 1. Research at the Forest Products Laboratory, Madison, Wisconsin, contributes to maximizing benefits of the Nation’s timber resource. 2. Testing the behavior of wood in fire helps enhance fire safety. 3. The all-wood, 162-m (530-ft ) clear-span Tacoma Dome exemplifies the structural and esthetic potential of wood construction (photo courtesy of Western Wood Structures, Inc., Tualatin, Oregon). 4. Bending tests are commonly used to determine the engineering properties of wood. 5. Engineered wood trusses exemplify research that has led to more efficient use of wood. 6. The Teal River stress-laminated deck bridge is March 1999 located in Sawyer County, Wisconsin. 7. Kiln drying of wood is an important procedure Forest Products Laboratory. 1999. Wood handbook—Wood as an during lumber manufacturing. engineering material. Gen. Tech. Rep. FPL–GTR–113. Madison, WI: 8. Legging adhesive (photo courtesy of Air Products U.S. Department of Agriculture, Forest Service, Forest Products and Chemicals, Inc., Allentown Pennsylvania). Laboratory. 463 p. Adhesive bonding is a critical component in the A limited number of free copies of this publication are available to the performance of many wood products. public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705–2398. Laboratory publications are sent to hundreds of libraries in the United States and elsewhere. This publication may also be viewed on the FPL website at www.fpl.fs.fed.us/. Pesticide Precautionary Statement The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This publication reports research involving pesticides. The use of trade or firm names is for information only and does not imply It does not contain recommendations for their use, nor endorsement by the U.S. Department of Agriculture of any product or does it imply that the uses discussed here have been service. registered. All uses of pesticides must be registered by The United States Department of Agriculture (USDA) prohibits discrimi- appropriate State and/or Federal agencies before they nation in all its programs and activities on the basis of race, color, national can be recommended. origin, gender, religion, age, disability, political beliefs, sexual orientation, or marital or familial status. (Not all prohibited bases apply to all pro- Caution: Pesticides can be injurious to humans, grams.) Persons with disabilities who require alternative means for com- domestic animals, desirable plants, and fish or other munication of program information (braille, large print, audiotape, etc.) wildlife, if they are not handled or applied properly. should contact the USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office Use all pesticides selectively and carefully. Follow of Civil Rights, Room 326-W, Whitten Building, 14th and Independence recommended practices for the disposal of surplus Avenue, SW, Washington, DC 20250–9410, or call (202) 720–5964 pesticides and pesticide containers. (voice and TDD). USDA is an equal employment opportunity employer. Chapter 4 Mechanical Properties of Wood David W. Green, Jerrold E. Winandy, and David E. Kretschmann he mechanical properties presented in this chapter Contents were obtained from tests of small pieces of wood Orthotropic Nature of Wood 4–1 termed “clear” and “straight grained” because they Elastic Properties 4–2 did not contain characteristics such as knots, cross grain, Modulus of Elasticity 4–2 checks, and splits. These test pieces did have anatomical Poisson’s Ratio 4–2 characteristics such as growth rings that occurred in consis- tent patterns within each piece. Clear wood specimens are Modulus of Rigidity 4–3 usually considered “homogeneous” in wood mechanics. Strength Properties 4–3 Common Properties 4–3 Many of the mechanical properties of wood tabulated in this Less Common Properties 4–24 chapter were derived from extensive sampling and analysis Vibration Properties 4–25 procedures. These properties are represented as the average Speed of Sound 4–25 mechanical properties of the species. Some properties, such Internal Friction 4–26 as tension parallel to the grain, and all properties for some Mechanical Properties of Clear Straight-Grained Wood 4–26 imported species are based on a more limited number of specimens that were not subjected to the same sampling and Natural Characteristics Affecting Mechanical Properties 4–27 analysis procedures. The appropriateness of these latter prop- Specific Gravity 4–27 erties to represent the average properties of a species is uncer- Knots 4–27 tain; nevertheless, the properties represent the best informa- Slope of Grain 4–28 tion available. Annual Ring Orientation 4–30 Reaction Wood 4–31 Variability, or variation in properties, is common to all Juvenile Wood 4–32 materials. Because wood is a natural material and the tree is Compression Failures 4–33 subject to many constantly changing influences (such as Pitch Pockets 4–33 moisture, soil conditions, and growing space), wood proper- ties vary considerably, even in clear material. This chapter Bird Peck 4–33 provides information, where possible, on the nature and Extractives 4–33 magnitude of variability in properties. Properties of Timber From Dead Trees 4–33 Effects of Manufacturing and Service Environments 4–34 This chapter also includes a discussion of the effect of growth Moisture Content 4–34 features, such as knots and slope of grain, on clear wood Temperature 4–35 properties. The effects of manufacturing and service environ- Time Under Load 4–37 ments on mechanical properties are discussed, and their Aging 4–41 effects on clear wood and material containing growth features Exposure to Chemicals 4–41 are compared. Chapter 6 discusses how these research results have been implemented in engineering standards. Chemical Treatment 4–41 Nuclear Radiation 4–43 Mold and Stain Fungi 4–43 Orthotropic Nature of Wood Decay 4–43 Wood may be described as an orthotropic material; that is, it Insect Damage 4–43 has unique and independent mechanical properties in the References 4–44 directions of three mutually perpendicular axes: longitudinal, radial, and tangential. The longitudinal axis L is parallel to the fiber (grain); the radial axis R is normal to the growth rings (perpendicular to the grain in the radial direction); and 4–1 Radial Table 4–1. Elastic ratios for various species at approximately 12% moisture contenta Species ET/EL ER/EL GLR/EL GLT/EL GRT/EL Fiber direction Hardwoods Ash, white 0.080 0.125 0.109 0.077 — Balsa 0.015 0.046 0.054 0.037 0.005 Tangential Basswood 0.027 0.066 0.056 0.046 — Birch, yellow 0.050 0.078 0.074 0.068 0.017 Cherry, black 0.086 0.197 0.147 0.097 — Cottonwood, eastern 0.047 0.083 0.076 0.052 — Mahogany, African 0.050 0.111 0.088 0.059 0.021 Longitudinal Mahogany, Honduras 0.064 0.107 0.066 0.086 0.028 Maple, sugar 0.065 0.132 0.111 0.063 — Figure 4–1. Three principal axes of wood with Maple, red 0.067 0.140 0.133 0.074 — Oak, red 0.082 0.154 0.089 0.081 — respect to grain direction and growth rings. Oak, white 0.072 0.163 0.086 — — Sweet gum 0.050 0.115 0.089 0.061 0.021 Walnut, black 0.056 0.106 0.085 0.062 0.021 the tangential axis T is perpendicular to the grain but tangent Yellow-poplar 0.043 0.092 0.075 0.069 0.011 to the growth rings. These axes are shown in Figure 4–1. Softwoods Baldcypress 0.039 0.084 0.063 0.054 0.007 Cedar, northern white 0.081 0.183 0.210 0.187 0.015 Elastic Properties Cedar, western red 0.055 0.081 0.087 0.086 0.005 Douglas-fir 0.050 0.068 0.064 0.078 0.007 Twelve constants (nine are independent) are needed to de- Fir, subalpine 0.039 0.102 0.070 0.058 0.006 scribe the elastic behavior of wood: three moduli of elasticity Hemlock, western 0.031 0.058 0.038 0.032 0.003 E, three moduli of rigidity G, and six Poisson’s ratios µ. Larch, western 0.065 0.079 0.063 0.069 0.007 The moduli of elasticity and Poisson’s ratios are related by Pine Loblolly 0.078 0.113 0.082 0.081 0.013 expressions of the form Lodgepole 0.068 0.102 0.049 0.046 0.005 µµ Longleaf 0.055 0.102 0.071 0.060 0.012 ij ji Pond 0.041 0.071 0.050 0.045 0.009 =≠=,i j i, j L,R,T (4–1) EE Ponderosa 0.083 0.122 0.138 0.115 0.017 i j Red 0.044 0.088 0.096 0.081 0.011 Slash 0.045 0.074 0.055 0.053 0.010 General relations between stress and strain for a homogene- Sugar 0.087 0.131 0.124 0.113 0.019 ous orthotropic material can be found in texts on anisotropic Western white 0.038 0.078 0.052 0.048 0.005 Redwood 0.089 0.087 0.066 0.077 0.011 elasticity.
Recommended publications
  • Back Grou Di Formatio O the Co Servatio Status of Bubi Ga Ad We Ge Tree
    BACK GROUD IFORMATIO O THE COSERVATIO STATUS OF BUBIGA AD WEGE TREE SPECIES I AFRICA COUTRIES Report prepared for the International Tropical Timber Organization (ITTO). by Dr Jean Lagarde BETTI, ITTO - CITES Project Africa Regional Coordinator, University of Douala, Cameroon Tel: 00 237 77 30 32 72 [email protected] June 2012 1 TABLE OF COTET TABLE OF CONTENT......................................................................................................... 2 ACKNOWLEDGEMENTS................................................................................................... 4 ABREVIATIONS ................................................................................................................. 5 ABSTRACT.......................................................................................................................... 6 0. INTRODUCTION ........................................................................................................10 I. MATERIAL AND METHOD...........................................................................................11 1.1. Study area..................................................................................................................11 1.2. Method ......................................................................................................................12 II. BIOLOGICAL DATA .....................................................................................................14 2.1. Distribution of Bubinga and Wengé species in Africa.................................................14
    [Show full text]
  • Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607)
    Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607) by Nancy Ross Preface Since it was published in 1984, Tropical Timbers of the World has proven to be an extremely valuable reference to the properties and uses of tropical woods. It has been particularly valuable for the selection of species for specific products and as a reference for properties information that is important to effective pro- cessing and utilization of several hundred of the most commercially important tropical wood timbers. If a user of the book has only a common or trade name for a species and wishes to know its properties, the user must use the index of common names beginning on page 451. However, most tropical timbers have numerous common or trade names, depending upon the major region or local area of growth; furthermore, different species may be know by the same common name. Herein lies a minor weakness in Tropical Timbers of the World. The index generally contains only the one or two most frequently used common or trade names. If the common name known to the user is not one of those listed in the index, finding the species in the text is impossible other than by searching the book page by page. This process is too laborious to be practical because some species have 20 or more common names. This supplement provides a complete index of common or trade names. This index will prevent a user from erroneously concluding that the book does not contain a specific species because the common name known to the user does not happen to be in the existing index.
    [Show full text]
  • Mechanical Stress in the Inner Bark of 15 Tropical Tree Species and The
    Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras To cite this version: Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure. Botany / Botanique, NRC Research Press, 2019, 10.1139/cjb-2018-0224. hal-02368075 HAL Id: hal-02368075 https://hal.archives-ouvertes.fr/hal-02368075 Submitted on 18 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure1 Romain Lehnebach, Léopold Doumerc, Bruno Clair, and Tancrède Alméras Abstract: Recent studies have shown that the inner bark is implicated in the postural control of inclined tree stems through the interaction between wood radial growth and tangential expansion of a trellis fiber network in bark. Assessing the taxonomic extent of this mechanism requires a screening of the diversity in bark anatomy and mechanical stress. The mechanical state of bark was measured in 15 tropical tree species from various botanical families on vertical mature trees, and related to the anatomical structure of the bark.
    [Show full text]
  • OVENGKOL.Pdf
    OVENGKOL Page 1of 4 Family: FABACEAE-CAESALPINIOIDEAE (angiosperm) Scientific name(s): Guibourtia ehie Commercial restriction: no commercial restriction WOOD DESCRIPTION LOG DESCRIPTION Color: yellow brown Diameter: from 60 to 75 cm Sapwood: clearly demarcated Thickness of sapwood: from 4 to 7 cm Texture: fine Floats: no Grain: interlocked Log durability: good Interlocked grain: slight Note: Wood yellow brown to dark brown, with grey to blackish veins and copper glints. Moiré aspect on quartersawn. White deposits. PHYSICAL PROPERTIES MECHANICAL AND ACOUSTIC PROPERTIES Physical and mechanical properties are based on mature heartwood specimens. These properties can vary greatly depending on origin and growth conditions. Mean Std dev. Mean Std dev. Specific gravity *: 0,82 0,05 Crushing strength *: 69 MPa 9 MPa Monnin hardness *: 7,5 2,3 Static bending strength *: 127 MPa 16 MPa Coeff. of volumetric shrinkage: 0,57 % 0,12 % Modulus of elasticity *: 21470 MPa 2781 MPa Total tangential shrinkage (TS): 8,0 % 1,2 % Total radial shrinkage (RS): 3,9 % 0,7 % (*: at 12% moisture content, with 1 MPa = 1 N/mm²) TS/RS ratio: 2,1 Fiber saturation point: 24 % Musical quality factor: 109,8 measured at 2875 Hz Stability: moderately stable NATURAL DURABILITY AND TREATABILITY Fungi and termite resistance refers to end-uses under temperate climate. Except for special comments on sapwood, natural durability is based on mature heartwood. Sapwood must always be considered as non-durable against wood degrading agents. E.N. = Euro Norm Funghi (according to E.N. standards): class 2 - durable Dry wood borers: durable - sapwood demarcated (risk limited to sapwood) Termites (according to E.N.
    [Show full text]
  • Wood Preservation Manual Wood Preservation Manual
    Wood preservation manual Wood preservation manual Mechanical Wood Products Branch Forest I ndustries Division FAD Forestry Department The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-34 ISBN 92-5-102470-7 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy. © FAD 1986 - i - CONTENTS Page CHAPTER 1 INTRODUCTION 1 Background and the purpose of the manual CHAPTER 2 WHAT IS PRESERVATION? 2 Importance, benefits and economics of wood preservation, protective measures, protection by specification, protection by design detailing CHAPTER 3 NATURE OF WOOD 13 Wood structure, classes of wood, moisture content and natural durability CHAPTER 4 DECAY HAZARDS 21 Fungi, insects, borers, weathering, fire CHAPTER 5 WOOD PRESERVATIVES 32 Properties, ideal preservative, types of preservatives, tar oils,
    [Show full text]
  • Downloaded from Brill.Com10/07/2021 08:53:11AM Via Free Access 130 IAWA Journal, Vol
    IAWA Journal, Vol. 27 (2), 2006: 129–136 WOOD ANATOMY OF CRAIGIA (MALVALES) FROM SOUTHEASTERN YUNNAN, CHINA Steven R. Manchester1, Zhiduan Chen2 and Zhekun Zhou3 SUMMARY Wood anatomy of Craigia W.W. Sm. & W.E. Evans (Malvaceae s.l.), a tree endemic to China and Vietnam, is described in order to provide new characters for assessing its affinities relative to other malvalean genera. Craigia has very low-density wood, with abundant diffuse-in-aggre- gate axial parenchyma and tile cells of the Pterospermum type in the multiseriate rays. Although Craigia is distinct from Tilia by the pres- ence of tile cells, they share the feature of helically thickened vessels – supportive of the sister group status suggested for these two genera by other morphological characters and preliminary molecular data. Although Craigia is well represented in the fossil record based on fruits, we were unable to locate fossil woods corresponding in anatomy to that of the extant genus. Key words: Craigia, Tilia, Malvaceae, wood anatomy, tile cells. INTRODUCTION The genus Craigia is endemic to eastern Asia today, with two species in southern China, one of which also extends into northern Vietnam and southeastern Tibet. The genus was initially placed in Sterculiaceae (Smith & Evans 1921; Hsue 1975), then Tiliaceae (Ren 1989; Ying et al. 1993), and more recently in the broadly circumscribed Malvaceae s.l. (including Sterculiaceae, Tiliaceae, and Bombacaceae) (Judd & Manchester 1997; Alverson et al. 1999; Kubitzki & Bayer 2003). Similarities in pollen morphology and staminodes (Judd & Manchester 1997), and chloroplast gene sequence data (Alverson et al. 1999) have suggested a sister relationship to Tilia.
    [Show full text]
  • SNP-Based Method for the Genetic Identification of Ramin Gonystylus Spp. Timber and Products: Applied Research Meeting CITES Enforcement Needs
    Vol. 9: 255–261 ENDANGERED SPECIES RESEARCH Published online November 6, 2008 doi: 10.3354/esr00141 Endang Species Res Contribution to the Theme Section ‘Forensic methods in conservation research’ OPENPEN ACCESSCCESS SNP-based method for the genetic identification of ramin Gonystylus spp. timber and products: applied research meeting CITES enforcement needs Rob Ogden1, 5,*, H. Noel McGough2, Robyn S. Cowan2, Lilian Chua3, Madeleine Groves2, Ross McEwing4, 5 1Wildlife DNA Services, Tepnel, Appleton Parkway, Livingston EH54 7EZ, UK 2Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK 3Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia 4TRACE Wildlife Forensics Network, Science Campus, Deiniol Rd, Bangor LL57 2UW, UK 5School of Biological Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK ABSTRACT: We describe the development of a genetic assay for the identification of the tropical hardwood ramin Gonystylus spp., a CITES-listed genus subject to illegal international trade. Sam- ples representing different ramin species, confamilial genera and morphologically similar taxa were obtained. DNA extraction from leaf material and wood products was achieved using com- mercially available kits. Five chloroplast genes were examined for Single Nucleotide Polymor- phism (SNP) loci capable of discriminating ramin. A locus within the matK gene was selected and a TaqMan® assay designed for sample genotyping. The assay was validated against different spe- cies to demonstrate its specificity and reproducibility. The final assay provides a robust, cost-effec- tive, transferable method for identifying processed ramin. The research represents a feasibility study, addressing each of the steps required to develop a genetic identification assay for enforce- ment use; however, it should be noted that further work is required to produce a fully validated forensic identification tool.
    [Show full text]
  • Dry Kiln Operator's Manual
    United States Department of Agriculture Dry Kiln Forest Service Operator's Forest Products Laboratory Manual Madison, Wisconsin Agriculture Handbook No. 188 Dry Kiln Operator’s Manual Edited by William T. Simpson, Research Forest Products Technologist United States Department of Agriculture Forest Service Forest Products Laboratory 1 Madison, Wisconsin Revised August 1991 Agriculture Handbook 188 1The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION, Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife-if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides aand pesticide containers. Preface Acknowledgments The purpose of this manual is to describe both the ba- Many people helped in the revision. We visited many sic and practical aspects of kiln drying lumber. The mills to make sure we understood current and develop- manual is intended for several types of audiences. ing kiln-drying technology as practiced in industry, and First and foremost, it is a practical guide for the kiln we thank all the people who allowed us to visit. Pro- operator-a reference manual to turn to when questions fessor John L. Hill of the University of New Hampshire arise. It is also intended for mill managers, so that they provided the background for the section of chapter 6 can see the importance and complexity of lumber dry- on the statistical basis for kiln samples.
    [Show full text]
  • Evaluation of Jelutong (Dyera Cotulata) As a Phytoremediator to Uptake Copper (Cu) from Contaminated Soils
    AJCS 6(2):369-374 (2012) ISSN:1835-2707 Evaluation of Jelutong (Dyera cotulata) as a phytoremediator to uptake copper (Cu) from contaminated soils Nik M. Majid, M.M. Islam* and Redzuan Abdul Rauf Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Selangor, Malaysia *Corresponding author: [email protected] Abstract Soil pollutants including heavy metals are being mixed with agricultural soils and water. The potential accumulation of heavy metals in human and animal body is dangerous and causes several detrimental effects and diseases. An experiment was conducted in the glasshouse to evaluate the potential of Dyera costulata as a phytoremediator to absorb copper (Cu) from contaminated soils. Dyera costulata seedlings were planted in the growth media (soil + different levels of copper). The different levels of Cu were: T0 (control, soil), T1 (50 ppm Cu), T2 (100 ppm Cu), T3 (200 ppm Cu), T4 (300 ppm Cu) and T5 (400 ppm Cu). The highest growth performance such as basal diameter, height and number of leaves and the highest biomass were found in T2. The highest accumulation of Cu (89.97 ppm) was recorded in T5. Among the plant parts, roots showed the highest concentration of copper. Dyera costulata showed a high translocation factor (TF) value in soil at low to medium Cu concentrations as it was able to tolerate and accumulate high concentrations of Cu. The roots of Dyera costulata were the main part of plant that absorbed copper in contaminated soils. This species can be an efficient phytoremediator for soils contaminated with copper. Keywords: Contaminated soil, copper, phytoremediation, translocation.
    [Show full text]
  • ITTO Tropical Timber Market Report
    Tropical Timber Market Report Volume 25 Number 4 16th – 28th February 2021 The ITTO Tropical Timber Market (TTM) Report, an output of the ITTO Market Information Service (MIS), is published in English every two weeks with the aim of improving transparency in the international tropical timber market. Its contents do not necessarily reflect the views or policies of ITTO. News may be reprinted provided that the ITTO TTM Report is credited. A copy of the publication should be sent to [email protected]. Contents Headlines Page Central/West Africa 2 Revival in demand for sawn okoume 2 Ghana 3 Malaysia 4 Attracting engineers and technologist to the Malaysian timber industries 5 Indonesia 5 Myanmar 6 Indonesia’s exports of wood products better India 7 than expected in 2020 5 Vietnam 8 Forgone benefits from tree clearing to be Brazil 10 included in development project costs Peru 12 – Indian Supreme Court 7 Japan 13 8 million hectares in Peru identified for China 17 restoration 12 Europe 20 Increasing cedar log exports from Japan North America 23 to China 16 Currencies and Abbreviations 25 US home improvements – more to Ocean Freight 25 be spent in 2021 24 Price Indices 26 Top story Sharp fall in tropical share of European wood products market While the overall level of EU27+UK imports of wood and wood furniture products remained surprisingly resilient during 2020, there were winners and losers. Unfortunately for tropical suppliers, their share of the European trade fell sharply in 2020 after making some tentative gains the previous year. Page XX Central and West Africa Correction: In the previous report it was stated that a reduced area tax applies only to FSC certified forests, this Production seriously impacted by covid control was incorrect.
    [Show full text]
  • Chapter 3--Physical Properties and Moisture Relations of Wood
    Chapter 3 Physical Properties and Moisture Relations of Wood William Simpson and Anton TenWolde he versatility of wood is demonstrated by a wide Contents variety of products. This variety is a result of a Appearance 3–1 spectrum of desirable physical characteristics or properties among the many species of wood. In many cases, Grain and Texture 3–1 more than one property of wood is important to the end Plainsawn and Quartersawn 3–2 product. For example, to select a wood species for a product, the value of appearance-type properties, such as texture, grain Decorative Features 3–2 pattern, or color, may be evaluated against the influence of Moisture Content 3–5 characteristics such as machinability, dimensional stability, Green Wood and Fiber Saturation Point 3–5 or decay resistance. Equilibrium Moisture Content 3–5 Wood exchanges moisture with air; the amount and direction of the exchange (gain or loss) depend on the relative humid- Sorption Hysteresis 3–7 ity and temperature of the air and the current amount of water Shrinkage 3–7 in the wood. This moisture relationship has an important Transverse and Volumetric 3–7 influence on wood properties and performance. This chapter discusses the physical properties of most interest in the Longitudinal 3–8 design of wood products. Moisture–Shrinkage Relationship 3–8 Some physical properties discussed and tabulated are influ- Weight, Density, and Specific Gravity 3–11 enced by species as well as variables like moisture content; Working Qualities 3–15 other properties tend to be independent of species. The thor- oughness of sampling and the degree of variability influence Decay Resistance 3–15 the confidence with which species-dependent properties are Thermal Properties 3–15 known.
    [Show full text]
  • Biomolecules of Interest Present in the Main Industrial Wood Species Used in Indonesia-A Review
    Tech Science Press DOI: 10.32604/jrm.2021.014286 REVIEW Biomolecules of Interest Present in the Main Industrial Wood Species Used in Indonesia-A Review Resa Martha1,2, Mahdi Mubarok1,2, Wayan Darmawan2, Wasrin Syafii2, Stéphane Dumarcay1, Christine Gérardin Charbonnier1 and Philippe Gérardin1,* 1Université de Lorraine, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Laboratoire d'Etudes et de Recherche sur le Matériau Bois, Nancy, France 2Department of Forest Products, Faculty of Forestry and Environment, Institut Pertanian Bogor, Bogor University, Bogor, Indonesia *Corresponding Author: Philippe Gérardin. Email: [email protected] Received: 17 September 2020 Accepted: 20 October 2020 ABSTRACT As a tropical archipelagic country, Indonesia’s forests possess high biodiversity, including its wide variety of wood species. Valorisation of biomolecules released from woody plant extracts has been gaining attractive interests since in the middle of 20th century. This paper focuses on a literature review of the potential valorisation of biomole- cules released from twenty wood species exploited in Indonesia. It has revealed that depending on the natural origin of the wood species studied and harmonized with the ethnobotanical and ethnomedicinal knowledge, the extractives derived from the woody plants have given valuable heritages in the fields of medicines and phar- macology. The families of the bioactive compounds found in the extracts mainly consisted of flavonoids, stilbenes, stilbenoids, lignans, tannins, simple phenols, terpenes, terpenoids, alkaloids, quinones, and saponins. In addition, biological or pharmacological activities of the extracts/isolated phytochemicals were recorded to have antioxidant, antimicrobial, antifungal, anti-inflammatory, anti-diabetes, anti-dysentery, anticancer, analgesic, anti-malaria, and anti-Alzheimer activities.
    [Show full text]