Of Total Alkaloid Extracts of Crateva Religiosa G. Forst. (Capparidaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CAPPARACEAE 1. BORTHWICKIA W. W. Smith, Trans. & Proc. Bot. Soc. Edinburgh 24: 175. 1912
CAPPARACEAE 山柑科 shan gan ke Zhang Mingli (张明理)1; Gordon C. Tucker2 Shrubs, trees, or woody vines, evergreen (deciduous in some Crateva), with branched or simple trichomes. Stipules spinelike, small, or absent. Leaves alternate or rarely opposite, simple or compound with 3[–9] leaflets. Inflorescences axillary or superaxillary, racemose, corymbose, subumbellate, or paniculate, 2–10-flowered or 1-flowered in leaf axil. Flowers bisexual or sometimes unisex- ual, actinomorphic or zygomorphic, often with caducous bracteoles. Sepals 4(–8), in 1 or 2 whorls, equal or not, distinct or basally connate, rarely outer whorl or all sepals connected and forming a cap. Petals (0–)4(–8), alternating with sepals, distinct, with or with- out a claw. Receptacle flat or tapered, often extended into an androgynophore, with nectar gland. Stamens (4–)6 to ca. 200; filaments on receptacle or androgynophore apex, distinct, inflexed or spiraled in bud; anthers basifixed (dorsifixed in Stixis), 2-celled, introrse, longitudinally dehiscent. Pistil 2(–8)-carpellate; gynophore ± as long as stamens; ovary ovoid and terete (linear and ridged in Borthwickia), 1-loculed, with 2 to several parietal placentae (3–6-loculed with axile placentation in Borthwickia and Stixis); ovules several to many, 2-tegmic; style obsolete or highly reduced, sometimes elongated and slender; stigma capitate or not obvious, rarely 3-branched. Fruit a berry or capsule, globose, ellipsoid, or linear, with tough indehiscent exocarp or valvately dehiscent. Seeds 1 to many per fruit, reniform to polygonal, smooth or with various sculpturing; embryo curved; endosperm small or absent. About 28 genera and ca. 650 species: worldwide in tropical, subtropical, and a few in temperate regions; four genera and 46 species (10 en- demic) in China. -
Indigenous Uses of Wild and Tended Plant Biodiversity Maintain Ecosystem Services in Agricultural Landscapes of the Terai Plains of Nepal
Indigenous uses of wild and tended plant biodiversity maintain ecosystem services in agricultural landscapes of the Terai Plains of Nepal Jessica P. R. Thorn ( [email protected] ) University of York https://orcid.org/0000-0003-2108-2554 Thomas F. Thornton University of Oxford School of Geography and Environment Ariella Helfgott University of Oxford Katherine J. Willis University of Oxford Department of Zoology, University of Bergen Department of Biology, Kew Royal Botanical Gardens Research Keywords: agrobiodiversity conservation; ethnopharmacology; ethnobotany; ethnoecology; ethnomedicine; food security; indigenous knowledge; medicinal plants; traditional ecological knowledge Posted Date: April 16th, 2020 DOI: https://doi.org/10.21203/rs.2.18028/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Ethnobiology and Ethnomedicine on June 8th, 2020. See the published version at https://doi.org/10.1186/s13002-020-00382-4. Page 1/36 Abstract Background Despite a rapidly accumulating evidence base quantifying ecosystem services, the role of biodiversity in the maintenance of ecosystem services in shared human-nature environments is still understudied, as is how indigenous and agriculturally dependent communities perceive, use and manage biodiversity. The present study aims to document traditional ethnobotanical knowledge of the ecosystem service benets derived from wild and tended plants in rice- cultivated agroecosystems, compare this to botanical surveys, and analyse the extent to which ecosystem services contribute social-ecological resilience in the Terai Plains of Nepal. Method Sampling was carried out in four landscapes, 22 Village District Committees and 40 wards in the monsoon season. -
Biogeography and Diversification of Brassicales
Molecular Phylogenetics and Evolution 99 (2016) 204–224 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography and diversification of Brassicales: A 103 million year tale ⇑ Warren M. Cardinal-McTeague a,1, Kenneth J. Sytsma b, Jocelyn C. Hall a, a Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada b Department of Botany, University of Wisconsin, Madison, WI 53706, USA article info abstract Article history: Brassicales is a diverse order perhaps most famous because it houses Brassicaceae and, its premier mem- Received 22 July 2015 ber, Arabidopsis thaliana. This widely distributed and species-rich lineage has been overlooked as a Revised 24 February 2016 promising system to investigate patterns of disjunct distributions and diversification rates. We analyzed Accepted 25 February 2016 plastid and mitochondrial sequence data from five gene regions (>8000 bp) across 151 taxa to: (1) Available online 15 March 2016 produce a chronogram for major lineages in Brassicales, including Brassicaceae and Arabidopsis, based on greater taxon sampling across the order and previously overlooked fossil evidence, (2) examine Keywords: biogeographical ancestral range estimations and disjunct distributions in BioGeoBEARS, and (3) determine Arabidopsis thaliana where shifts in species diversification occur using BAMM. The evolution and radiation of the Brassicales BAMM BEAST began 103 Mya and was linked to a series of inter-continental vicariant, long-distance dispersal, and land BioGeoBEARS bridge migration events. North America appears to be a significant area for early stem lineages in the Brassicaceae order. Shifts to Australia then African are evident at nodes near the core Brassicales, which diverged Cleomaceae 68.5 Mya (HPD = 75.6–62.0). -
HANDBOOK of Medicinal Herbs SECOND EDITION
HANDBOOK OF Medicinal Herbs SECOND EDITION 1284_frame_FM Page 2 Thursday, May 23, 2002 10:53 AM HANDBOOK OF Medicinal Herbs SECOND EDITION James A. Duke with Mary Jo Bogenschutz-Godwin Judi duCellier Peggy-Ann K. Duke CRC PRESS Boca Raton London New York Washington, D.C. Peggy-Ann K. Duke has the copyright to all black and white line and color illustrations. The author would like to express thanks to Nature’s Herbs for the color slides presented in the book. Library of Congress Cataloging-in-Publication Data Duke, James A., 1929- Handbook of medicinal herbs / James A. Duke, with Mary Jo Bogenschutz-Godwin, Judi duCellier, Peggy-Ann K. Duke.-- 2nd ed. p. cm. Previously published: CRC handbook of medicinal herbs. Includes bibliographical references and index. ISBN 0-8493-1284-1 (alk. paper) 1. Medicinal plants. 2. Herbs. 3. Herbals. 4. Traditional medicine. 5. Material medica, Vegetable. I. Duke, James A., 1929- CRC handbook of medicinal herbs. II. Title. [DNLM: 1. Medicine, Herbal. 2. Plants, Medicinal.] QK99.A1 D83 2002 615′.321--dc21 2002017548 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. -
Capparaceae – Caper Family
CAPPARACEAE – CAPER FAMILY Plant: herbs, shrubs and trees and rarely woody vines Stem: Root: Leaves: simple or palmate, alternate; small stipules usually present Flowers: bisexual or unisexual; radially or bilaterally symmetrical; 4 sepals (up to 8); 4 petals (or none to many), often 2 larger than others; 4 stamens (or more); ovary superior, pistil often elevated; 2 carpels (or 4), 1-chambered ovary Fruit: usually a capsule, sometimes a berry or a nut; seeds reniform (kidney- shaped) Other: family not well defined at this time; most common in tropics but some occur in warmer temperate areas (some put Polanisia and Cleome in the Cleomaceae family); Dicotyledons Group Genera: 24+/- genera; locally Polanisia (clammyweed), Cleome (spider flower) – Some assign these plants to the Cleomaceae (Cleome Family) WARNING – family descriptions are only a layman’s guide and should not be used as definitive CAPPARACEAE – CAPER FAMILY Spider Flower [Pink Queen]; Cleome hassleriana Chod. (Introduced) Redwhisker Clammyweed; Polanisia dodecandra (L.) DC. (Introduced) Spider Flower [Pink Queen] USDA Cleome hassleriana Chod. (Introduced) Capparaceae (Caper Family) Mackinac Island, Mackinac County, Michigan Notes: 4-petaled flower on slender stalks, white to pink, stamens very long; leaves mostly palmate with 5-7 leaflets; stem with sticky hairs; garden escapee; mid to late summer [V Max Brown, 2008] Redwhisker USDA Clammyweed Polanisia dodecandra (L.) DC. (Introduced) Capparaceae (Caper Family) Maumee Bay State Park, Lucas County, Ohio Notes: 4-petaled flower, white to pink, narrowed at base, notched at top; stamens purplish to red; leaves with 3 leaflets, entire; fruit a pea-like pod; plant hairy; common on shores; bad odor; summer to fall (subspecies present) [V Max Brown, 2006]. -
Crateva Adansonii
PHYTOCHEMICAL ANALYSIS AND THE ANTI- INFLAMMATORY ACTIVITIES OF METHANOL EXTRACT OF CRATEVA ADANSONII BY UWAH LYNDA OGECHI BC/2009/262 A PROJECT SUBMITTED TO THE DEPARTMENT OF BIOCHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR OF SCIENCE (B.SC) DEGREE IN BIOCHEMISTRY. FACULTY OF NATURAL SCIENCE CARITAS UNIVERSITY, AMORJI –NIKE EMENE, ENUGU STATE. SUPERVISOR: MR M. O. EZENWALI AUGUST, 2013 1 CERTIFICATION PAGE This is to certify that this project work was fully carried out by Uwah Lynda O. of the Department of Biochemistry, Faculty of Natural Science Caritas University –Nike Enugu State. Mr Moses Ezenwali DATE (Head of Department) …………………….. Mr Moses Ezenwali DATE Project supervisor ………………………. ……………………… External Supervisor DATE …………………… 2 DEDICATION This project work is dedicated to my creator in heaven and to my lovely parents and siblings. Who thought me to be hardworking and to my supervisor M.O Ezenwali and my humbly lecture Dr V. Ikpe. 3 ACKNOWLEDGEMENT I want to thank and acknowledge God’s almighty for his blessings in my life. I am grateful for his endless love, protection, guidance, grace upon me and my family. My sincere appreciation goes to my parents Mr. and Mrs Stephen Uwah for their love, care, prayers, advice and financial support. I also appreciate my siblings for their love. Ambrose Okeke,, friends and well-wisher. I also acknowledge the untiring effort to my supervisor Mr. Moses O. Ezenwali (H.O.D), my lecturers Dr V. Ikpe Mr P. Ugwudike, Mr Yusuf Omeh, Dr Charles Ishiwu, Mr Steve Eze Peter, who brought out their time to assist me and make suggestions to make this work a success. -
Wood Anatomy of Resedaceae Sherwin Carlquist Santa Barbara Botanic Garden
Aliso: A Journal of Systematic and Evolutionary Botany Volume 16 | Issue 2 Article 8 1997 Wood Anatomy of Resedaceae Sherwin Carlquist Santa Barbara Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1997) "Wood Anatomy of Resedaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 16: Iss. 2, Article 8. Available at: http://scholarship.claremont.edu/aliso/vol16/iss2/8 Aliso, 16(2), pp. 127-135 © 1998, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 WOOD ANATOMY OF RESEDACEAE SHERWIN CARLQUIST1 Santa Barbara Botanic Garden 1212 Mission Canyon Road Santa Barbara, CA 93105 ABSTRACT Quantitative and qualitative data are presented for seven species of four genera of Resedaceae. Newly reported for the family are helical striations in vessels, vasicentric and marginal axial paren chyma, procumbent ray cells, and perforated ray cells. Wood features of Resedaceae may be found in one or more of the families of Capparales close to it (Brassicaceae, Capparaceae, Tovariaceae). Lack of borders on pits of imperforate tracheary elements is likely a derived character state. Wood of Reseda is more nearly juvenile than that of the other genera in ray histology; this corresponds to the herba ceousness of Reseda. The quantitative features of wood of Resedaceae are intermediate between those of dicotyledonous annuals and those of dicotyledonous desert shrubs. Wood of Resedaceae appears especially xeromorphic in narrowness of vessels, a fact related to the subdesert habitats of shrubby species and to the dry conditions in which annual or short-lived perennial Resedaceae flower and fruit. -
Lessons from Cleomaceae, the Sister of Crucifers
Review Lessons from Cleomaceae, the Sister of Crucifers 1,2,3 4 5 1, Soheila Bayat, M. Eric Schranz, Eric H. Roalson, and Jocelyn C. Hall * Cleomaceae is a diverse group well-suited to addressing fundamental genomic Highlights and evolutionary questions as the sister group to Brassicaceae, facilitating As broadening the comparative land- scape becomes increasingly impor- transfer of knowledge from the model Arabidopsis thaliana. Phylogenetic and tant, Cleomaceae emerges as a taxonomic revisions provide a framework for examining the evolution of sub- valuable plant model for groundbreak- ing inquiries that reflect its genomic, stantive morphological and physiology diversity in Cleomaceae, but not nec- morphological, and physiological essarily in Brassicaceae. The investigation of both nested and contrasting diversity, especially when compared whole-genome duplications (WGDs) between Cleomaceae and Brassicaceae to sister family the Brassicaceae. allows comparisons of independently duplicated genes and investigation of Robust phylogenetic hypotheses are whether they may be drivers of the observed innovations. Further, a wealth of indispensable for providing an evolu- outstanding genetic research has provided insight into how the important tionary comparative framework and structure needed for taxonomic revi- alternative carbon fixation pathway, C4 photosynthesis, has evolved via differ- sions that impact on research ranging ential expression of a suite of genes, of which the underlying mechanisms are from genomics to physiology. being elucidated. A genome triplication is a potential driver of floral evolution as well as a powerful Cleomaceae as an Emerging Model to Its Sister Family Brassicaceae system in which to explore the conse- The plant family Cleomaceae presents a fascinating juxtaposition of diversity compared to its quences of increased genome size. -
Capparidastrum Alboannulatum: a New Species and New Records of Capparaceae from Colombia
CAPPARIDASTRUM ALBOANNULATUM: A NEW SPECIES AND NEW RECORDS OF CAPPARACEAE FROM COLOMBIA XAVIER CORNEJO1,2 AND WILLIAM VARGAS3 Abstract. Capparidastrum alboannulatum, a new species of tree of the Capparaceae, endemic to western Colombia, is described and illustrated. Its conservation status is here assessed as endangered. In addition, Capparidastrum discolor, C. mollicellum, and Quadrella isthmensis subsp. isthmensis, all species of Capparaceae previously known only from Mexico and Mesoamerica, are reported as new records for the flora of Colombia and South America. Keywords: Capparaceae, Colombia, Capparidastrum alboannulatum, endemic Resumen. Se describe e ilustra Capparidastrum alboannulatum, una nueva especie de árbol de Capparaceae, endémica del occidente de Colombia. El estado de conservación de Capparidastrum alboannulatum aquí asignado es en peligro. Además, Capparidastrum discolor, C. mollicellum y Quadrella isthmensis subsp. isthmensis, todas estas especies de Capparaceae previamente conocidas como restringidas a México y Mesoamérica, se reportan por primera vez para la flora de Colombia yAmérica del Sur. Palabras claves: Capparaceae, Colombia, Capparidastrum alboannulatum, endémica Capparidastrum (DC.) Hutch. (Capparaceae) is a The following new species and three new records of Neotropical genus of shrubs and trees, comprising two Capparaceae, all from Colombia, were found after the subgenera (Capparidastrum subgen. Capparidastrum and publication of Capparaceae for the Catalogue of the Plants C. subgen. Pulviniglans) and 24 species, ranging from and Lichens of Colombia (Cornejo and Iltis, 2016), and western Mexico to Bolivia in dry, moist, and wet forests, the synopsis of Capparaceae for the flora of Colombia from sea level to 1600 m (Cornejo and Iltis, 2008; Cornejo (Mercado-Gómez et al., 2019). and Iltis, 2016; Mercado et al., 2020; Cornejo, in prep.). -
Crataeva Nurvala Buch
Kumar et al. Future Journal of Pharmaceutical Sciences (2020) 6:113 Future Journal of https://doi.org/10.1186/s43094-020-00106-1 Pharmaceutical Sciences REVIEW Open Access Botanical description, phytochemistry, traditional uses, and pharmacology of Crataeva nurvala Buch. Ham.: an updated review Dinesh Kumar1,2*, Shivangi Sharma1 and Sunil Kumar1 Abstract Background: Crataeva nurvala Buch. Ham., an important medicinal plant of the Capparidaceae family, is widely distributed in India and tropical and subtropical parts of the world. It has been reported for its folkloric use in various disorders such as blood purifier, breathing problems, fever, metabolic disorders, wound healing, memory loss, and weak immune system. Results: The present review has focused on the botanical description and ethnomedicinal and traditional uses of C. nurvala along with its reported pharmacological activities. Chief chemical constituents and pharmacological aspects of C. nurvala have been deeply explored to unravel the unexplored folklore/ethnomedicinal uses of this plant so that the researchers working on this plant may be able to find new insights to continue further investigation on this plant. The pharmacological aspects like anti-diabetic, anti-inflammatory, anti-nociceptive, anti-diarrheal, anti- fertility, anti-pyretic, and anti-cancer potentials evaluated by various in vitro/in vivo methods on this plant have been reported. Conclusion: Various traditional uses have been reported that need to be scientifically investigated in depth and several pharmacological activities have been reported for the C. nurvala, but more detailed and mechanism-based studies linked to a particular lead compound need to be targeted in the future. Moreover, this plant has not been completely assessed on the basis of its safety and efficacy on humans. -
New Plants for 1984 by the Staff of American Horticulturist 14 Container Plants for Wintry Terraces by Linda Yang 20
Members of the American Horticultural Society Will Gather in Miami from March 14-17. 1984 ./ For the AHS Spring Symposium. We Would Lil<e You To Join Us. Leave winter woes behind and join us in Miami for our Spring Sym posium. Tour Fairchild Tropical Garden, famous for its tropical flowering trees, palms and cycads, and stroll through Vizcaya, the Italian Renaissance palace of John Deering. Explore The Kampong, once the home of world-renowned plant explorer David Fairchild. Learn about tissue culture propaga tion at the Orchid Jungle, and visit wholesale and retail nurseries filled with exotic plants. Be sure to join us for a unique tropical experi ence- south Florida promises to be in the full bloom of spring. For more information about the Spring Symposium, look in the January issue of American Horticul turist news or write to the Society's Education Department. You may also elect to extend your horticul tural holiday by joining the Post Symposium Tour of gardens along Florida's west coast, the Everglades and EPCOT from March 18-26, 1984. Please join us! ABOVE: Fairchild Tropical Garden is famous for its collection of palms as well as cycads, orchids, bromeliads and trees native to South Florida and the Bahamas. BELOW: Hibiscus 'Norma', growing in the hibiscus display garden at Fairchild. VOLUME 63 NUMBER 2 Gantents President's Page: Meet Our New Executive Director 2 Strange Relatives: The Caper Family by Jane Steffey 4 Seasonable Reminders: A Catalogue Review by Peter Loewer 8 Book Reviews by Gilbert S. Daniels 12 New Plants for 1984 by The Staff of American Horticulturist 14 Container Plants for Wintry Terraces by Linda Yang 20 The Kampong by Larry Schokman and Karen Ronne Tupek 25 Reflections on Muck and Mysticism by Frederick McGourry 30 Pronunciation Guide 35 Gardener's Marketplace ' 36 The Indoor Gardener: Florist Azaleas Tips for Re-forcing by Judith Hillstrom 40 Sources 42 The Design Page: Symmetry & Balance by Margaret Hensel 44 Hemerocallis 'Song Sparrow', a new introduction from K1ehm Nursery. -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.