· .. ·. ·Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wildflowers to Grow in Your Garden Here Is the Key to the List Large
Wildflowers to grow in your garden Here is the key to the list Trees Ground covers Shrubs Eucalypts Banksias Myrtle family Banksias Others Baeckea Other Beaufortia Calothamnus Chamelaucium Hypocalymna Kunzea Melaleuca and Callistemon Scholtzia Thryptomene Verticordia Large trees. Think very carefully before you plant them! Large trees, such as lemon scented gums or spotted gums may look great in parks - at least local councils seem to think so (we would rather see local plants). But you may regret planting them in a modern small garden. That doesn't mean there is no room for trees. There are hundreds of attractive small trees that grow very well in native gardens. Here are just a few. Small trees Eucalypts with showy flowers. Eucalytpus caesia Comes in two sub species with the one known as "silver princess" being readily available in Perth. Lovely multi- stemmed weeping tree with pendulous pink flowers and silver-bell fruits. E. torquata Small upright tree with attractive pink flowers. Very drought resistant. E. ficifolia Often called the WA Flowering gum. Ranges in size from small to quite large and in flower colour from deep red to = Corymbia ficifolia orange to pale pink. In WA subject to a serious disease - called canker. Many trees succumb when about 10 or so years old, either dying or becoming very unhealthy. E. preissiana Bell fruited mallee. Small tree (or shrub) with bright yellow flowers. E. erythrocorys Illyarrie, red cap gum or helmet nut gum. Large golden flowers in February preceded by a bright red bud cap. Tree tends to be bit floppy and to need pruning. -
Salinity Tolerance of Muntries (Kunzea Pomifera F. Muell.)
HORTSCIENCE 53(11):1562–1569. 2018. https://doi.org/10.21273/HORTSCI13280-18 When crops are subjected to soil salinity levels exceeding their tolerance levels, plant Kunzea growth declines and crop yields decrease. For Salinity Tolerance of Muntries ( example, strawberry (sensitive) exhibits a re- pomifera duced number of leaves and leaf area at F. Muell.), a Native Food Crop 30 mM NaCl and a 20% reduction in fruit yield (Garriga et al., 2015). A significant in Australia decrease in growth of date palm (tolerant) –1 is observed at 7.3 dS·m , and fruit yield is Chi M. Do, Kate L. Delaporte, Vinay Pagay, and Carolyn J. Schultz1 reduced by 25% (Department of Agricul- School of Agriculture, Food and Wine, Waite Research Institute, The ture and Food, 2016). Olive is an example of University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia a moderately tolerant fruit crop that shows relatively minor impacts at high salinity (7.5 Additional index words. alternative fruits, homeostasis, potassium, salinity stress, sodium dS·m–1), with 20% to 30% reduction in oil chloride, sustainable agriculture and fresh-fruit yield compared with nonsalt- stressed plants (Al-Rawi and Al-Mohemdy, Abstract . Identifying productive food crops that tolerate moderate soil salinity is critical 2001). In citrus (lime and lemon, both sensi- Kunzea pomifera for global food security. We evaluate the salinity tolerance of tive crops), moderate salinity (50 mM NaCl) (muntries), a traditional Indigenous food plant that grows naturally in coastal regions reduces leaf number, area, and thickness of southern Australia and thrives on relatively low rainfall. -
Epacris Study Group
AUSTRALIAN NATIVE PLANTS SOCIETY (Australia) Jnc. EPACRIS STUDY GROUP Group Leader: Gwen Elliot, P.O.Box 655 Heathmont Vic. 3135 NEWSLETTER NO. 30 (ISSN 1038-6017) Greetings to all Epacris Study Group members, Regular readers of our Newsletters will have noticed the following note which was added to page 1 of our Autumn 2010 issue, just prior to it going to press. NOTE: I have just received in the post an envelope addressed to the Epacris Study Group, posted from Hobart on May Znd, 2010. Unfortunately the envelope was slit along the bottom and was totally empty. There was no information regarding the sender, but ifyou have sent such a letter in recent days, please let me know, and perhaps cancel any cheque sent. Fortunately all turned out well in the end, as the next morning an Epacris Study Group renewal form was delivered with a $5 note stapled to the corner. Our very nice Post Office manager advised that it had been found on the floor of the district sorting office. He went on to explain that many of today's envelopes have a very effective self-sealing strip and if there is any air left in the envelope when the seal is fastened envelopes can 'pop' at the bottom as they go through the rollers of the sorting machines. This is certainly something I had not personally considered previously, but I felt it is very useful information for us all to be aware of. All of my letters will be squashed down firmly in future to avoid this potential problem. -
Puccinia Psidii Winter MAY10 Tasmania (C)
MAY10Pathogen of the month – May 2010 a b c Fig. 1. Puccinia psidii; (a) Symptoms on Eucalyptus grandis seedling; (b) Stem distortion and multiple branching caused by repeated infections of E. grandis, (c) Syzygium jambos; (d) Psidium guajava; (e) Urediniospores. Photos: A. Alfenas, Federal University of Viçosa, Brazil (a, b,d and e) and M. Glen, University of Tasmania (c). Common Name: Guava rust, Eucalyptus rust d e Winter Disease: Rust in a wide range of Myrtaceous species Classification: K: Fungi, D: Basidiomycota, C: Pucciniomycetes, O: Pucciniales, F: Pucciniaceae Puccinia psidii (Fig. 1) is native to South America and is not present in Australia. It causes rust on a wide range of plant species in the family Myrtaceae. First described on guava, P. psidii became a significant problem in eucalypt plantations in Brazil and also requires control in guava orchards. A new strain of the rust severely affected the allspice industry in Jamaica in the 1930s. P. psidii has spread to Florida, California and Hawaii. In 2007, P. psidii arrived in Japan, on Metrosideros polymorpha cuttings imported from Hawaii. Host Range: epiphytotics on Syzygium jambos in Hawaii, with P. psidii infects young leaves, shoots and fruits of repeated defoliations able to kill 12m tall trees. many species of Myrtaceae. Key Distinguishing Features: Impact: Few rusts are recorded on Myrtaceae. These include In the wild, in its native range, P. psidii has only a P. cygnorum, a telial rust on Kunzea ericifolia, and minor effect. As eucalypt plantations in Brazil are Physopella xanthostemonis on Xanthostemon spp. in largely clonal, impact in areas with a suitable climate Australia. -
Budawangia* an E-Newsletter for All Those Interested in the Native Plants of the Nsw South Coast
BUDAWANGIA* AN E-NEWSLETTER FOR ALL THOSE INTERESTED IN THE NATIVE PLANTS OF THE NSW SOUTH COAST Contact: Dr Kevin Mills – [email protected] No. 48 - March 2016 Aims: To connect those interested in the native flora of the NSW South Coast, to share up to date information on the flora of the region and to broaden the appreciation of the region’s native plants. Editorial With continuing warmer oceans around Australia, El Nino has deepened during the last two months, and our dry conditions continued into mid-March when some reasonable rain finally came. We can only be thankful that the severe bushfires this season in other states have not occurred in our part of the world. Blackberry bushes were introduced for their fruit but now are regarded as noxious weeds. Many of us would remember going out in summer and collecting the fruit from thickets of Blackberry in paddocks and escarpment clearings. Native raspberries are closely related to the Blackberry, and there are four species in the region, although their fruits are not as an attractive culinary treat as the introduction. The native raspberries are the subject of the first piece in this newsletter, followed by items on a plant of the month, an eatable thistle, slime mould and a new weed for the region. The answers to last month’s challenge to identify rainforest tree bark are also provided as is a photo of a common local frog from a reader. Below is another note on a common Australian genus. Grevillea - named in 1809 after the English politician and founder of the London Horticultural Society Charles Francis Greville. -
Comparative Floral Presentation and Bee-Pollination in Two Sprengelia Species (Ericaceae)
Comparative floral presentation and bee-pollination in two Sprengelia species (Ericaceae) Karen A. Johnson* and Peter B. McQuillan School of Geography and Environmental Studies, University of Tasmania, Private Bag 78, Hobart, Tasmania 7001, Australia. *Corresponding author. E-mail: [email protected] Abstract: Pollination by sonication is unusual in the Styphelioideae, family Ericaceae. Sprengelia incarnata and Sprengelia propinqua have floral characteristics that suggested they might be adapted to buzz pollination.Both species have florally similar nectarless flowers except that the stamens ofSprengelia propinqua spread widely after the flower opens, while those of Sprengelia incarnata cohere in the centre of the flower. To test whether sonication occurs, we observed bee behaviour at the flowers of both plant species, documented potential pollinators, and examined their floral and pollen attributes. We found that Sprengelia incarnata had smaller and drier pollen than Sprengelia propinqua. We found that Sprengelia incarnata was sonicated by native bees in the families Apidae (Exoneura), Halictidae (Lasioglossum) and Colletidae (Leioproctus, Euryglossa). Sprengelia propinqua was also visited by bees from the Apidae (Exoneura) and Halictidae (Lasioglossum), but pollen was collected by scraping. The introduced Apis mellifera (Apidae) foraged at Sprengelia propinqua but ignored Sprengelia incarnata. The two Sprengelia species shared some genera of potential pollinators, but appeared to have diverged enough in their floral and pollen characters to elicit different behaviours from the native and introduced bees. Cunninghamia (2011) 12 (1): 45–51 Introduction species, some Leucopogon species, Richea milliganii (Hook.f.) F.Muell., and Sprengelia incarnata Sm. (Houston The interactions between plants and pollinators are thought & Ladd, 2002; Ladd, 2006). -
Creating Jobs, Protecting Forests?
Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements The Wilderness Society. 2020, Creating Jobs, Protecting Forests? The State of the Nation’s RFAs, The Wilderness Society, Melbourne, Australia Table of contents 4 Executive summary Printed on 100% recycled post-consumer waste paper 5 Key findings 6 Recommendations Copyright The Wilderness Society Ltd 7 List of abbreviations All material presented in this publication is protected by copyright. 8 Introduction First published September 2020. 9 1. Background and legal status 12 2. Success of the RFAs in achieving key outcomes Contact: [email protected] | 1800 030 641 | www.wilderness.org.au 12 2.1 Comprehensive, Adequate, Representative Reserve system 13 2.1.1 Design of the CAR Reserve System Cover image: Yarra Ranges, Victoria | mitchgreenphotos.com 14 2.1.2 Implementation of the CAR Reserve System 15 2.1.3 Management of the CAR Reserve System 16 2.2 Ecologically Sustainable Forest Management 16 2.2.1 Maintaining biodiversity 20 2.2.2 Contributing factors to biodiversity decline 21 2.3 Security for industry 22 2.3.1 Volume of logs harvested 25 2.3.2 Employment 25 2.3.3 Growth in the plantation sector of Australia’s wood products industry 27 2.3.4 Factors contributing to industry decline 28 2.4 Regard to relevant research and projects 28 2.5 Reviews 32 3. Ability of the RFAs to meet intended outcomes into the future 32 3.1 Climate change 32 3.1.1 The role of forests in climate change mitigation 32 3.1.2 Climate change impacts on conservation and native forestry 33 3.2 Biodiversity loss/resource decline 33 3.2.1 Altered fire regimes 34 3.2.2 Disease 35 3.2.3 Pest species 35 3.3 Competing forest uses and values 35 3.3.1 Water 35 3.3.2 Carbon credits 36 3.4 Changing industries, markets and societies 36 3.5 International and national agreements 37 3.6 Legal concerns 37 3.7 Findings 38 4. -
Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert -
Budawangia and Rupicola, New and Revised Genera of Epacridaceae.Crossref
Volume 5(1): 229–239 TELOPEA Publication Date: 30 September 1992 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19924966 Journal of Plant Systematics 6 DOPII(liPi Tm st plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) 229 Budawangia and Rupico/a, new and revised genera of Epacridaceae Ian R. H. Telford Abstract Telford, I.R.H. (Australian National Botanic Gardens, Canberra, ACT, Australia 2601) 1992. Rupicola and Budawangia, new and revised genera of Epacridaceae. Telopea 5(1): 229-239. Rupicola Maiden & Betche consists of four species endemic in New South Wales. Besides the type species, R. sprengelioides Maiden & Betche, R. ciliata Telford and R. decumbens Telford are described as new and a new combination is made for R. apiculata (Cunn.) Telford, which is transferred from Epacris. R. gnidioides Summerh. is transferred from Rupicola to the monotypic new genus Budawangia Telford as B. gnidioides (Summerh.) Telford. Introduction Rupicola Maiden & Betche (1898) was established as monotypic with its only species, R. sprengelioides, endemic to New South Wales in the southern Blue Mountains. A second species, R. gnidioides Summerh., was described from the Southern Tablelands escarpment SW of Nowra, N.S.W., in 1927. This species has been shown to be mis placed and is here transferred from Rupicola to a new monotypic genus. More recent discoveries have yielded two new species of Rupicola described in this paper. Studies in staminal morphology have shown that a species previously included in Epacris must also be transferred to Rupicola. -
Pollination Ecology and Evolution of Epacrids
Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes. -
Gloucester Park, Margaret
Flora and Fauna Assessment Gloucester Park, Margaret River Prepared November 2016 for the Shire of Augusta Margaret River Flora and Fauna Assessment Gloucester Park, Margaret River, November 2016 This document has been prepared by Litoria Ecoservices for the express use of the client. Litoria Ecoservices accepts no responsibility to any third party who may rely upon this document. All rights reserved. No section or element of this document may be removed from this document, reproduced, electronically stored or transmitted in any form without the written permission of Litoria Ecoservices. Version Control Version Date Version Purpose Author Draft 1 29/11/ 2016 Draft for client review DMcK Final 1 5/12/2016 Complete Report D McK Flora and Fauna Assessment Gloucester Park, Margaret River, November 2016 TABLE OF CONTENTS PAGE 1.0 INTRODUCTION .............................................................................................................. 2 1.1 Background .......................................................................................................... 2 1.2 Site Description .................................................................................................... 2 1.4 Assessment Objectives and Scope ....................................................................... 2 1.5 Personnel .............................................................................................................. 3 1.6 Landform ............................................................................................................. -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.