Antimicrobial Use Guidelines for Treatment of Respiratory

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial Use Guidelines for Treatment of Respiratory Guideline and Recommendation J Vet Intern Med 2017;31:279–294 Antimicrobial use Guidelines for Treatment of Respiratory Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases M.R. Lappin, J. Blondeau, D. Boothe, E.B. Breitschwerdt, L. Guardabassi, D.H. Lloyd, M.G. Papich, S.C. Rankin, J.E. Sykes, J. Turnidge, and J.S. Weese Respiratory tract disease can be associated with primary or secondary bacterial infections in dogs and cats and is a com- mon reason for use and potential misuse, improper use, and overuse of antimicrobials. There is a lack of comprehensive treatment guidelines such as those that are available for human medicine. Accordingly, the International Society for Compan- ion Animal Infectious Diseases convened a Working Group of clinical microbiologists, pharmacologists, and internists to share experiences, examine scientific data, review clinical trials, and develop these guidelines to assist veterinarians in making antimicrobial treatment choices for use in the management of bacterial respiratory diseases in dogs and cats. Key words: Bronchitis; Pneumonia; Pyothorax; Rhinitis. his document contains guidelines for the treatment Tof bacterial causes of feline upper respiratory tract Abbreviations: disease (URTD), canine infectious respiratory disease CIRDC canine infectious respiratory disease complex complex (CIRDC; previously known as canine infec- FCV feline calicivirus tious tracheobronchitis or kennel cough complex), FHV-1 feline herpesvirus 1 bronchitis, pneumonia, and pyothorax that were final- PCR polymerase chain reaction ized in 2016 by the Antimicrobial Guidelines Working URI upper respiratory infection Group of the International Society for Companion URTD feline upper respiratory tract disease Animal Infectious Diseases (www.iscaid.org). During the development of the guidelines, other veterinary rec- ommendations on antimicrobial treatment1–4 and corre- reviewed the literature and met in person to develop the sponding guidelines for human medicine were initial draft of the guidelines. This was followed by a evaluated, with consideration of the differences among number of revisions completed electronically in an species.5,6 attempt to build consensus with the wording of each The committee unanimously believes that there are recommendation within the Working Group. The limitations in objective, published information relevant Working Group recommendations were then provided to the treatment of bacterial respiratory diseases in dogs to all guidelines committee members who were asked to and cats. Thus, the Working Group used a modification independently select whether they agreed, were neutral, of the Delhi method for consensus building in the devel- or disagreed with a recommendation. A updated draft opment of these guidelines.7 The Working Group of the document was then completed and provided to 6 experts in the field that were not members of the Work- ing Group who were asked to rate each recommenda- From the Colorado State University, Fort Collins, CO (Lappin); tion by means of the same system. For those University of Saskatoon, Saskatoon, SK (Blondeau); Auburn recommendations that received any “disagree” votes University, Auburn, AL (Boothe); North Carolina State University, Raleigh, NC (Breitschwerdt, Papich); University of Copenhagen, from the 17 total reviewers (Working Group and out- Copenhagen, Denmark (Guardabassi); Royal Veterinary College, side reviewers), the percentage distribution of all review- London, UK (Lloyd); University of Pennsylvania, Philadelphia, PA ers and appropriate comments are presented. (Rankin); University of California, Davis, CA (Sykes); Ontario As with all guidelines, the antimicrobial use guideli- Veterinary College, Guelph, ON (Weese); and the The Women’s nes for the treatment of bacterial respiratory tract infec- and Children Hospital, Adelaide, SA, Australia (Turnidge). tions in dogs and cats should be interpreted as general An overview of the guidelines was presented at the 2016 American recommendations that are reasonable and appropriate College of Veterinary Internal Medicine Forum, Denver, Colorado. Corresponding author: M.R. Lappin, Colorado State University, for the majority of cases. The Working Group acknowl- 300 West Drake Road, Fort Collins, CO 80523; e-mail: mlappin@ edges the variability among cases and these guidelines colostate.edu. should not be considered standards of care that must be Submitted May 22, 2016; Revised September 5, 2016; followed in all circumstances. Rather, they should be Accepted November 7, 2016. considered the basis of decision-making, with the poten- © Copyright 2017 The Authors. Journal of Veterinary Internal tial that different or additional approaches might be Medicine published by Wiley Periodicals, Inc. on behalf of the Ameri- required in some cases. Further, although these guideli- can College of Veterinary Internal Medicine. This is an open access article under the terms of the Creative nes are designed as international guidelines that are Commons Attribution-NonCommercial License, which permits use, appropriate for all regions of the world, the Working distribution and reproduction in any medium, provided the original Group realizes that regional differences in antimicrobial work is properly cited and is not used for commercial purposes. resistance rates, antimicrobial availability, prescribing DOI: 10.1111/jvim.14627 280 Lappin et al patterns, and restrictions on use of some agents exist. disease. The Working Group recommends that all cats The user of this document is obligated to be familiar with suspected bacterial URI be evaluated for the pres- with local and regional regulations that might restrict ence of feline leukemia virus antigen and feline immun- use of certain antimicrobials listed in this document. odeficiency virus antibodies in serum in accordance Diagnostic and treatment recommendations contained with the American Association of Feline Practitioners in these guidelines are largely limited to those relating Retrovirus Panel Report.23 Although these retroviruses to bacterial infection. do not cause respiratory disease directly, both have been associated with lymphoma (which could cause Feline Upper Respiratory Tract Disease URTD) and both can cause immunosuppression that could predispose to severe viral and bacterial URIs. Definitions and Causes Many diagnostic tests could be performed to assess for evidence of primary or secondary bacterial URI (See the Feline upper respiratory tract disease is a syndrome Diagnosis of Chronic Bacterial Upper Respiratory Infec- consisting of clinical signs that can include serous to tion (>10 Days of Duration) section). It is the opinion mucopurulent ocular and nasal discharges, epistaxis, – of the Working Group that there is limited benefit to per- sneezing, and conjunctivitis.8 11 Clinical signs can be forming cytology of nasal discharges to diagnose bacte- acute (≤10 days) or chronic (>10 days). The term “up- rial infection and guide the antimicrobial choice. per respiratory infection (URI)” is reserved for cats If nasal discharges are serous and lack a mucopuru- with clinical signs of URTD that are directly associated lent or purulent component, the Working Group with one or more of the known pathogenic viral, bacte- believes that antimicrobial treatment is not recom- rial, or fungal organisms. mended because of the likelihood of uncomplicated It is believed that the majority of cats with acute clin- viral infection. ical signs of URTD have feline herpesvirus 1 (FHV-1)- If acute bacterial URI is suspected based on purulent or calicivirus (FCV)-associated URI. Some of the cats or mucopurulent discharge, in the absence of evidence of with viral infections can develop secondary bacterial – the cause of URTD based on history and physical exami- infections.12 15 Staphylococcus spp., Streptococcus spp., nation findings, the Working Group recommends a per- Pasteurella multocida, Escherichia coli, and anaerobes iod of observation without immediate use of an are organisms that are commonly cultured from the sur- antimicrobial drug. This might vary in duration based on face of the upper respiratory mucous membranes from other clinical findings (See the Treatment of Suspected healthy cats.16,17 However, several bacterial species, Acute Bacterial Upper Respiratory Infection section). In including Chlamydia felis, Bordetella bronchiseptica, humans, antimicrobial treatment is recommended only if Streptococcus canis, Streptococcus equi subspp. zooepi- clinical signs have not improved after 10 days or have demicus, and Mycoplasma spp., have been isolated or worsened after 5–7 days.24 A more extensive workup for detected by molecular techniques such as the poly- an underlying cause can be postponed until after the per- merase chain reaction (PCR) from cats with URTD iod of observation, up to 10 days after the onset of clini- without the presence of pathogenic viruses, suggesting a – cal signs if the cat develops chronic URTD. primary role in some cats.16,18 22 The presence of puru- Aerobic bacterial culture and antimicrobial suscepti- lent or mucopurulent nasal or ocular discharges might bility test results from nasal discharges are difficult to increase the suspicion that primary or secondary bacte- interpret because (1) some pathogenic organisms (eg, rial infection is present, but there is no definite proof of Chlamydia and Mycoplasma) cannot be cultured on this association because viral or fungal agents can
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0163484 A1 Heep Et Al
    US 200901 63484A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0163484 A1 Heep et al. (43) Pub. Date: Jun. 25, 2009 (54) PHARMACEUTICALS CONTAINING (30) Foreign Application Priority Data FLUOROQUINOLONES (75) Inventors: Iris Heep, Köln (DE); Kristine Mar. 8, 2006 (DE) ......................... 102O06O10642.3 Rigi,R. Dormagen Publication Classification (DE); Markus Edingloh, (51) Int. Cl. Leverkusen (DE) A 6LX 3/5.395 (2006.01) Correspondence Address: A63/496 (2006.01) BSER HEALTHCARE LLC A 6LX 3L/24709 (2006.01) P.O.BOX390 A6II 47/20 (2006.01) SHAWNEE MISSION, KS 66201 (US) A6IP3L/04 (2006.01) (73) Assignee: BAYER ANIMAL, HEALTH (52) U.S. Cl. ................. 514/229.2: 514/253.08: 514/300; GMBH, LEVERKUSEN (DE) 514/769; 514/772 (21) Appl. No.: 12/280,996 (57) ABSTRACT (22) PCT Filed: Feb. 23, 2007 The invention relates to pharmaceutical formulations in liq uid form, containing fluoroquinolones and antioxidative Sul (86). PCT No.: PCT/EP2007/001568 phur compounds. The formulations are particularly Suitable S371 (c)(1), for parenteral uses and are distinguished, interalia, by good (2), (4) Date: Oct. 31, 2008 tolerance. US 2009/0163484 A1 Jun. 25, 2009 PHARMACEUTICALS CONTAINING reconstitution, or must be discarded directly as the result of FLUOROQUINOLONES the possibility of particle formation. Accordingly, a ready-to use solution is advantageous as solution for injection. 0006. It is furthermore necessary that a suitable amount of the fluoroquinolone enters the serum after the administration, 0001. The invention relates to pharmaceutical formula as this is also described in WO99/29322. Again, this is not a tions in liquid form comprising fluoroquinolones and antioxi matter of course with injectable fluoroquinolone formula dant Sulphur compounds.
    [Show full text]
  • Antimicrobial Resistance in Companion Animal Pathogens in Australia and Assessment of Pradofloxacin on the Gut Microbiota
    Antimicrobial resistance in companion animal pathogens in Australia and assessment of pradofloxacin on the gut microbiota Sugiyono Saputra A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy School of Animal and Veterinary Sciences The University of Adelaide February 2018 Table of Contents Thesis Declaration ...................................................................................................................... iii Dedication ................................................................................................................................. iv Acknowledgement ...................................................................................................................... v Preamble .................................................................................................................................... vi List of Publications ..................................................................................................................... vii Abstract .......................................................................................................................................ix Chapter 1 General Introduction ................................................................................................. 1 1.1. Antimicrobials and their consequences ............................................................................ 2 1.2. The emergence and monitoring AMR................................................................................ 2
    [Show full text]
  • The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity
    molecules Review The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity Abdul Naeem 1, Syed Lal Badshah 1,2,*, Mairman Muska 1, Nasir Ahmad 2 and Khalid Khan 2 1 National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Khyber Pukhtoonkhwa 25120, Pakistan; [email protected] (A.N.); [email protected] (M.M.) 2 Department of Chemistry, Islamia College University Peshawar, Peshawar, Khyber Pukhtoonkhwa 25120, Pakistan; [email protected] (N.A.); [email protected] (K.K.) * Correspondence: [email protected]; Tel.: +92-331-931-6672 Academic Editor: Peter J. Rutledge Received: 23 December 2015 ; Accepted: 15 February 2016 ; Published: 28 March 2016 Abstract: Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites—the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV.
    [Show full text]
  • Belgian Veterinary Surveillance of Antibacterial Consumption National
    Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2020 Publication : 22 June 2021 1 SUMMARY This annual BelVet-SAC report is now published for the 12th time and describes the antimicrobial use (AMU) in animals in Belgium in 2020 and the evolution since 2011. For the third year this report combines sales data (collected at the level of the wholesalers-distributors and the compound feed producers) and usage data (collected at farm level). This allows to dig deeper into AMU at species and farm level in Belgium. With a consumption of 87,6 mg antibacterial compounds/kg biomass an increase of +0.2% is seen in 2020 in comparison to 2019. The increase seen in 2020 is spread over both pharmaceuticals (+0.2%) and antibacterial premixes (+4.0%). This unfortunately marks the end of a successful reduction in antibacterial product sales that was seen over the last 6 years resulting in a cumulative reduction of -40,2% since 2011. The gap seen in the coverage of the sales data with the Sanitel-Med collected usage data increased substantially compared to 2019, meaning continuous efforts need to be taken to ensure completeness of the collected usage data. When looking at the evolution in the number of treatment days (BD100) at the species level, as calculated from the SANITEL- MED use data, use increased in poultry (+5,0%) and veal calves (+1,9%), while it decreased in pigs (-3,1%). However, the numerator data for this indicator remain to be updated for 2020, potentially influencing the reliability of the result.
    [Show full text]
  • NVA237 / Glycopyrronium Bromide Multinational, Multi-Database Drug
    Quantitative Safety & Epidemiology NVA237 / Glycopyrronium bromide Non-interventional Final Study Report NVA237A2401T Multinational, multi-database drug utilization study of inhaled NVA237 in Europe Author Document Status Final Date of final version 28 April 2016 of the study report EU PAS register ENCEPP/SDPP/4845 number Property of Novartis Confidential May not be used, divulged, published or otherwise disclosed without the consent of Novartis NIS Report Template Version 2.0 August-13-2014 Novartis Confidential Page 2 Non-interventional study report NVA237A/Seebri® Breezhaler®/CNVA237A2401T PASS information Title Multinational, multi-database drug utilization study of inhaled NVA237 in Europe –Final Study Report Version identifier of the Version 1.0 final study report Date of last version of 28 April 2016 the final study report EU PAS register number ENCEPP/SDPP/4845 Active substance Glycopyrronium bromide (R03BB06) Medicinal product Seebri®Breezhaler® / Tovanor®Breezhaler® / Enurev®Breezhaler® Product reference NVA237 Procedure number SeebriBreezhaler: EMEA/H/C/0002430 TovanorBreezhaler: EMEA/H/C/0002690 EnurevBreezhaler: EMEA/H/C0002691 Marketing authorization Novartis Europharm Ltd holder Frimley Business Park Camberley GU16 7SR United Kingdom Joint PASS No Research question and In the context of the NVA237 marketing authorization objectives application, the Committee for Medicinal Products for Human Use (CHMP) recommended conditions for marketing authorization and product information and suggested to conduct a post-authorization
    [Show full text]
  • EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
    Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance .
    [Show full text]
  • The Grohe Method and Quinolone Antibiotics
    The Grohe method and quinolone antibiotics Antibiotics are medicines that are used to treat bacterial for modern fluoroquinolones. The Grohe process and the infections. They contain active ingredients belonging to var- synthesis of ciprofloxacin sparked Bayer AG’s extensive ious substance classes, with modern fluoroquinolones one research on fluoroquinolones and the global competition of the most important and an indispensable part of both that produced additional potent antibiotics. human and veterinary medicine. It is largely thanks to Klaus Grohe – the “father of Bayer quinolones” – that this entirely In chemical terms, the antibiotics referred to for simplicity synthetic class of antibiotics now plays such a vital role for as quinolones are derived from 1,4-dihydro-4-oxo-3-quin- medical practitioners. From 1965 to 1997, Grohe worked oline carboxylic acid (1) substituted in position 1. as a chemist, carrying out basic research at Bayer AG’s Fluoroquinolones possess a fluorine atom in position 6. In main research laboratory (WHL) in Leverkusen. During this addition, ciprofloxacin (2) has a cyclopropyl group in posi- period, in 1975, he developed the Grohe process – a new tion 1 and also a piperazine group in position 7 (Figure A). multi-stage synthesis method for quinolones. It was this This substituent pattern plays a key role in its excellent achievement that first enabled him to synthesize active an- antibacterial efficacy. tibacterial substances such as ciprofloxacin – the prototype O 5 O 4 3 6 COOH F COOH 7 2 N N N 8 1 H N R (1) (2) Figure A: Basic structure of quinolone (1) (R = various substituents) and ciprofloxacin (2) Quinolones owe their antibacterial efficacy to their inhibition This unique mode of action also makes fluoroquinolones of essential bacterial enzymes – DNA gyrase (topoisomer- highly effective against a large number of pathogenic ase II) and topoisomerase IV.
    [Show full text]
  • Lääkealan Turvallisuus- Ja Kehittämiskeskuksen Päätös
    Lääkealan turvallisuus- ja kehittämiskeskuksen päätös N:o xxxx lääkeluettelosta Annettu Helsingissä xx päivänä maaliskuuta 2016 ————— Lääkealan turvallisuus- ja kehittämiskeskus on 10 päivänä huhtikuuta 1987 annetun lääke- lain (395/1987) 83 §:n nojalla päättänyt vahvistaa seuraavan lääkeluettelon: 1 § Lääkeaineet ovat valmisteessa suolamuodossa Luettelon tarkoitus teknisen käsiteltävyyden vuoksi. Lääkeaine ja sen suolamuoto ovat biologisesti samanarvoisia. Tämä päätös sisältää luettelon Suomessa lääk- Liitteen 1 A aineet ovat lääkeaineanalogeja ja keellisessä käytössä olevista aineista ja rohdoksis- prohormoneja. Kaikki liitteen 1 A aineet rinnaste- ta. Lääkeluettelo laaditaan ottaen huomioon lää- taan aina vaikutuksen perusteella ainoastaan lää- kelain 3 ja 5 §:n säännökset. kemääräyksellä toimitettaviin lääkkeisiin. Lääkkeellä tarkoitetaan valmistetta tai ainetta, jonka tarkoituksena on sisäisesti tai ulkoisesti 2 § käytettynä parantaa, lievittää tai ehkäistä sairautta Lääkkeitä ovat tai sen oireita ihmisessä tai eläimessä. Lääkkeeksi 1) tämän päätöksen liitteessä 1 luetellut aineet, katsotaan myös sisäisesti tai ulkoisesti käytettävä niiden suolat ja esterit; aine tai aineiden yhdistelmä, jota voidaan käyttää 2) rikoslain 44 luvun 16 §:n 1 momentissa tar- ihmisen tai eläimen elintoimintojen palauttami- koitetuista dopingaineista annetussa valtioneuvos- seksi, korjaamiseksi tai muuttamiseksi farmako- ton asetuksessa kulloinkin luetellut dopingaineet; logisen, immunologisen tai metabolisen vaikutuk- ja sen avulla taikka terveydentilan
    [Show full text]
  • Veraflox®(Pradofloxacin)
    VERAFLOX- pradofloxacin suspension Bayer HealthCare LLC Animal Health Division ---------- Veraflox® (pradofloxacin) Oral Suspension for Cats 25 mg/mL Do not use in dogs. Federal law prohibits the extralabel use of this drug in food-producing animals. CAUTION Federal law restricts this drug to use by or on the order of a licensed veterinarian. DESCRIPTION Pradofloxacin is a fluoroquinolone antibiotic and belongs to the class of quinoline carboxylic acid derivatives. Its chemical name is: 7-[(4aS) octahydro-6H-pyrrolo [3, 4-b] pyridine-6yl]-8-cyano-1- cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-3-quinoline carboxylic acid. Each mL of VERAFLOX Oral Suspension provides 25 mg of pradofloxacin. INDICATIONS VERAFLOX is indicated for the treatment of skin infections (wounds and abscesses) in cats caused by susceptible strains of Pasteurella multocida, Streptococcus canis, Staphylococcus aureus, Staphylococcus felis, and Staphylococcus pseudintermedius. DOSAGE AND ADMINISTRATION Shake well before use. To ensure a correct dosage, body weight should be determined as accurately as possible. The dose of VERAFLOX is 7.5 mg/kg (3.4 mg/lb) body weight once daily for 7 consecutive days. Use the syringe provided to ensure accuracy of dosing to the nearest 0.1 mL. Rinse syringe between doses. A sample of the lesion should be obtained for culture and susceptibility testing prior to beginning antibacterial therapy. Once results become available, continue with appropriate therapy. If acceptable response to treatment is not observed, or if no improvement is seen within 3 to 4 days, then the diagnosis should be re-evaluated and appropriate alternative therapy considered. CONTRAINDICATIONS DO NOT USE IN DOGS.
    [Show full text]
  • Belgian Veterinary Surveillance of Antimicrobial Consumption
    Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2018 Publication : 19 June 2019 1 SUMMARY This annual BelVet-SAC report is now published for the 10th time and describes the antibacterial use in animals in Belgium in 2018 and the evolution since 2011. For the first time this report combines sales data (collected at the level of the wholesalers- distributors and the compound feed producers) and usage data (collected at herd level). This allows to dig deeper into AMU at species and herd level in Belgium. With -12,8% mg antimicrobial/kg biomass in comparison to 2017, 2018 marks the largest reduction in total sales of antimicrobials for animals in Belgium since 2011. This obviously continues the decreasing trend of the previous years, resulting in a cumulative reduction of -35,4% mg/kg since 2011. This reduction is evenly split over a reduction in pharmaceuticals (-13,2% mg/kg) and antibacterial premixes (-9,2% mg/kg). It is speculated that the large reduction observed in 2018 might partly be due to the effect of extra stock (of pharmaceuticals) taken during 2017 by wholesalers-distributors and veterinarians in anticipation of the increase in the antimicrobial tax for Marketing Authorisation Holders, which became effective on the 1st of April 2018. When comparing the results achieved in 2018 with the AMCRA 2020 reduction targets, the goal of reducing the overall AMU in animals with 50% by 2020 has not been achieved yet, however, the objective comes in range with still 14,6% to reduce over the next two years. Considering the large reduction observed in total AMU in 2018, it is not surprising that also in the pig sector a substantial reduction of -8,3% mg/kg between 2017 and 2018 is observed based upon the usage data.
    [Show full text]
  • 19 June 2019
    Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2018 Publication : 19 June 2019 1 SUMMARY This annual BelVet-SAC report is now published for the 10th time and describes the antibacterial use in animals in Belgium in 2018 and the evolution since 2011. For the first time this report combines sales data (collected at the level of the wholesalers- distributors and the compound feed producers) and usage data (collected at herd level). This allows to dig deeper into AMU at species and herd level in Belgium. With -12,8% mg antimicrobial/kg biomass in comparison to 2017, 2018 marks the largest reduction in total sales of antimicrobials for animals in Belgium since 2011. This obviously continues the decreasing trend of the previous years, resulting in a cumulative reduction of -35,4% mg/kg since 2011. This reduction is evenly split over a reduction in pharmaceuticals (-13,2% mg/kg) and antibacterial premixes (-9,2% mg/kg). It is speculated that the large reduction observed in 2018 might partly be due to the effect of extra stock (of pharmaceuticals) taken during 2017 by wholesalers-distributors and veterinarians in anticipation of the increase in the antimicrobial tax for Marketing Authorisation Holders, which became effective on the 1st of April 2018. When comparing the results achieved in 2018 with the AMCRA 2020 reduction targets, the goal of reducing the overall AMU in animals with 50% by 2020 has not been achieved yet, however, the objective comes in range with still 14,6% to reduce over the next two years. Considering the large reduction observed in total AMU in 2018, it is not surprising that also in the pig sector a substantial reduction of -8,3% mg/kg between 2017 and 2018 is observed based upon the usage data.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]