Budawangia and Rupicola, New and Revised Genera of Epacridaceae.Crossref
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Floral Presentation and Bee-Pollination in Two Sprengelia Species (Ericaceae)
Comparative floral presentation and bee-pollination in two Sprengelia species (Ericaceae) Karen A. Johnson* and Peter B. McQuillan School of Geography and Environmental Studies, University of Tasmania, Private Bag 78, Hobart, Tasmania 7001, Australia. *Corresponding author. E-mail: [email protected] Abstract: Pollination by sonication is unusual in the Styphelioideae, family Ericaceae. Sprengelia incarnata and Sprengelia propinqua have floral characteristics that suggested they might be adapted to buzz pollination.Both species have florally similar nectarless flowers except that the stamens ofSprengelia propinqua spread widely after the flower opens, while those of Sprengelia incarnata cohere in the centre of the flower. To test whether sonication occurs, we observed bee behaviour at the flowers of both plant species, documented potential pollinators, and examined their floral and pollen attributes. We found that Sprengelia incarnata had smaller and drier pollen than Sprengelia propinqua. We found that Sprengelia incarnata was sonicated by native bees in the families Apidae (Exoneura), Halictidae (Lasioglossum) and Colletidae (Leioproctus, Euryglossa). Sprengelia propinqua was also visited by bees from the Apidae (Exoneura) and Halictidae (Lasioglossum), but pollen was collected by scraping. The introduced Apis mellifera (Apidae) foraged at Sprengelia propinqua but ignored Sprengelia incarnata. The two Sprengelia species shared some genera of potential pollinators, but appeared to have diverged enough in their floral and pollen characters to elicit different behaviours from the native and introduced bees. Cunninghamia (2011) 12 (1): 45–51 Introduction species, some Leucopogon species, Richea milliganii (Hook.f.) F.Muell., and Sprengelia incarnata Sm. (Houston The interactions between plants and pollinators are thought & Ladd, 2002; Ladd, 2006). -
Pollination Ecology and Evolution of Epacrids
Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes. -
Rare Or Threatened Vascular Plant Species of Wollemi National Park, Central Eastern New South Wales
Rare or threatened vascular plant species of Wollemi National Park, central eastern New South Wales. Stephen A.J. Bell Eastcoast Flora Survey PO Box 216 Kotara Fair, NSW 2289, AUSTRALIA Abstract: Wollemi National Park (c. 32o 20’– 33o 30’S, 150o– 151oE), approximately 100 km north-west of Sydney, conserves over 500 000 ha of the Triassic sandstone environments of the Central Coast and Tablelands of New South Wales, and occupies approximately 25% of the Sydney Basin biogeographical region. 94 taxa of conservation signiicance have been recorded and Wollemi is recognised as an important reservoir of rare and uncommon plant taxa, conserving more than 20% of all listed threatened species for the Central Coast, Central Tablelands and Central Western Slopes botanical divisions. For a land area occupying only 0.05% of these divisions, Wollemi is of paramount importance in regional conservation. Surveys within Wollemi National Park over the last decade have recorded several new populations of signiicant vascular plant species, including some sizeable range extensions. This paper summarises the current status of all rare or threatened taxa, describes habitat and associated species for many of these and proposes IUCN (2001) codes for all, as well as suggesting revisions to current conservation risk codes for some species. For Wollemi National Park 37 species are currently listed as Endangered (15 species) or Vulnerable (22 species) under the New South Wales Threatened Species Conservation Act 1995. An additional 50 species are currently listed as nationally rare under the Briggs and Leigh (1996) classiication, or have been suggested as such by various workers. Seven species are awaiting further taxonomic investigation, including Eucalyptus sp. -
Budawangia* an E-Newsletter for All Those Interested in the Native Plants of the Nsw South Coast
BUDAWANGIA* AN E-NEWSLETTER FOR ALL THOSE INTERESTED IN THE NATIVE PLANTS OF THE NSW SOUTH COAST Contact: Dr Kevin Mills – [email protected] No. 28 - July 2014 Aims: To connect those interested in the native flora of the NSW South Coast, to share up to date information on the flora of the region and to broaden the appreciation of the region’s native plants. Editorial July, the middle of winter, is perhaps not the most inviting time to get out into the bush, windy and cold weather discouraging excursions too far from home. There is however much to see in the bush at this time of year. Many rainforest plants have fruit, the foggy highlands provide good opportunities for early morning photographs, while the winter-flowering Banksias are putting on a show on the foreshores and in the woodlands. This edition contains an article on mistletoes, those plants that parasitise other plants. These shrubs play an important role in the ecology of forests and woodlands and recent research has identified them as critical to the well being of many animal species. The purpose of „plant of the month‟ is to discuss some of the more uncommon species in our region. This month we have Acacia hispidula, an uncommon wattle of the sandstone country. As usual, another mystery weed is presented, along with an article about two noxious weeds in the genus Xanthium and another article in the series on wetland plants. I am glad readers are finding the newsletter enjoyable and informative; comments such as the following encourage me to keep it going: Les from Kangaroo Valley - “Thanks for a very interesting issue.” Diane from Nowra - “Thanks Kevin. -
Myrtle Rust Reviewed the Impacts of the Invasive Plant Pathogen Austropuccinia Psidii on the Australian Environment R
Myrtle Rust reviewed The impacts of the invasive plant pathogen Austropuccinia psidii on the Australian environment R. O. Makinson 2018 DRAFT CRCPLANTbiosecurity CRCPLANTbiosecurity © Plant Biosecurity Cooperative Research Centre, 2018 ‘Myrtle Rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment’ is licenced by the Plant Biosecurity Cooperative Research Centre for use under a Creative Commons Attribution 4.0 Australia licence. For licence conditions see: https://creativecommons.org/licenses/by/4.0/ This Review provides background for the public consultation document ‘Myrtle Rust in Australia – a draft Action Plan’ available at www.apbsf.org.au Author contact details R.O. Makinson1,2 [email protected] 1Bob Makinson Consulting ABN 67 656 298 911 2The Australian Network for Plant Conservation Inc. Cite this publication as: Makinson RO (2018) Myrtle Rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment. Plant Biosecurity Cooperative Research Centre, Canberra. Front cover: Top: Spotted Gum (Corymbia maculata) infected with Myrtle Rust in glasshouse screening program, Geoff Pegg. Bottom: Melaleuca quinquenervia infected with Myrtle Rust, north-east NSW, Peter Entwistle This project was jointly funded through the Plant Biosecurity Cooperative Research Centre and the Australian Government’s National Environmental Science Program. The Plant Biosecurity CRC is established and supported under the Australian Government Cooperative Research Centres Program. EXECUTIVE SUMMARY This review of the environmental impacts of Myrtle Rust in Australia is accompanied by an adjunct document, Myrtle Rust in Australia – a draft Action Plan. The Action Plan was developed in 2018 in consultation with experts, stakeholders and the public. The intent of the draft Action Plan is to provide a guiding framework for a specifically environmental dimension to Australia’s response to Myrtle Rust – that is, the conservation of native biodiversity at risk. -
Flora-Lab-Manual.Pdf
LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae -
Budawangia* an E-Newsletter for All Those Interested in the Native Plants of the Nsw South Coast
BUDAWANGIA* AN E-NEWSLETTER FOR ALL THOSE INTERESTED IN THE NATIVE PLANTS OF THE NSW SOUTH COAST Contact: Dr Kevin Mills – [email protected] No. 19 - October 2013 Aims: To connect those interested in the native flora of the NSW South Coast, to share up to date information on the flora of the region and to broaden the appreciation of the region’s native plants. Editorial The early onset of the fire season saw a major fire in the northwest of the region in the Bargo area towards the end of the month, along with large fires in the Blue Mountains and one in the Budawang Ranges. Our thoughts go to the people of those areas, and those coping with losses unimaginable to most of us. We live in a fire prone environment and subject to increasingly erratic climatic events that, whatever your view about human-induced climate change, society has to come to terms with. This edition contains the final chapter in the seed dispersal story. Also within, is a photographic piece on native/weed look-alikes. The usual sections on ‘plant of the month’ and the ‘mystery weed’ are also here. Leaf variation in Streblus pendulinus (syn. S. brunonianus) shows how variable leaves can be in a single species at one location. Following pieces in the last edition, two more readers have sent in comments about their experiences with Pittosporum undulatum. A new section has been added to answer readers’ questions; this will appear as required from now on. So send in your queries; I would even accept interesting answers without questions. -
FOR PUBLICATION Priority Matters for Tranche 2
Wildlife and Habitat Bushfire Recovery Program 2019-20 to 2020-21 Australian Government’s List of Priority Matters – Tranche 2 Note: other Australian animals, plants, ecological communities and natural assets and their values for Indigenous Australians that have been affected by the recent bushfires will be considered provided sufficient justification and context has been provided. Plants Note: the risk assessment criteria under which a plant species has been listed as a high priority for immediate action, and a table of management actions that are deemed appropriate for individual plant species, can be found on the Department’s website at http://www.environment.gov.au/biodiversity/bushfire-recovery State and Species Common name EPBC Act status* territory distribution Acacia alaticaulis Winged Sunshine Wattle NSW Acacia awestoniana Stirling Range Wattle Vulnerable WA Acacia beadleana Beadle’s Wattle NSW Acacia blayana Blay's Wattle NSW Acacia cangaiensis Cangai Forest Wattle NSW Acacia chalkeri Chalker's Wattle NSW Acacia clunies- rossiae Kowmung Wattle, Kanangra NSW Wattle Acacia cognata Narrow-leaf Bower Wattle, Bower NSW Wattle, River Wattle Acacia constablei Narrabarba Wattle Vulnerable NSW Acacia covenyi Blue Bush, Bluebush, Bendethera NSW Wattle Acacia dorothea Dorothy's Wattle NSW Acacia echinula Hedgehog Wattle NSW Acacia flocktoniae Flockton Wattle Vulnerable NSW Acacia georgensis Bega Wattle Vulnerable NSW Acacia hamiltoniana Hamilton's Wattle NSW Acacia jonesii Jones Wattle NSW Acacia kydrensis Kydra Wattle NSW Acacia lanigera -
Native Plant Flowering Timetable
Native Plant Flowering Timetable by Ian Olsen From observations made from Wentworth Falls to Newnes Plateau from 2009 to 2017 Botanical Name Common Name Newnes Retains Flowering & Fruit & both Species Seeds J F M A M J J A S O N D Acacia asparagoides Acacia dealbata Silver Wattle Acacia decurrens Black Wattle Acacia dorothea Dorothy's Wattle Newnes Acacia echinula Hedgehog Wattle Newnes Acacia elata Mountain Cedar Wattle Acacia falciformis Broad-leaved Hickory Acacia floribunda White Sally Acacia hamiltoniana Hamilton's Wattle Newnes Acacia kybeanensis Kybean Wattle Newnes Acacia linifolia White Wattle Acacia longifolia Acacia mearnsii Black Wattle Acacia melanoxylon Blackwood Acacia myrtifolia Red-stemmed Wattle Newnes Acacia obtusifolia Acacia ptychoclada Acacia rubida Red-stemmed Wattle Acacia suaveolens Sweet Wattle Acacia terminalis Sunshine Wattle Acacia ulicifolia Prickly Moses Acrotriche aggregata Red Cluster Heath Actinotus forsythii Pink Flannel Flower Newnes Actinotus helianthi Flannel Flower Alania endlicheri Almaleea incurvata Amperea xiphoclada Astrotricha longifolia Atherosperma moschatum Black Sassafras Atkinsonia ligustrina Baeckea kandos Newnes Baeckea linifolia Weeping Baeckea Baeckea utilis Mountain Baeckea Banksia collina Newnes All months Banksia cunninghamii All months Banksia ericifolia Heath-leaved Banksia All months Banksia marginata Silver Banksia All months Banksia penicillata Newnes All months Banksia serrata Old-man Banksia All months Banksia spinulosa Hairpin Banksia All months Bauera rubioides River Rose -
The Leipzig Catalogue of Plants (LCVP) ‐ an Improved Taxonomic Reference List for All Known Vascular Plants
Freiberg et al: The Leipzig Catalogue of Plants (LCVP) ‐ An improved taxonomic reference list for all known vascular plants Supplementary file 3: Literature used to compile LCVP ordered by plant families 1 Acanthaceae AROLLA, RAJENDER GOUD; CHERUKUPALLI, NEERAJA; KHAREEDU, VENKATESWARA RAO; VUDEM, DASHAVANTHA REDDY (2015): DNA barcoding and haplotyping in different Species of Andrographis. In: Biochemical Systematics and Ecology 62, p. 91–97. DOI: 10.1016/j.bse.2015.08.001. BORG, AGNETA JULIA; MCDADE, LUCINDA A.; SCHÖNENBERGER, JÜRGEN (2008): Molecular Phylogenetics and morphological Evolution of Thunbergioideae (Acanthaceae). In: Taxon 57 (3), p. 811–822. DOI: 10.1002/tax.573012. CARINE, MARK A.; SCOTLAND, ROBERT W. (2002): Classification of Strobilanthinae (Acanthaceae): Trying to Classify the Unclassifiable? In: Taxon 51 (2), p. 259–279. DOI: 10.2307/1554926. CÔRTES, ANA LUIZA A.; DANIEL, THOMAS F.; RAPINI, ALESSANDRO (2016): Taxonomic Revision of the Genus Schaueria (Acanthaceae). In: Plant Systematics and Evolution 302 (7), p. 819–851. DOI: 10.1007/s00606-016-1301-y. CÔRTES, ANA LUIZA A.; RAPINI, ALESSANDRO; DANIEL, THOMAS F. (2015): The Tetramerium Lineage (Acanthaceae: Justicieae) does not support the Pleistocene Arc Hypothesis for South American seasonally dry Forests. In: American Journal of Botany 102 (6), p. 992–1007. DOI: 10.3732/ajb.1400558. DANIEL, THOMAS F.; MCDADE, LUCINDA A. (2014): Nelsonioideae (Lamiales: Acanthaceae): Revision of Genera and Catalog of Species. In: Aliso 32 (1), p. 1–45. DOI: 10.5642/aliso.20143201.02. EZCURRA, CECILIA (2002): El Género Justicia (Acanthaceae) en Sudamérica Austral. In: Annals of the Missouri Botanical Garden 89, p. 225–280. FISHER, AMANDA E.; MCDADE, LUCINDA A.; KIEL, CARRIE A.; KHOSHRAVESH, ROXANNE; JOHNSON, MELISSA A.; STATA, MATT ET AL. -
Provisional List of Plants Requiring Urgent Management Intervention
WILDLIFE AND THREATENED SPECIES BUSHFIRE RECOVERY EXPERT PANEL Provisional list of plants requiring urgent management intervention Released on 23 April 2020 The 2019-20 bushfires in southern and eastern Australia have had severe impacts on many of the country’s approximately 25,000 plant species. The fires have covered an unusually large area and, in many places, have burnt with unusually high intensity. Although many plants have the capacity to respond positively to fire, the cumulative impact of the 2019-2020 fires and other stressors like high fire frequency or severity, drought, herbivory, or disease places many species at risk. Some species were considered threatened before the fires, and the fires have now likely increased their risk of extinction. Many other fire-affected plant species were not threatened before the fires - or had not previously had an assessment of extinction risk undertaken - but have now been burnt across much of their range, and may lack an ability to recover without help. To support protection and recovery of many of the fire-affected species, conservation action will be needed at many sites. This management will be supported by a wide range of government agencies, non-government conservation organisations, university researchers, Traditional Owner ranger teams, community groups and the public. A national provisional prioritisation was undertaken to assess 19,004 plant species against a set of eleven criteria which combine the proportion of the geographic range that burned, species fire response traits, and the interactive effects of other stressors such as drought, herbivory, disease, weed invasion and erosion. This prioritisation identified 709 plants as being at high risk from the impacts of the 2019-20 bushfires. -
Hawkesbury-Nepean, New South Wales
Biodiversity Summary for NRM Regions Guide to Users Background What is the summary for and where does it come from? This summary has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. It highlights important elements of the biodiversity of the region in two ways: • Listing species which may be significant for management because they are found only in the region, mainly in the region, or they have a conservation status such as endangered or vulnerable. • Comparing the region to other parts of Australia in terms of the composition and distribution of its species, to suggest components of its biodiversity which may be nationally significant. The summary was produced using the Australian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. The list of families covered in ANHAT is shown in Appendix 1. Groups notnot yet yet covered covered in inANHAT ANHAT are are not not included included in the in the summary. • The data used for this summary come from authoritative sources, but they are not perfect.